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De novo gene predictors are programs that predict the exon-

intron structures of genes using the sequences of one or

more genomes as their only input. In the past two years,

dual-genome de novo predictors, which exploit local rates and

patterns of mutation inferred from alignments between two

genomes, have led to significant improvements in accuracy.

Systems that exploit more than two genomes simultaneously

have only recently begun to appear and are not yet competitive

on practical tasks, but offer the greatest hope for near-term

improvements. Dual-genome de novo prediction for compact

eukaryotic genomes such as those of Arabidopsis thaliana

and Caenorhabditis elegans is already quite accurate.

Although mammalian gene prediction lags behind in accuracy,

it is yielding ever more useful results. Coupled with significant

improvements in pseudogene detection methods, which have

eliminated many false positives, we have reached the point

where de novo gene predictions are being used as hypotheses

to drive experimental annotation via systematic RT-PCR and

sequencing.
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Abbreviations
EHMM evolutionary HMM

EST expressed sequence tag

HMM hidden Markov model

indels insertions and deletions

ORF open reading frame

PPT poly-pyrimidine tract
RT-PCR reverse transcription-polymerase chain reaction

TSS transcription start sites

UTR untranslated region

Introduction
The past two years have seen the flowering of the

genomic era, a period during which metazoan genome

sequencing has been transformed from a major interna-

tional event to a common undertaking that barely makes

the covers of scientific journals, much less popular news-

papers. The wealth of raw data generated by this tech-

nological triumph has greatly accelerated scientific

progress even while it remains far from fully analyzed.

It has also driven a series of advances in computational

genome analysis, including methods for predicting the

exon-intron structures of genes. Such methods can be

divided into those that make use of expression data

(including sequences from cDNAs and potentially data

from hybridization experiments) and those that use only

the sequences of one or more genomes (de novo or ab initio
methods). The focus of this review is recent develop-

ments in de novo gene prediction for the genomes of

higher eukaryotes.

De novo gene predictors can be categorized into those that

use a single genome sequence, those that use two genome

sequences to infer local rates and patterns of mutation

along the genome, and those that use more than two

genomes for the same purpose. Single-genome predictors

reached a state of relative maturity with the development

of systems based on hidden Markov models (HMMs) (e.g.

GENSCAN [1], GENIE [2] and HMMGENE [3]) and

related models (e.g. GENEID [4] and FGENESH [5]).

Dual-genome de novo predictors (e.g. SGP-2 [6��], SLAM

[7��] and TWINSCAN [8,9��]) have led to the greatest

practical improvement in the accuracy of prediction over

the past two years. Systems that exploit more than two

genomes simultaneously (e.g. [10��,11]) have only

recently begun to appear and are not yet competitive

on practical tasks, but offer the greatest hope for near-

term improvements in accuracy.

Since the first animal and plant genomes were sequenced,

de novo gene finders have been part of the standard

toolbox for genome annotation and analysis. With the

advent of dual-genome predictors, the accuracy for com-

pact genomes, such as that of Arabidopsis thaliana, has

become so good that one-half to two-thirds of all known

genes are predicted exactly right, from the start codon

through every splice site to the stop codon, and most of

the imperfect predictions are only slightly off ([12];

Chaochun Wei, personal communication). The accuracy

for mammalian genomes has lagged behind owing to

inherent challenges, such as the large number of pseu-

dogenes and small fraction of coding sequence, that affect

all mammalian annotation methods. Although dual-

genome de novo systems now correctly predict about

75% of all known exons at both splice sites, only

15–20% of known gene structures are predicted correctly

throughout the coding region [6��,9��]. Annotation
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pipelines such as ENSEMBL [13], which require homol-

ogy to known expressed sequences, are somewhat more

accurate at predicting exons of known genes [9��], but

they tend to miss many predicted exons and genes that

can be verified experimentally [14��,15,16]. Perhaps the

most significant development of the past year in mam-

malian annotation has been the application of recently

developed pseudogene detection methods [17,18], which

have eliminated many false positives from both de novo
and pipeline-style annotation. Indeed, the advent of dual-

genome systems, together with the elimination of many

pseudogenes, has improved the de novo prediction accu-

racy to the point where systematic reverse transcription-

polymerase chain reaction (RT-PCR) and sequencing of

de novo predictions is a cost-effective complement to

sequencing of random cDNA clones, even in mammalian

genomes [19].

