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RNA Structure Prediction

� Secondary Structure

� Base-Pairing 

� Stems & Loops

� Minimum Energy

� Nussinov Algorithm

� Covariation

� SCFG

David Mathews, Molecular Biophysics
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Predicting RNA 

Secondary Structure 

from RNA Sequence
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RNA Structure Prediction

• Problem: Given a primary sequence, 
predict the secondary and tertiary structure.

• Some RNAs have a consensus structure.

– Example: transfer RNA

• Other RNAs (mRNA and rRNA) do not 
have a predefined structure

• It is very difficult to predict the 3 dimension 
folding of RNAs.

©2002-2010 Sami Khuri 

Transfer RNA
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Transfer RNA

Molecular Biology by Weaver



6.2

Rabat 2013

Introduction to Bioinformatics

©2013 Sami Khuri

©2002-2010 Sami Khuri 

Ribonucleic Acids

• RNA includes some of the most ancient 

molecules 

– Example: Ribosomal RNAs. 

• Many RNAs are like “molecular fossils” 

that have been handed down in 

evolutionary time from an extinct RNA 

world.
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Base-Pairing Patterns

• Sequence variations in RNA maintain 

base-pairing patterns that give rise to 

double-stranded regions (secondary 

structure) in the molecule.

• Alignments of two sequences that 

specify the same RNA molecules will 

show covariation at interacting base-

pair positions. 
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RNAs and proteins are single sequences that fold into 3-D 

structures:

• Secondary structure describes how a sequence pairs 

with itself

• Tertiary structure describes the overall 3-D shape

• Folding maximizes RNA and Protein’s chemical effect

• Over the history of evolution, members of many RNA 

families conserve their secondary structure more than they 

conserve their primary sequence

- This shows the importance of secondary structure, and provides 

a basis for comparative analysis of RNA secondary structure

Importance of Secondary Structure
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RNA Secondary Structure

• RNA secondary structure is an 

intermediate step in the formation of a 

three-dimensional structure.

• RNA secondary structure is 

composed primarily of double-stranded 

RNA regions formed by folding the 

single-stranded molecule back on 

itself.
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Secondary Structure Analysis

• Primary sequence poorly conserved

• Secondary structure highly conserved

=>

Many RNAs or functional elements in 

RNAs cannot be identified by sequence 

comparison but only by the analysis of 

secondary structure
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Conservation of Ribonucleic Acids

Structure of molecules is conserved 

across many species and may be 

used both to infer phylogenetic 

relationships and to determine two 

and three dimensional structure.
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Types of Secondary Structure
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RNA Secondary Structure

Hairpin loop

Junction (Multiloop)

Bulge Loop

Single-Stranded

Interior Loop

Stem

Pseudoknot

Examples: RNA and Pseudoknots
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RNA Sequence Evolution is 

Constrained by Structure

RNA secondary structure

is conserved during

evolution, but not 

necessarily the 

primary sequence

[DEKM01]
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Comparative Sequence Analysis

Secondary structure can be inferred by comparative sequence analysis

[DEKM01]
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Predicting Methods

• Structure may be predicted from sequence by 

searching for regions that can potentially base pair 

or by examining covariation in different sequence 

positions in aligned sequences. 

• The most modern methods are very accurate and 

will find all candidates of a class of RNA 

molecules with high reliability.

• Methods involve a combination of hidden Markov 

models, and new type of covariation tool called 

SCFGs (stochastic context free grammars). 
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Assumptions of RNA 

Secondary Structure

• The most likely structure is similar to 

the energetically most stable structure.

• The energy associated with any position 

in the structure is only influenced by the 

local sequence and structure.
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Free Energy Minimization

• Assumptions:

– Secondary structure has the lowest possible 
energy

– Free energies of stems depend only on the 
nearest neighbor base pairs in the sequences

– Stem and loop free energies are additive

• Free energies of stems and loops come from 
experimentally measured values of 
oligonucleotides.
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Energy Minimization Algorithms

• Input: Primary RNA sequence

• Output: Predicted Secondary Structure

–Minimizes free energy while 

maximizing the number of consecutive 

base pairing.
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Dot Matrix Analysis

A dot plot of an RNA sequence against its 

complementary strand scoring matches

Repeats represents regions 

that can potentially self-

hyberdize to form double-

stranded RNA.

The compatible regions may

be used to predict a minimum 

free-energy structure.
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MFOLD and Energy

• MFOLD is commonly used to predict 

the energetically most stable structures 

of an RNA molecule.

– The most energetic is often the longest 

region in the molecule.

• MFOLD provides a set of possible 

structures within a given energy range and 

provides an indication in their reliability.
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The Output of MFOLD

• MFOLD looks for the arrangement that 

yields the secondary structures with lowest 

possible energy.

– Thus, the result is dependent on the correctness 

of the energy model (such as Table 8.2, Mount).

• MFOLD output includes the following parts:

– The Energy Dot Plot

– The View Individual Structures

– The Dot Plot Folding Comparisons
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Obtaining Minimal Energies

• Plot sequences across the page and also 
down the left side of the page.

• Look for rows of complementary 
matches. 

