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The Distressed Student Model
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Evaluating Observations

* The probability of observing a
given sequence is equal to the
product of all observed transition
probabilities.

* Suppose that:
—L: student is in state Library
— C: student is in state Coffee Shop

The Model has a Start State with transition probabilities of
- B: student is in state Bar going to L, C, or Bof 1/3.
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Student 1: LLLCBCLLBBLL
Student 2 : LCBLBBCBBB BL
Student 3: CCCLCCCBCCCL
| 200708 sami o

* P(LCBLBBCBBBBL)
=1/3*0.1 *0.75 *0.2 *
*0.718*0.7*0.7*
=1.4406 * 10°S

* P(CCCLCCCBCCCL)

=1/3*0.2*0.2*0.05*0.1*0.2*0.2
*0.75*%0.1 *0.2* 0.2 *0.05

=4 %1010
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Computmg Observed Sequences

Computing Observed Sequences

* The probability of observing a given
sequence is equal to the product of all
observed transition probabilities.

* Example:
* P(LLLCBCLLBBLL)
=1/3*0.1*0.1*0.1*0.75*0.1*0.05
*0.1*%0.8*%0.7%0.2*0.1
=1.4*10°
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he Random Model
The Null Hypothesis

0.33

Librar;) @‘;fi;e)

0.33 0.33
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Student 1: LLLCBCLLBBLL=1.8817 x 10°
Student 2: LCBLBBCBBBBL =1.8817 x 10°
Student 3: CCCLCCCBCCCL =1.8817x10™°
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Odds and Log Ratios

* To determine the significance of the
results obtained with the 3 students, 5 .
Student1: =1.4x107° /1.8817x10° =x
compare them to the null model Student2: =1.4406x107° /1.8817x10° =y
(random model) Student3: = 4x10™° /1.8817x10° =z

* Odds Ratio = * Loglikelihood ratios:
P(x | Distressed Model) / P(x | Null Model) Studentl1= logx =-10.39

. LOg Odds = Student2= logy = 2.94
A Student3= logz =-12.20
Log [P( x | Distressed Model) / P(x | Null Model)]

¢ Likelihood ratios:

@2002:09 Sami Khuri @2002:09 Sami Khuri

Student 1: LLLCBCLLBB LL
Student 2 : LCBLBBCBBB BL
Student 3: CCCLCCCBCC CL
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Likelihood Ratios: Successful

+ P(LLLCBCLLBBLL)

=1/3*0.6*0.6*0.25*%0.05*0.9*0.75*% 0.6 *
0.15%0.05*0.05* 0.6 = 1.3669 * 107

* P(LCBLBBCBBBBL)
=1/3*0.25%0.05*% 0.05*0.15* 0.05* 0.9 *

* Likelihood ratios:
Studenti: =1.3669x10 /1.8817 x10°=x
Student2: =4.3945x10™" /1.8817 x10° =y
Student3: = 1.35x107 /1.8817x10° =z

0.05* 0.05 * 0.05 * 0.05 * 0.05 = 4.3945 * 10-13 - Log likelihood ratios:
+ P(CCCLCCCBCCCL) Studentl= logx =-3.78
=1/3*%0.2%0.2*0.75* 0.25* 0.2* 0.2 * 0.05 * Student2= logy =-22.03
0.9%0.2%0.2%0.75 = 1.35* 107 Student3= logz =-3.8
P P
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Successful
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Models of Sequences

» Consists of states (boxes) and transitions (arcs)
labelled with probabilities.

* States have probabilities of “emitting” an
element of a sequence (or nothing).

* Arcs have transitional probabilities of moving
from one state to another.
— Sum of probabilities of arcs out of a state must be 1

— Self-loops are allowed.

©2002.09 Sarmi Khuri
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Given an observation: LLLCBCLBBCL, find

the sequence of states which is the most

likely to have produced the observation.
P——
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Markov Chai

* A sequence is said to be Markovian if the
probability of the occurrence of an element
in a particular position depends only on the
previous elements in the sequence.