Single-genome predictors
Although methods based on the comparison of two or

more genomes have greater accuracy, there are good

reasons to develop improved single-genome de novo pre-

dictors. First, they are easier to train and faster to run than

multi-genome predictors, and are consequently the first

systems used to annotate newly sequenced genomes.

Second, although comparative methods exploit an under-

lying sequence alignment, the information from the

alignment is usually integrated with information from

intrinsic sequence signals (e.g. splice sites) and the com-

positional biases characteristic of protein-coding regions

(e.g. codon usage). When explicitly investigated [9��,20�],
the relative contribution of the sequence alignment to the

final gene prediction has been found to be smaller than

that of the intrinsic coding sequence patterns. Third,

comparative gene prediction requires the sequenced

genomes of two or more species at the appropriate phy-

logenetic distance (see below); when there is no second

genome at an appropriate distance, one must resort to

single-genome predictors.

Recent advances for single-genome predictors have

focused on the problem of training and parameter estima-

tion. Often, newly sequenced genomes lack large enough

samples of known genes from which to estimate model

parameters. Although in such cases it is common practice

to use a genome predictor that has been trained on

another species, recent analysis indicates that gene fin-

ders trained on a foreign genome tend to perform sub-

optimally (I Korf, personal communication). To address

this limitation, Korf introduces the idea of ‘bootstrap

parameter estimation’, in which a foreign gene finder is

run on a novel genome and the resulting predictions are

used to estimate the parameters for gene prediction for

the novel genome. Kotlar and Lavner [21] pursue a

different strategy that emphasizes detecting periodic

correlations between nucleotide positions. These mea-

sures are universal and can be computed without the need

for previous training.

Dual-genome predictors
Dual-genome gene predictors rely on the fact that func-

tional regions of a genome sequence — protein-coding

genes in particular — are more conserved during evolu-

tion than non-functional ones (Figure 1, bottom two

tracks). Over the past four years, several programs have

been developed that exploit sequence conservation

between two genomes to predict genes. A wide variety

of strategies have been explored. In the pair HMM

approach (e.g. SLAM [7��]), a joint probability model

for sequence alignment and gene structure is used to

express the different types of alignments one expects to

see in, for example, coding regions and introns. Align-

ment and gene prediction are performed simultaneously

using a dynamic programming algorithm that combines

the classic algorithms for alignment and HMM decoding.

In the ‘informant genome’ approach (e.g. SGP-2 [6��] and

TWINSCAN [8,9��]), alignments are performed first

using standard tools such as TBLASTX or BLASTN,

and these alignments are used to inform prediction

Figure 1

UTR

TE

Single intron

Prediction

Human

A TWINSCAN prediction (green, subsequently identified as rat aspartylglucosaminidase). TWINSCAN uses the blocks of alignment from the

human genome (black), and the mismatches and gaps within the blocks (red) to predict the most likely gene structure. ENSEMBL predicted

only small fragments of two exons in this gene, due to a fragmentary rat protein in public databases. RT-PCR and direct sequencing were

performed using primer pairs designed around a single intron, in the predicted first and last exons (TE), and the predicted UTRs. Primers are

shown as tall pink blocks at the same level as the sequence they yielded and aligned amplicon sequences from these experiments are shown

in purple, red and blue, respectively. The left single intron primer did not yield high-quality sequence. Reproduced from [15].
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algorithms that are extensions of successful single-

genome predictors. SGP-2, SLAM and TWINSCAN

were used in the comparative analysis of the human

and mouse genomes [22]. These systems significantly

outperformed single-genome predictors while identifying

many exons and genes not found by expression-based

annotation pipelines such as ENSEMBL [14��].