• Use the table of predicted free-energy 
values (kcal/mole at 37 degrees 
Celsius) for base pairs to add up the 
stacking energies. 
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Dynamic Programming

• Add back energies to accommodate 

destabilizing structures like bulge 

loops, hairpins. 

• The entire matrix is scanned with a 

dynamic programming algorithm to 

find the most energetic structure. 

• Note that there are no elements of 

tertiary structure in this analysis.
©2012 Sami Khuri @2002-2011 Sami Khuri

Free Energy Calculating

5'   A C      G U 3' 

A U/A -1.8 + (-3.4) + (-1.8) = - 7.0 

C G/C -1.8 + (-3.4) 

G C/G -1.8 

U A/U 0 

3‘

The diagonal A/U, C/G, G/C, U/A is a potential 

double stranded region with energy -7.0 kcal/mole.

Bioinformatics by David Mount
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Covariant Analysis

• Covariant analysis uses a set of 
homologous, aligned sequences to identify 
evolutionary conserved structures and to 
identify covarying residues in the sequence

– Need many sequences

– Longer sequences can be used

• Assumption:

– Secondary structure is more conserved 
than primary structure
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Looking for Covariation
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MSA and RNA Folding Covariation Analysis of tRNA 
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SCFG For Modeling RNA

• Use both, covariational and energy 

minimization methods together 

generally yield very good results.

• Stochastic Context Free Grammars

(SCFG) can help define base 

interactions in specific classes of RNA 

molecules and sequence variations at 

those positions.

MFold

mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi©2012 Sami Khuri

Rfam at Sanger Institue

rfam.sanger.ac.uk/
©2012 Sami Khuri

RNA2DMap

©2002-2010 Sami Khuri University of Texas at Austin
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Mir-1 miRNA Family
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Nussinov’s Algorithm

Algorithms for Computational Biology by Manolis Kellis (MIT)
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Dynamic Programming Approach

• Solve problem for all subproblems of 

size 1: 

– The solution is zero

• Iteratively, knowing the solution of all 

problems of size less than k, compute the 

solution of all problems of size k.

©2002-2010 Sami Khuri 

Optimally Solving Subproblems

• Input X = x1,x2,x3,x4,x5,x6,…,xn

• Solve subproblems of size 2:

x1,x2,x3,x4,x5,x6,…,xn

• Solve subproblems of size 3:

x1,x2,x3,x4,x5,x6,…,xn

• Continue until all sizes are studied
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Nussinov: Base Pair Maximization

S(i,j) is the folding of the subsequence of the 
RNA sequence from index i to index j which 
results in the highest number of base pairs
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Recursive Nature of S(i,j) 

• To identify the structure with the 

maximum number of base pairs, the 

scoring system rewards +1 for a base pair 

and 0 for anything else.

• The optimal score, S(i,j), of a 

subsequence of the RNA from position i to 

position j, can be defined recursively in 

terms of optimal scores of smaller 

subsequences.  
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The Four Cases

i & j base pair i unpaired j unpaired Bifurcation

• Red dots mark the bases being added onto previously 

calculated optimal substructure

• Example substructures are shown in the gray boxes (as e.g.)
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First Case: i and j base pair

i and j base pair

Add the i, j pair onto best structure 

found for subsequence i+1,j -1
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Second Case: i is unpaired

i is unpaired

Add unpaired position i onto best 

structure for subsequence i+1,j
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Third Case: j is unpaired

j is unpaired

Add unpaired position j onto best 

structure for subsequence i, j-1

@2002-10 Sami Khuri

Fourth Case: Bifurcation

Bifurcation

Combine two optimal 

substructures:

i,k and k+1,j
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Initialization:

Initialize first two 

diagonal arrays to 0

Nussinov Algorithm: Example

The next diagonal gives 

the best score for all 

subsequences of 

length 2
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Nussinov: Example (II)
S(i, j – 1)

S(i + 1, j)

S(i + 1, j – 1) +1

We still have

to consider 

bifurcations for

k=2,3,4,5,6,7,8
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Nussinov: Example (III)

k=2:

We have 2 substructures:

(i,k) and (k+1,j)

i.e., (1,2) and (3,9).

Proceed for 

k=3,4,5,6,7,8

Maximum value is 2,

obtained when k=2:

0 + 2 = 2.
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Nussinov: Example (IV)

S(1,9)

= max { 2, 3, 2, 2 }

= 3.

Traceback to find the 

actual structure.
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Phase 2: Traceback

• Value at S(1,9) is the total base pair 

count in the maximally base-paired 

structure.

• As is usually the case with Dynamic 

Programming Algorithms, we have to 

traceback from S(1, 9) to actually 

construct the RNA secondary structure.
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Constructing the RNA Structure

Nussinov algorithm gives the 

structure with maximum number 

of base pairings, but does not always 

create viable secondary structures
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• Raw data provided by experimental methods 

• X-ray crystallography

• Nuclear Magnetic Resonance 

• Computational prediction algorithms

a) Minimum energy algorithms: 

Dynamic programming algorithms: 

Nussinov algorithm, Zuker algorithm, Akustu algorithm,  

b) Stochastic Context Free Grammar

Utilize various energy functions and covariation scores to define 

branch probabilities

c) Maximum Weighted Matching

A heuristic algorithm. Edge weight definition utilize energy 

functions and covariation scores. 

Conclusion