* Order of a Markov chain depends on how
many previous elements influence the
probability:

— 0% order: uniform probability at every position
— 1%t order: probability depends only on the
immediately previous position.

| ©2002.00 Sami Kiuuri
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Example: a4

WHuman  (Ch21,22)

@ Arabidopsis thaliana (Ch.4)

O Drosophila melanogaster (Ch. 1)
C.elegans (Ch. 1)

© Sacctiaromyces cersvisiae (Chi1-16)
DE.col

* A CpG island in humans refers to the
dinucleotide CG and not the basepair CG.

* The C of CpG is generally methylated to 5
inactivate genes hence CpG is found g
around “start” regions of many genes
more often than elsewhere.

* Methylated C is easily mutated into T.

@2002:09 Sami Khuri @2002:09 Sami Khuri

* According to Gardiner-Garden and + CpGislands are therefore rare in other
Fromer, CpG islands are commonly locations

defined as regions of DNA
— of at least 200 bp in length,
— that have a G+C content above 50%

* CpGislands are generally a few
hundred base pairs long

that h. tio of ob d ted Questions:
— that have a ratlo oI observed vs. expecte . '
CpGs close to or above 0.6. i 1. Given a short DNA fragment, does it

i ?
* Sets of CG repeat elements, usually found come from a CpG island or not?

upstream of transcribed regions of the 2. Given a long unannotated sequence of
genome. DNA, how do we find the CpG islands?
F—— F——

* A set of human sequences were The transition probabilities of each
considered and 48 CpG islands were model were computed by:
tabulated. ot .~

« Two Markov chain models were a, = Z—”ﬁ a, = 5 e
built: e e
— One for the regions labeled as CpG c; is the number of times letter t

islands (the ‘+’ model or Model 1) followed letter s in the plus model.
— One for the remainder of the sequences
w_mmgthe ‘> model or Model 2). P
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Log-Odds Ratio

Markov chain Model 1 * Given any sequence, we compute the log-odds
Transition Frequencies within 48 putative CpG islands in humans ratio to discriminate between the two models :

A C G T
o o 5 eass S(x)= 1ogw = zL: log
P(xIthe —model) “3 a

+
aXHX«

0.161 0.339 - 0.125

0.079 0.355 0.384 0.182 Xk

Markov chain Model 2 * S(x)>0 means x is likely to be a CpG island.

T ition fi ies in Non CpG island DNA .. o1qs .
_ranSI lonxrequenmfs b OHG PR a? * The ratio is also called the log likelihood ratio

D200 L.2e5 w020 of transition probabilities.

0.322 0.298 = 0.302
0.248 0.246 -t 0.208
0.177 0.239 0.292
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Log Likelihood Ratios
* » Given a long unannotated sequence of

P(x|the+model) ZL: log L . .
P(xlthe —model) & g - DNA, how do we find the CpG islands?

S(x)=1log

i X

Logmodels A & G
A A.740 0417 0.580
4913 0.302 1812 * We can use a sliding window of size 100,

C
G .64 0461 0.331 for example, around each nucleotide in
T -1.169 0573 0393 the sequence and use the previous table
. L ) to score the log-odds. CpG islands
The table’s unit is the bit since base 2 is used for the . .
computation of the individual entries of the table. would stand out with positive values.

@2002:09 Sami Khuri @2002:09 Sami Khuri

* How do we determine the window size?
CpG islands are of variable lengths and
might have sharp boundaries.

* A better approach is to build an HMM
that combines both models.

CoG il
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% There are 8 states,
() @ Q G one for each

@ nucleotide in a
CpG island (+),

and one for each
nucleotide not

@2002:09 Sami Khuri

in a CpG island (-).

% There two states for each
Q Q Q Q output symbol.
@ Example: “T”is
recognized or generated

by T+ or T~

@ Within each group of
states, the group has the

O %O same behavior as the
original Markov Model.

An HMM for CpG Islands (III)

| Position  i+1:

Position i: (+ G+ C- G-
C+ 037 027 small  small
G+ 0.34 038 small  small
C- small small 03 0.08
G- small small 025 03

Assume the transitions from
a (+) nucleotide to a (-)

are small. And transitions
from (-) nucleotides to (+)
are also small.

@2002:09 Sami Khuri
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* The maximum scoring path receives
a score of 0.0032.