One of the surprises that emerged from comparison of the

human and mouse genomes was that, whereas coding

regions are mostly conserved between human and rodent

genomes, most conserved regions are not protein coding.

Depending on the tool, almost 40% of the human genome

can be aligned with the mouse genome [22], but less than

2% encodes proteins. Most dual-genome predictors dis-

criminate indirectly between coding and non-coding con-

servation by relying heavily on intrinsic coding sequence

patterns.

In this regard, several researchers have been recently

attracted to the problem of discriminating coding from

non-coding conservation in cross-genome sequence align-

ments. Although to some extent implicit in the algorithms

used in most dual-genome predictors, Nekrutenko et al.
[23,24] explicitly use the ratio of non-synonymous over

synonymous substitutions. There tend to be more synon-

ymous than non-synonymous substitutions in open read-

ing frames (ORFs) that encode proteins, as they are under

selective pressure to maintain protein function. In non-

coding ORFs, no such distinction is seen. By system-

atically computing this measure for segments conserved

between human and mouse, Nekrutenko et al. [23] found

evidence of more than 13 000 exons absent from all

annotations of the human genome. Moore and Lake

[25], on the other hand, convert sequence alignments

to numerical series, so that alignments in coding regions

result in series with well-defined frequency bands,

whereas those in non-functional regions result in noisy

series. They use the Wiener filter to eliminate the noise in

the frequency space, in this way uncovering the align-

ments that are likely to occur in coding regions. Finally,

Noguchi et al. [26] introduce an index relative to frame

recovery in cross-species sequence alignments. If inser-

tions or deletions cause a frame shift in coding regions,

other nearby insertions or deletions will usually restore

the reading frame. Frame recovery is relatively rare in

non-coding alignments.

With increasing frequency, eukaryotic genome sequenc-

ing stops at a coverage level that makes full genome

assembly unfeasible. In this regard, the informant gen-

ome method, which exploits short, interrupted align-

ments, has an advantage over the pair HMM method,

which requires long continuous alignments from ortho-

logous (not paralogous) regions. Flicek et al. [9��] and

Parra et al. [27] investigated the effect of the level of

mouse genome sequence coverage on the accuracy of the

predictions for the human genome obtained by TWIN-

SCAN and SGP-2, respectively. Both found that perfor-

mance increases steadily up to threefold coverage but

more slowly thereafter, leveling off at about fourfold [9��].

With the availability of an increasing number of genome

sequences, it has become important to understand how

phylogenetic distance affects the accuracy of dual-gen-

ome gene predictions. Investigating this question, Guigó

and Wiehe [28], and Zhang et al. [20�] concluded that the

optimal reference for comparative analysis of the human

genome would be a species more distant than mouse.

Wang et al. [29] bracket the optimal distance for annotat-

ing mouse between chicken (which is too far) and rat

(which is too close). All three groups agree that, among

the genome sequences available in late 2003, rodents

were the best for annotation of the human genome.

Ultimately, however, it may prove better to avoid this

choice by simultaneously using all available genome

comparisons to inform gene prediction.

Multi-genome predictors
Dual-genome de novo systems work by using alignments

between two genomes to draw inferences about the rate

of evolution at each nucleotide. If the two sequences

match at a particular base, that base is conserved; if they

do not, it is not conserved. Although this has proven

effective in practice, it is clearly a crude measure of

evolutionary rate. Using multiple alignments among sev-

eral genomes can provide a more precise measure of

evolutionary rate and, in principle, this should lead to

greater precision in comparative gene prediction.

Furthermore, dual-genome predictors for mammalian

genomes have had the greatest success using relatively

distant genomes, such as mouse and human. However,

there are inherent uncertainties in reconstructing the

lineages of genomic regions for two such distantly related

organisms because so many rearrangements, segmental

duplications, retrotranspositions and other events have

occurred since their latest common ancestor. One possi-

ble solution is to infer evolutionary rate from many closely

related species instead of two more distant species. For

example, Boffelli et al. [30] have observed that the col-

lective divergence of the higher primates, as a group, is

comparable to the divergence of human and mouse, yet

their genomes can be aligned much more accurately than

those of human and mouse.

