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Predicting RNA
Secondary Structure
from RNA Sequence
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* Problem: Given a primary sequence,
predict the secondary and tertiary structure.
Some RNAs have a consensus structure.

— Example: transfer RNA

Other RNAs (mRNA and rRNA) do not
have a predefined structure

It is very difficult to predict the 3 dimension
folding of RNAs.
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Ribonucleic Acids Base-Pairing Patterns

 RNA includes some of the most ancient * Sequence variations in RNA maintain
molecules base-pairing patterns that give rise to

double-stranded regions (secondary

—Example: Ribosomal RNAs. .
structure) in the molecule.

* Many RNAs are like “molecular fossils”
that have been handed down in
evolutionary time from an extinct RNA
world.

* Alignments of two sequences that
specify the same RNA molecules will
show covariation at interacting base-
pair positions.
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Importance of Secondary Structure RNA Secondary Structure

RNAs and proteins are single sequences that fold into 3-D « RNA secondary structure is an
structures: . . intermediate step in the formation of a
* Secondary structure describes how a sequence pairs . .

with itself three-dimensional structure.

« Tertiary structure describes the overall 3-D shape * RNA secondary structure is

* Folding maximizes RNA and Protein’s chemical effect : .
composed primarily of double-stranded
* Over the history of evolution, members of many RNA P p y

families conserve their secondary structure more than they RNA regions formed by fOldlng the
conserve their primary sequence single—stranded molecule back on

- This shows the importance of secondary structure, and provides itself
abasis for comparative analysis of RNA secondary structure
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Secondary Structure Analysis Conservation of Ribonucleic Acids

. Pri ] d .
rimary sequence poorly conserve Structure of molecules is conserved

across many species and may be
used both to infer phylogenetic
relationships and to determine two
and three dimensional structure.

* Secondary structure highly conserved

=>
Many RNAs or functional elements in
RNAs cannot be identified by sequence
comparison but only by the analysis of
secondary structure
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Types of Secondary Structure RNA Secondary Structure
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RNA Seqence Evolution is
Constrained by Structure

NY
RNA secondary structure AN . NA.
is conserved during RN *N'
evolution, but not NeN'

; NeN'
necessarily the NeN'
primary sequence NeN'

NeN!
N 3
* 3
5

Figure 10.4 The consensus binding site for R17 phage coat protein. N, Y
and R are standard ‘degenerate’ symbols for multiple possible nucleotides.
N indicates {A,C,G,U}, Y indicates {C,U} and R indicates {A,G}. N’
indicates a complementary base pairing to N. [DEKMO1]
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Comparative Sequence Analysis Predicting Methods

 Structure may be predicted from sequence by
searching for regions that can potentially base pair
or by examining covariation in different sequence
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Secondary structure can be inferred by comparative sequence analysis

uc
seq! G[CJCUUCGGEC UG positions in aligned sequences.

CeG
seg2 G[A|ICUUCGG|UIC — Y. * The most modern methods are very accurate and
seq3 G[G|C U UL GGIC|C G=C will find all candidates of a class of RNA

molecules with high reliability.

Figure 10.5 Comparative sequence analysis recognises that the two boxed . L .

positions i this example of a multiple alignment (left) are covarying fo * Methods involve a comblnatlop O.f hidden Markov
models, and new type of covariation tool called

maintain Watson-Crick complementarity. This covariation implies a base .
pair, leading to a consensus secondary structure prediction (right). [DERMOL] SCFGs (stochastic context free grammars).
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Assumptions of RNA
Secondary Structure

* The most likely structure is similar to
the energetically most stable structure.

* The energy associated with any position
in the structure is only influenced by the
local sequence and structure.

©2002:2010 SamiKhuri

Energy Minimization Algorithms

* Input: Primary RNA sequence

* Output: Predicted Secondary Structure
—Minimizes free energy while
maximizing the number of consecutive
base pairing.
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Free Energy Minimization

e Assumptions:
— Secondary structure has the lowest possible
energy
— Free energies of stems depend only on the
nearest neighbor base pairs in the sequences
— Stem and loop free energies are additive
* Free energies of stems and loops come from

experimentally measured values of
oligonucleotides.
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Dot Matrix Analysis

10 a0 e
L

Repeats represents regions
. b thatcan potentially self-
~ 't hyberdize to form double-

“f stranded RNA.
& I The compatible regions may
 be used to predict a minimum
free-energy structure.

A dot plot of an RNA sequence against its
complementary strand scoring matches

MFOLD and Energy

* MFOLD is commonly used to predict
the energetically most stable structures
of an RNA molecule.

— The most energetic is often the longest
region in the molecule.

* MFOLD provides a set of possible

structures within a given energy range and
provides an indication in their reliability.

Ki
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The Output of MFOLD

* MFOLD looks for the arrangement that
yields the secondary structures with lowest
possible energy.

— Thus, the result is dependent on the correctness
of the energy model (such as Table 8.2, Mount).