» The most likely state path is found to
be C+G+C+G+.

* Given a much longer sequence, the
derived optimal path will switch
between the CpG and non-CpG
states.

©2002.09 Sarmi Khuri
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C G C G
@ 1. 0 Q 0 0
A+ OT\ O 0 0 0
c+ 0\ 0.13 0 0.012 _0
O% O; \%,O §O 6+ 0\o F0.03%0 ~0.0032
A"* @A’“‘ @r‘* @ T+ 0 \0O 0 0 0
A- 0 \O 0 0 0
N % c- 0 ©0.13 0 0.0026 0O
e S e G- 0 0 %0.01%0 ¥0.00021
e = T- 0 0 0 0 0
u@ d@ __/® o Position i+1:
O O O O Position i: C+ Gt C- G-
C+ 0.37 027 small  small
w G+ 034 038 small  small
C- small small 0.3 0.08
G- small small  0.25 0.3
| ©2002.00 Sarmi i

P VB BT
ALWEED Pae
LTSRS
TEG

HMM for Gene Prediction

* Hidden Markov Models can be applied to
predict signals in the gene structure.
* More precisely, HMM can recognize
— Start codons
— Stop codons
— Donor splice sites
— Acceptor splice sites
— 5’ Poly A site

| @2002.00 Som s
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Gene Prediction
13%
2%
lo 85% 28% 0% 28%
2%
0.5%
E. coli Yeast Nematode
S. cerevisiae C. elegans
82% 0.5% 0.5%
1.5%
17% 98% 0.01%X " 9959,
0.5%
Drosophila Hum an Lunfish
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M Coding (protein)
I RNA
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Gene: From DNA to Protein
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Anatomy of an Intron
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The Position Weight Matrix

* Due to the high variability of the
promoters, exact methods cannot be
used for identifying promoter regions.

* Instead we use a pattern search
method based on frequencies called
the position weight matrix method.

* Use the known promoter regions to
construct a table of statistics, where an
entry is the frequency of a certain
base at a given position.

| az00s00sons s

C, .37
? P C sl

) sequence position ®)

ST o2 3[4 s e e s ] e

A| 61 | 16 352 | 3 |35 | 268 360 222 | 155 | 56 | 83 |82 | 82 | 68 | 77

observed|C| 145 | 46 | 0 | 10| 0 | 0 | 3 | 2 | 4 135 147 127 118 107 101

bases  [G[152| 18 | 2 | 2 | 5 | 0 |20 |44 | 157150 | 128 | 128|128 | 139 | 140
i

3130935 (374 30 [ 121 6 (121 33 |48 31|52 61 |75 7
1

A|-1.02/-305 000 |-461/0.00 000 0.00 0,00 |-001-0.94|-0.54|-0.48|0.48 | -0.74 | -0.62
weight |C|-028|-206|-5.22| 349 517 |-463 -4.12| 374|113 005 000 |0.05 -0.11 -08 |-0.40
matrix |G 0.00 |-2.74]-438|-461-3.77 | 473|265 |-1.50 | 0.00 | 000 |-0.09] 000|000 | 000 | 0.00
T|-1.68 000 -2.28] 0.00 -234|-052| 365|037 |-1.40-097 140|082 -066 -054|061| -75 -50 -25 0 25 50
consensus| | GIC| T | A | T [ A [aT] A [AT|6A6c| a6 66| ac]|ac itic ive to TSS
© sequence position ©

[2][AJ0[1[2]3]a]5]
@410 |288126 |77 | 6| 4550 A) The score, summed
observed C| 48 | 303| 0 | 81 | 95 11885 % e
bases el 6o 1o 1o [16 0 |2 3556 over all 15 positions,
T 137 0 | 15 | 80 131 72 | 100 |01 must exceed -8.16.