Recently, the continuous time Markov chains that are

standard for describing the evolution of a particular resi-

due have been combined with the discrete HMMs that

are standard for describing the functions of nucleotides

within the sequence of a gene. The combined models

have been called evolutionary HMMs (EHMMs) [11,31]

and phylo-HMMs [10��,32]. The input to these models is

a multiple sequence alignment among several genomes.

To paraphrase Siepel and Haussler, phylo-HMMs model
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molecular evolution as a Markov process in two dimen-

sions: a substitution process over time at each site in the

aligned genomes, which is guided by a phylogenetic tree;

and a process by which the rate of evolution changes from

one site to the next.

All phylo-HMM models assume that the rate of evolution

of a nucleotide depends on its function, but the most

elaborate phylo-HMM models [10��,32] also consider the

possibility that the evolutionary rate may vary from one

region of a genome to another. Furthermore, they allow

the probabilities of mutation at each site to depend on the

observed pattern of mutation in the previous few sites.

Although traditional evolutionary models focus on sub-

stitutions rather than insertions and deletions (indels), the

modeling of indels is critical for gene prediction. The

reason is that the patterns of indels differ greatly between

coding and non-coding regions; coding regions tend to

have far fewer indels and, where they do occur, they are

usually in multiples of three, preserving the reading

frame. The best approach to indel modeling proposed so

far seems to be to treat each pattern of gaps within a

multiple alignment column separately. Each HMM state

in the original model is copied once for each possible

combination of gaps in an alignment column and separate

probability models are estimated for each such state. One

limitation of this state copying method is that it expands

the number of HMM states by a factor of roughly 10–30,

depending on the number of genomes modeled [10��].

Although this approach is very sophisticated from a

mathematical modeling perspective, it has not yet yielded

practical improvements in the accuracy of gene predic-

tion. This is because the complexity of the evolutionary

models leaves little room for the complex gene structure

models needed to outperform state-of-the-art dual-

genome systems. For example, none of the phylo-

HMM gene finders has yet incorporated non-geometric

models of exon length. Indeed, one of the lessons of dual-

genome gene finders is that the best performance was

obtained by modifying state-of-the-art single-genome

systems rather than by building new systems that rely

primarily on the signal from natural selection. Nonethe-

less, efforts to exploit alignments among multiple gen-

omes to improve prediction accuracy are likely to bear

fruit in the next year or two.

Combining the output of gene predictors
Human annotators and automated genome annotation

‘pipelines’ [13,33] generally operate by combining infor-

mation that ultimately derives from cDNAs (expressed

sequence tags [ESTs], full-length cDNA sequences and

conceptual translations) with information from one or

more de novo gene finders. Human annotators use their

intuition and experience to synthesize the often contra-

dictory evidence into a single gene structure, whereas

pipelines generally use rules based on the intuition and

experience of their designers. The rules are often simply

priorities, for example, use an exon predicted by GEN-

SCAN if it is supported by an EST alignment but does

not overlap a GENEWISE [34] protein alignment.

Recently, several systems have been developed to com-

bine such evidence sources in a more mathematically

principled way, using evidence weighting and dynamic

programming algorithms [12,35,36]. When expression

data are used, it is difficult to estimate performance on

unknown genes from performance on known genes, as

known genes are more likely to yield expression data than

unknown genes (that is, in most cases, how they came to

be known). Nonetheless, several papers suggest that

combining different de novo gene predictors with one

another [12,36] and with expression data [12,35] improves

accuracy. Such systems may be improved further by

current efforts to increase the accuracy of cDNA align-

ment [37], cross-species gene-structure mapping [38] and

cross-species EST alignment [39].