* MFOLD output includes the following parts:
— The Energy Dot Plot
— The View Individual Structures
— The Dot Plot Folding Comparisons

©2013 Sami Khuri
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* Plot sequences across the page and also
down the left side of the page.

* Look for rows of complementary
matches.

* Use the table of predicted free-energy
values (kcal/mole at 37 degrees
Celsius) for base pairs to add up the
stacking energies.

©2002:2010 SamiKhuri

Dynamic Programming

» Add back energies to accommodate
destabilizing structures like bulge
loops, hairpins.

* The entire matrix is scanned with a
dynamic programming algorithm to
find the most energetic structure.

* Note that there are no elements of
tertiary structure in this analysis.

©2012 Sami Khuri

TABLE 8.2, Predicied frec-energy values (kealfmole at 37°C) for base pairs and other features of predicted
RNA secondary structures

A. Stacking energies for base pairs

AlU C/G G/C /A G/U UG
AU -0.9 -1.8 =23 =11 -1.1 0.8
CIG -1.7 -29 34 =20 -2.1 —1.4
GIC =21 =2.0 =29 =18 -1.8 -1.2
UiA =0.9 -17 =2.1 -0.9 -10 —0.5
GfU =0.5 -1.2 —1.4 —0.8 —0.4 =02
uiG ~1.0 -1.9 =21 =11 =15 —0.4

B. Destabilizing energies for loops

Number of bases 1 5 10 20 30
Internal - 5.3 6.6 7.0 74
Bulge 38 4.8 5.5 6.3 6.7
Hairpin — 4.4 5.3 6.1 0.5

(A) Stacking energy in double-stranded region when the base pair listed in left column is followed by the
hase pair listed in top row. C/G followed by U/A is therefore the dinucleotide 5" CU 3" paired to 5 AG 3, (B)
Destabilizing energies associated with loops. Hairpin loops occur at the end of a double-stranded region, inter-
nal loops are unpaired regions flanked by paired regions, and a bulge loop is a bulge of one strand in an oth-
erwise paired region (Fig. 8.2). An updated and more detailed list of energy parameters may be found at the
Web site of M. Zuker (http://bioinfo.math.rpi.edu/~zuker/rnafenergy/). From Turner and Sugimoto {1988);

Serva and Turner (1995).

Free Energy Calculating
55A C G U 3%

A U/A -1.8+(-3.4) + (-1.8)=-17.0
C G/C -1.8+(-3.4)

G C/G -1.8

U A/UO

Bioinformatics by David Mount
3‘
The diagonal A/U, C/G, G/C, U/A is a potential
double stranded region with energy -7.0 kcal/mole.

Covariant Analysis

* Covariant analysis uses a set of
homologous, aligned sequences to identify
evolutionary conserved structures and to
identify covarying residues in the sequence

—Need many sequences
—Longer sequences can be used
* Assumption:

— Secondary structure is more conserved
than primary structure

@2002:2011 SamiKhuri
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Looking for Covariation

noking for covariation

The consistent co-
variation of

the two columns in a
Watson-Crick manner
indicates that there

is some sort of

UCGGCGACGAZ-R
GACGGCGACGU(A
GACGGCGACGU(C
CCCGGCGACGGJG

CGCGGCGACGCEHG relationship
between those two

UCGGCGACGARA positions
in the secondary
structure.
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MSA and RNA Folding Covariation Analysis of tRNA

Given K homologous aligned RNA sequences: i

Anvieeson St

Human aagacuucggaucuggcgacaccc
Mouse uacacuucggaugacaccaaagug
Worm aggucuucggcacggg cauuc
FIy ccpacuucggauuuugcuaccaua
Ore aagccuucggagcgggeguaacuc

If ith and jth positions are always base paired and covary, then they are
likely to be paired

©2002.2011 SamiKhuri ©2012 Sami Khuri

SCFG For Modeling RNA MFold

* Use both, covariational and energy
minimization methods together
generally yield very good results.

* Stochastic Context Free Grammars
(SCFG) can help define base
interactions in specific classes of RNA
molecules and sequence variations at
those positions.

20022010 SamiKhusi 2012 Sami Khuri mfold.bioinfo.rpi.edu/cgi-bin/rna-forml.cgi

Rfam at Sanger Institue

7 welcorre trust
sanger HOME | SEARCH | BROWSE | FTP | BLOG | HELP Qm

institute o }
Rfam 9.1 (January 2009, 1372 families)

The Rfam database is a collection of RNA famiies, each represented by multiple sequence é = g

alignments, consensus secondary structures and covariance models (CMs). Less... g = % a.;." ‘:

The families n Rfam break down into three bread functional classes: non-coding RNA genes, structured I %igi

cis-regulatory elements and self-splicng RNAs. Typically these functioral RNAs often have a conserved 2 = S E e

secandary structure which may be better preserved than the RNA sequence. The CMs used to describe st :a

each family are a slightly morz complicated relative of the profle hidden Markov models (HMMs) used by A: Py -e

Pfam. CMs can simultaneously model RNA sequence and the structure in an elegant and accurate 7" ° :: = é

fashion. = :l:; B

Rfam families are frequently built from externa’ sources, we ask that if you find a particular famiy useful feo 2:

for your work that you cite both Rfam and the primary source of our dta. e — = 3 T

rfam.sanger.ac.uk/ p— e
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Mir-1 miRNA Family

rmir-1 mERMNA
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Algorithms for Computational Biology by Manolis Kellis (MIT)
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Optimally Solving Subroblms

Dynamic Programming Approach

* Solve problem for all subproblems of

* Input X = x,X,,X3,X4,X5,Xgs--+1Xp
size 1:

* Solve subproblems of size 2:
1 K0sK3,K s X5, Xgse s X
— The solution is zero :il—féﬂ 8T "
* Iteratively, knowing the solution of all
problems of size less than k, compute the
solution of all problems of size k.