1 I
|A|-1.14-5.26 | 0.00 |-1.51/-0.65 -0.55|-0.91 -0.82 C' The score, summed
weight |C.-1.16/ 0.00 |5.21]-041]-0.45] 0.00 -029 -0.18 s
,,.af,ix |G]-0.755.26]-5.21 0.00 456 | -0.86 038 065 overall 15 positions,

T 000 526274 -0.29 000 036 000 000 75 50 -25 o 25 so mustexceed-3.75.
consensus| | T | €A | | position relative to TSS

| 200300 sons s

Cap signal in vertebrates

[ Upstream ]—»[ Start Codon }-»{ Exon }—»[ Stop Codon }—’[ Downstream }
[ 3" Splice Site J-—{ Intron }A_[ 5 Splice Site } {‘ Poly-A Site}

The start codon model is very simple:

Upstream —(a)—~(t—(g)— Exon

| @2002.00 s s
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The TATA Box of E.Coli

A C G T
1 0.04 0.09 0.07 0.80
2 0.88 0.03 0.01 0.08
3 0.26 0.11 0.12 0.51
4 0.59 0.13 0.16 0.13
5 0.49 0.22 0.12 0.18
6 0.03 0.05 0.02 0.89

The frequency of each base found in the -10 position
in known E.coli promoters.
| 2200300 sons s
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VEIL

¢ VEIL: the Viterbi Exon-Intron Locator was
developed by Henderson, et al. at Johns
Hopkins University.

¢ VEIL has a modular structure:

— It uses a HMM made up of sub-HMMs to describe
different parts of the sequence:

* exon, intron, start, stop, splice, upstream, etc..
¢ VEIL assumes test data starts and ends with

| 2200300 sons s

noncoding DNA and contains exactly one gene.

VEIL: Exon Model

Start Codon 16 Backedges

3’ Splice Site
* State can emit any base

The 4 states are needed to allow the 9
model align itself to the proper reading frame.

@\5’ Splice Site

Downstream

| @2002.00 Som s
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VEIL: Intron Model

16 Backedges

Intron

9 Stages

a
The donor model (5’ splice site) has 9 stages because
it is based on the length of the consensus sequence for

/ﬁ donors which is of length 9.

57 Splice Site 3" Splice Site Stages 1 to 3 are part of the exon and 4 to 9 of the intron.

@2002:08 Sarmi Rhuxi ©2002:08 Sarmi Rhuxi

VEIL: Acceptor Model VEIL: Transitions and States

Stage 2
‘ Upstream ]—o‘ Start Codon F‘ Exon F‘ Stop Codon F»‘ Downstream

Stage 1

[3’Splice8ite 44 Tntron ‘# 5" Splice Site 5" Poly-A Sitew
The acceptor model (3’ splice site) has 15 stages
because it is based on the length of the consensus .
sequence for acceptors which is of length 15. The VEIL hidden Markov model has
Stages 1 to 14 are part of the intron and 15 of the exon. 1003 edges and 241 states
| 9200200 somi | 9200200 som

VEIL: Preparing the Training Data VEIL: Five-Fold Cross Validation

* They used a set of 570 vertebrate sequences
from different species each containing exactly
one gene.

* Quality control step: filter the data by
removing pseudogenes, entries with no introns
(from cDNA), entries with non-standard splice
junctions (introns that do not begin with GT

* A five-fold cross validation experiment was
performed to estimate how well the system
would perform when tested on data that was
not in the training set.

— The 570 sequences were randomly partitioned into
five sets of 114 sequences each.

and end with AG). — For each partition, the system is trained on 4 sets
* The 570 vertebrate sequences contain a total of and te.Sted on the fifth.
2649 exons and 2079 introns. — Combine the results from the five test sets.
P— P—

©2013 Sami Khuri
7.10



Rabat 2013
Introduction to Bioinformatics

Training and testing VEIL GenScan

. Thg teSting .iIlV01fV§d EalCUIIatil}i S?ﬂts)itlil‘{ity * GenScan was Created by Chris Burge
and specificity of both nucleotide labelling )
(coding/ noncoding) and exons exactly found. - I uss:s a Hidden Markov Model to
predict whole gene structures.

* The nucleotide sensitivity was roughly 80%,

and specificity ~ 70% * GenScan is available online at:
* Getting both ends of the exon right is a much http://genes.mit.edu/GENSCAN
harder test:

* GenScan predicts where genes are for

— sensitivity ~ 50% vertebrates, maize, and for Arabidopsis.