Improving models of DNA sequences and
their roles in protein production
De novo gene prediction programs work primarily by

recognizing patterns in genomic sequences that are char-

acteristic of splice sites, translation initiation and termi-

nation sites, protein-coding regions, poly-adenylation

sites and sites with other specific functions in gene

expression. In most systems, pattern recognition is based

on probability models for each of these functions. For

example, given a DNA sequence, the splice donor model

assigns a likelihood to the proposition that the sequence

functions as a splice donor. The more accurate the model,

the more it assigns high likelihoods to true splice donor

sequences and low likelihoods to other sequences.

Splice sites are among the most powerful signals used by

gene prediction programs, so accurate splice site model-

ing is crucial for achieving high accuracy. Most current

gene prediction systems require introns to begin with GT

and end with AG, as roughly 99% of introns in sequenced

genomes do. However, GC–AG splice sites have a parti-

cularly strong splice donor consensus (Figure 2) and

incorporating models of them has been found to improve

accuracy (Ping Hu, unpublished).

Splice donor models typically consider about 3 nucleo-

tides of exon and 6 nucleotides of intron (�3 to þ6, where

0 is the exon-intron boundary). Splice acceptor models

consider a ‘core’ acceptor site covering roughly 6 nucleo-

tides of intron and 3 nucleotides of exon (�6 þ3), as well

as the upstream poly-pyrimidine tract (PPT), which

extends another 15–30 nucleotides into the intron. Some

gene finders also use branch point models, which also fall

15–30 base pairs upstream of the core acceptor site [40]

(Figure 2). The most common types of models for splice

sites are position-specific (inhomogeneous) 0th or 1st

order Markov chains, often called WMMs and WAMs,

Gene structure prediction Brent and Guigó 267
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respectively. The 0th order Markov chains (WMMs)

model each position in the splice site independently; a

probability is computed for each base of the input

sequence occurring in the corresponding position of

the splice site and these probabilities are multiplied

together to give a likelihood for the entire sequence.

First-order inhomogeneous Markov chains (WAMs) con-

dition these probabilities on the immediately preceding

base, capturing dependencies between adjacent posi-

tions. GENSCAN improved performance by modeling

non-adjacent dependencies in splice donor sites using a

decision-tree-like model [1]. For example, this model

captures the fact that splice donors without a guanine

in position þ5 are much more likely to have adenines in

positions þ3 and �2 than donors that have a guanine

in þ5.

Recently, several new probability models have been

introduced for modeling non-adjacent dependencies

between positions in splice sites, including increment

of diversity quadratic discriminant analysis (IDQD) [41],

support vector machines (SVMs) [42��,43], maximum

entropy models (MEMs) [44,45] and Bayesian networks

[46]. These methods appear to yield modest but real

improvements over previous models of the core splice

sites and PPT. Perhaps more important is the discovery of

signals further into the intron that help differentiate true

splice sites from false splice sites ([42��]; see also [47]).

This discovery suggests that extending splice site models

further into the intronic regions is likely to improve their

accuracy. Similarly, the recent elucidation of splice

enhancers within the exon suggests another direction

in which splicing models can be usefully extended [48�].

Figure 2
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Logos were made with the PICTOGRAM program [65].
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New research also suggests that long introns display a

much narrower range of splice site sequences than short

introns [49�]. The interpretation of this observation is that

the splicing signals for long introns must be stronger to

compete with all the other potential splice sites in the

intron (also see [50]). It should be possible to take

advantage of this dependence between intron length

and splice signal to avoid predicting long introns that

lack strong signals. This may allow gene finders to predict

long introns more accurately — currently, they tend to

avoid predicting long introns altogether [51]. Current

gene finders also assign too low a probability to short

introns, favoring the intermediate range more than they

should. This is because, for technical reasons, fully accu-

rate models of intron length increase the time it takes to

run gene prediction programs beyond acceptable limits.

However, increases in computing power have made it

possible to use models that, although not fully accurate,

are much more accurate than those that were used in the

past. This was accomplished by creating a highly accurate

submodel for short- and medium-length introns, while

using fast, moderately accurate models for very long

introns [52�]. Separating intron models by length also

makes it possible to model their splice sites differently.

The combination of more accurate intron length models

with length-specific splice site models can be expected to

contribute to greater accuracy in the future.

Extending the functionality of gene
predictors
Despite progress in modeling sequence signals that func-

tion in gene expression, overall the models underlying

current computational methods are still quite simple,

encoding a rather naive view of the eukaryotic gene.

Almost without exception, computational gene finders

predict only the coding fraction of a single spliced form of

non-overlapping, canonical protein-coding genes. They

deal poorly, if at all, with untranslated regions (UTRs),

alternative spliced forms, overlapping or embedded

genes, short intronless genes and rapidly evolving genes

that are conserved poorly across genomes. They also tend

to fail with highly atypical genes, such as those with

unusual codon bias, those with non-canonical splice sites

(Figure 2) and those that code for selenoproteins.

Although comparative analysis [14��] does not seem to

support the existence of many more than 25 000 human

genes, the discrepancy between this estimate and the

results of genome-wide transcriptional surveys [53–55]

remains puzzling. It cannot thus be ruled out that a

significant fraction of the protein-coding content of the

human genome — corresponding either to entirely novel

genes or to fragments of already known genes — may

remain undetected.

Efforts thus have also been made towards extending the

functionality of computational gene finders, endowing

them with a richer underlying model of the eukaryotic

gene, which should ultimately lead to the production of

more comprehensive automatic gene catalogs of eukar-

yotic genomes. We will discuss here recent progress in

three different areas: prediction of UTRs, prediction of

alternative splicing and prediction of selenoprotein

genes.

UTRs are poorly predicted by computational methods:

they do not show the characteristic sequence bias of

coding regions, are less conserved across species and

transcription start sites (TSS) exhibit a poor sequence

consensus. On the other hand, although cDNA seq-

uences and EST libraries often contain good representa-

tions of the 30 end of genes, extending cDNA sequences

to cover the whole 50 region is often technically difficult

[56]. Recently, Bajic and Seah [57] improved the pre-

diction of TSS using information about CpG islands and

signals in the downstream promoter region. Prediction of

TSS is at the interface between gene and promoter

prediction, a field on its own (see [58] for a recent

review).

De novo prediction of the alternative splicing forms of

genes is an open problem for which there is currently no

adequate solution. ESTs are still the primary source of

evidence and advances have been reported in methods for

reconstructing a few of the true splice forms of a gene

from many EST sequences (e.g. [59]). The estimate by

Thanaraj et al. [60] that more than 60% of alternative

splicing events are conserved between human and mouse

offers hope that genome comparison, in conjunction with

either de novo or expression-based methods, could con-

tribute to the delineation of the alternative forms of

eukaryotic genes. In addition, it has been suggested that

the ‘suboptimal’ (e.g. second most probable) annotations

found by single-genome [61] or dual-genome [62] gene

prediction programs may be good candidates for alterna-

tively spliced forms.

Selenoproteins highlight the limited ability of current

systems to deal with exceptions to the canonical rules

defining eukaryotic genes and illustrate the power of

comparative genomics strategies to overcome them. In

selenoproteins, the codon TGA is translated into a

selenocysteine residue, whereas gene prediction pro-

grams assume without exception that the TGA triplet

stops translation. Selenoprotein genes are absent from all

automatic annotations of eukaryotic genomes. Although

they are not abundant, selenoproteins participate in

important physiological processes. Recently, methods

have been reported that extend single-genome predic-

tors to capture the specific sequence features character-

izing selenoprotein genes and that, after cross-genome

comparisons of the predictions, led to the identification

of novel mammalian and vertebrate selenoprotein

families [63,64].
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www.sciencedirect.com Current Opinion in Structural Biology 2004, 14:264–272



Experimental verification and refinement of
predicted gene structures
High-throughput sequencing of genomes and cDNA

libraries is sometimes described as a ‘data-driven’

approach to biology, in contrast to the traditional hypoth-

esis-driven approach. In keeping with this spirit, gene

prediction systems are typically run on entire genomes,

the results are published or distributed on web sites, and

it is hoped that some of the predictions might influence

the hypotheses pursued by experimental biologists.