— specificity ~ 50%.

| @2002.08 Sami Ktuxi | 200208 Somi

GenScan: The Promoter

15-base TATA box ] 14-20-base explicit - 8-base cap signal
07 weight matrix state duration HMM weight matrix

START |

40-base intergenic model

The promoter prediction in GenScan has two alternative and
mutually exclusive paths:

* The TATA box and cap signal are identified using weight
matrices.

A sequence of 14 to 20 bases long is between the TATA box and ‘p,mme,:} poly-A i
the cap signal. X > f'gia',/
* A 40-base long region without specific sequence signals identified FORWARD (+) STRAND >1A<
intergenic
| @2002-0 sami s | 3200208 s

The Challenging Factors
* The Genome (H. sap. & friends) is a desert
* Many false splice sites and other signals
(+) strand * Very short exons (3bp), especially initial

Many very long introns

TATA-less promoters

N: Intergenic
region

(9 strand (orom Genes within genes

Reverse (-) strand \N/ Reverse (-) strand Alternatlve SphClng

| @2002.00 s s | @2002.00 s
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Knowledge Based Gene Prediction

Use characteristics that are known from annotated

sequences to predict the genes in unannotated sequences. * A set Q of N states, denoted by 1,2,...,N
* Codon Usage * Dinucleotide Frequencies » An observable sequence, O:
o Bas'e Co'mposition . Trinucleotidc'a Frequencies 0,,05,...,0;,...,07
* Splice Sites . Hexanucl'eotlde « An unobservable sequence, q:
+ CpG Distribution Frequencies
o Promoters * Branchpoint Distribution 91,9z 9t5--dr
« Poly A signals « Enhancers * First order Markov model:
« Transcription Signals * Transcription Factors Plg =jlg_=iq_,=k,..)=Pg =jlg_ =i
* Translation Signals ~ * Kozak Sequence
P I

Markov Model Assumptions (II) State Transition Probabilities
* An initial probability distribution: State transition probability matrix:
7 =P(g =0 1<i<N .
N R
where Zﬂ'i =1 ay Ay .. @ .. Gy
p= N
. . o, . . h : aNI aN’ aN/ aNN
Stationary condition: where w=Plg=jlg.=) 1SijSN
P(qt =J|qt—1 =l)=P(qt+l =J|qt+l—1 =i) Nauzo, i
Z a,=1, Vi
| 0200200 som o | 0200200 som s _

Hidden Markov Model Three Basic Questions

*  N:the number of hidden states 1. EVALUATION - given observation O=(0;, 0,.....07)
Asetofstates 0={/.2...N} and model A = (A, B, ), efficiently compute P(O|A4).
*  M: the number of SymbOIS « Given two models A and A | this can be used to choose the better one.

A setof symbols V=(/,2,...M} Forward Algorithm or Backward Algorithm

* A: the state-transition probability matrix 2. DECODING - given observation O=(0;, 05,...,0) and
4, =P(g.,=jlg =0 1<ij<N model A find the optimal state sequence ¢=(q;, q,....qz) -

* B:Emission probability distribution; k is a symbol: « Optimality criterion has to be decided (e.g. maximum likelihood)
Bj(k) =P(o,=klq,=j) 1<i,j<M Viterbi Algorithm

e The initial state distribution m: 3. LEARNING - given O=(0,, 0,,...,07), estimate model

7, =P(q =i) 1<i<N parameters A = (A, B,x) that maximize P(O|A).
The entire model A: A =(A,B,7) EM and Baum-Welch Algorithms
| @2002.00 somi | @2002.00 somi
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Conclusion (I) Conclusion (II)

* Gene finding is improving fast, but is still far * The more computers are involved in
from perfect. automating genome annotation, the greater

* Exons are much better predicted than genes. the need for collaboration with biologists.

* Gene finding is genome-specific : software * Best methods are based on detailed
have to be adapted and trained for each probabilistic models that include all known
genome. effects.

* The best software for species A (e.g. GenScan * We are still a long way from having reliable
for human) is not necessarily the best for tools for deducing biological functions from
species B. sequences.

e P

©2013 Sami Khuri
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