Recently, however, the limitations of the data-driven

approach to elucidating gene structures by sequencing

random cDNA clones have become apparent [19]. At the

same time, the increasing accuracy of dual-genome pre-

diction methods has led to a shift whereby experimental

follow-up is being scaled up, rather than being left to

individual investigators. For example, Guigo et al. [14��]
performed RT-PCR and direct sequencing on short seg-

ments of hundreds of predicted mouse genes that were

not in the annotation produced by the ENSEMBL pipe-

line. They found that verification rates were very high for

mouse predictions that were similar to human predictions

with at least one conserved intron location. Moreover, the

genes that were verified in this way were expressed in

significantly fewer tissues, on average, than previously

known genes. More recently, Wu et al. [15] showed that

complete predicted genes could be amplified and

sequenced from primers in the UTRs with high success

rates, even for genes not found by the pipeline approach

(Figure 1). Thus, high-throughput biology has come full

circle, incorporating a hypothesis-driven approach.

Unlike traditional methods, however, these hypotheses

are being generated in the thousands by increasingly

accurate de novo gene prediction programs.

Concluding remarks
De novo gene prediction for compact eukaryotic genomes

is already quite accurate. Although mammalian gene

prediction lags behind in accuracy, it is yielding ever

more useful results. In particular, the use of de novo gene

predictions as hypotheses to drive experimental annota-

tion based on systematic RT-PCR and sequencing will

improve mammalian annotation greatly in the coming

year. As the new approaches described above are inte-

grated with state-of-the-art gene finders, de novo accuracy

can be expected to improve further. Eventually, a better

understanding of the molecular mechanisms involved in

gene expression, and the incorporation of this knowledge

into the theoretical models underlying de novo gene

predictors, may lead to systems that are accurate enough

to render both experimental verification and manual

curation largely unnecessary.

Acknowledgements
We thank David Shteynberg for help with Figure 1 and Josep F Abril
for help with Figure 2. MB is supported, in part, by grants HG02278,
HG003150 and AI051209 from the National Institutes of Health, and
DBI-0091270 from the National Science foundation. RG is supported by

grants from the Plan Nacional de IþD (Spain), QLK3-CT-2002-02062
from the European Community and HG003150-01 from the National
Institutes of Health.

References and recommended reading
Papers of particular interest, published within the annual period of
review, have been highlighted as:

� of special interest
��of outstanding interest

1. Burge C, Karlin S: Prediction of complete gene structures in
human genomic DNA. J Mol Biol 1997, 268:78-94.

2. Kulp D, Haussler D, Reese MG, Eeckman FH: A generalized
hidden Markov model for the recognition of human genes
in DNA. Proc Int Conf Intell Syst Mol Biol 1996, 4:134-142.

3. Krogh A: Two methods for improving performance of an
HMM and their application for gene finding. Proc Int
Conf Intell Syst Mol Biol 1997, 5:179-186.
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www.sciencedirect.com Current Opinion in Structural Biology 2004, 14:264–272



48.
�

Fairbrother WG, Yeh RF, Sharp PA, Burge CB: Predictive
identification of exonic splicing enhancers in human genes.
Science 2002, 297:1007-1013.

This paper describes a statistical analysis of over-represented oligonu-
cleotides in the sequence of exons with weak splice signals. The analysis
led to the identification of ten exonic splicing enhancers, which were
subsequently found to display enhancer activity in vivo.

49.
�

Weir M, Rice M: Ordered partitioning reveals extended splice-
site consensus information. Genome Res 2004, 14:67-78.

This paper reports that long introns have stronger splice site consensus
signals than short introns. Incorporating this relationship into gene pre-
diction models may help to overcome the difficulty in predicting long
introns, particularly in combination with better models of the intron length
distribution itself.

50. Lim LP, Burge CB: A computational analysis of sequence
features involved in recognition of short introns. Proc Natl
Acad Sci USA 2001, 98:11193-11198.

51. Wang J, Li S, Zhang Y, Zheng H, Xu Z, Ye J, Yu J, Wong GK:
Vertebrate gene predictions and the problem of large genes.
Nat Rev Genet 2003, 4:741-749.

52.
�

Stanke M, Waack S: Gene prediction with a hidden Markov
model and a new intron submodel. Bioinformatics 2003,
19(suppl 2):II215-II225.

This paper describes a single-genome de novo gene prediction program
that is based on an HMM model with number of elegant features that have
not been previously described. The most significant is a new compromise
between speed and accuracy that allows relatively accurate modeling of
the distribution of intron lengths to be used without imposing an unac-
ceptably long running time.

53. Rinn JL, Euskirchen G, Bertone P, Martone R, Luscombe NM,
Hartman S, Harrison PM, Nelson FK, Miller P, Gerstein M et al.:
The transcriptional activity of human chromosome 22.
Genes Dev 2003, 17:529-540.

54. Shoemaker DD, Schadt EE, Armour CD, He YD, Garrett-Engele P,
McDonagh PD, Loerch PM, Leonardson A, Lum PY, Cavet G et al.:
Experimental annotation of the human genome using
microarray technology. Nature 2001, 409:922-927.

55. Kapranov P, Cawley SE, Drenkow J, Bekiranov S,
Strausberg RL, Fodor SP, Gingeras TR: Large-scale
transcriptional activity in chromosomes 21 and 22.
Science 2002, 296:916-919.

56. Suzuki Y, Yamashita R, Nakai K, Sugano S: DBTSS: database of
human transcriptional start sites and full-length cDNAs.
Nucleic Acids Res 2002, 30:328-331.

57. Bajic VB, Seah SH: Dragon gene start finder: an advanced
system for finding approximate locations of the start of gene
transcriptional units. Genome Res 2003, 13:1923-1929.

58. Wasserman WW, Sandelin A: Applied bioinformatics for the
identification of regulatory elements. Nat Rev Genet 2004,
5:276-287.

59. Eyras E, Caccamo M, Curwen V, Clamp M: ESTGenes: alternative
splicing from ESTs in Ensembl. Genome Res 2004, in press.

60. Thanaraj TA, Clark F, Muilu J: Conservation of human alternative
splice events in mouse. Nucleic Acids Res 2003, 31:1-9.

61. Burge C: Identification of genes in human genomic DNA
[PhD Thesis]. Stanford, CA: Stanford University: 1997.

62. Cawley SL, Pachter L: HMM sampling and applications to
gene finding and alternative splicing. Bioinformatics 2003,
19(suppl 2):II36-II41.

63. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O,
Guigo R, Gladyshev VN: Characterization of mammalian
selenoproteomes. Science 2003, 300:1439-1443.

64. Castellano S, Novoselov SV, Kryukov GV, Lescure A, Blanco E,
Krol A, Gladyshev VN, Guigo R: Reconsidering the evolution
of eukaryotic selenoproteins: a novel nonmammalian family
with scattered phylogenetic distribution. EMBO Rep 2004,
5:71-77.

65. Burge CB, Tuschl T, Sharp PS: Splicing precursors to mRNAs by
the spliceosomes. In The RNA World. Edited by Gesteland RF,
Cech TR, Atkins J. Cold Spring Harbor, New York: Cold Spring
Harbor Laboratory Press; 1999:chapter 20.

272 Sequences and topology

Current Opinion in Structural Biology 2004, 14:264–272 www.sciencedirect.com


	Recent advances in gene structure prediction
	Introduction
	Single-genome predictors
	Dual-genome predictors
	Multi-genome predictors
	Combining the output of gene predictors
	Improving models of DNA sequences and their roles in protein production
	Extending the functionality of gene predictors
	Experimental verification and refinement of predicted gene structures
	Concluding remarks
	Acknowledgements
	References and recommended reading