* Solve subproblems of size 3:

X|,X2,X3,X4,X5,Xg- -, Xp

©2002:2010 SamiKhuri

¢ Continue until all sizes are studied
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Nussinov: Base Pair Maximization

Recursive Nature of S(i,j)
S(i,j) is the folding of the subsequence of the

* To identify the structure with the
RNA sequence from index i to index j which

results in the highest number of base pairs

S(i+1,j-1)+1 [ifi,j base pair]
in S(i+1,))
S(i,j) =
(i,j) = max S(ij—1)
maxi<k<]~ S(Z,k) + S(k + 1,])

©2013 Sami Khuri

maximum number of base pairs, the

and O for anything else.
The optimal score, S(i,j), of a

position j, can be defined recursively in

terms of optimal scores of smaller
subsequences.

©2002.2011 SamiKhuri

scoring system rewards +1 for a base pair

subsequence of the RNA from positioni to
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i+1

1
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S(i+1j-1)

The Four Cases

SEUN Fsis) Sik)  Sk+1j)

i

i& jbase pair  iunpaired  junpaired Bifurcation

* Red dots mark the bases being added onto previously
calculated optimal substructure
* Example substructures are shown in the gray boxes (as e.g.)
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S(i,j) = max

Add unpaired position i onto best
structure for subsequence i+1,j Pl

Second Case: i is unpaired

S(i+1j)

S(i+1,j—1)+1 [ifi, base pair]
S(i+ 1,))

S(ij—1)

MaX; g S(ik) + S(k + 1,)

i is unpaired

S(ij) = max

Combine two optimal
substructures:
i,kand k+1,j

Fourth Case: Bifurcation

S(i+1,j-1)+1 [ifi;jbase pair]
S(i+1,) S(ik) Slk+1j)
S(ij-1)

Maxjey; S(ik) +S(k + 1))

Bifurcation

First Case: i1 and j base pair

S(i+1-1)
S(i+1,j—1)+1 [if i,j base pair]
S(i + 1,j)
S(ij—1)
max;j S(hk) + Sk + L,j)

S(i,j) = max

Add the i, j pair onto best structure j+1
found for subsequence i+1,j -1 j

i and j base pair

©2002:2010 SamiKhuri

Third Case: j is unpaired

S(ij-1)

S(i+1,j—1)+1 [ifi,j base pair]
S+ 1))

S(i,j—1)

MaXj. e S(ik) + S(k + 1,7)

S(i,j) = max

Add unpaired position j onto best . ) )
structure for subsequence i, j-1 ! =1

j is unpaired

©2002:2010 SamiKhuri
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Initialization: GGGAAAUCC
Initialize first two ele
. Glojo
diagonal arrays to 0 i <ImleTe
A 0]o
The next diagonal gives J, i 1o
the best score for all a oo
subsequences of v o]0
length 2 < 010
C 0] 0
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We still have U ojofo]o
to consider c ojojo
bifurcations for ¢ 0]o

k=2,3,4,5,6,7,8
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Nussinov: Example (II)

Si+1,j-1)+1

S(1,9)
=max{2,3,2,2}
=3.

Traceback to find the
actual structure.
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Nussinov algorithm gives the
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structure with maximum number
of base pairings, but does not always
create viable secondary structures
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Nussinov: Exampe (III)
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k=2: ¢
‘We have 2 substructures:
(i,k) and (k+1,j)

i.e, (1,2) and (3,9). i

olo|e |

(=N K=0 [=1 [=]
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Proceed for i
k=3,4,5,6,7,8

olojo|o]olo|w

Maximum value is 2,
obtained when k=2:
0+2=2.
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Phase 2: Traceback

* Value at S(1,9) is the total base pair
count in the maximally base-paired
structure.

* As is usually the case with Dynamic
Programming Algorithms, we have to
traceback from S(1, 9) to actually
construct the RNA secondary structure.

©2002:2010 SamiKhuri

Conclusion

«Raw data provided by experimental methods
* X-ray crystallography
* Nuclear Magnetic Resonance
» Computational prediction algorithms
a) Minimum energy algorithms:
Dynamic programming algorithms:
Nussinov algorithm, Zuker algorithm, Akustu algorithm,
b) Stochastic Context Free Grammar
Utilize various energy functions and covariation scores to define
branch probabilities
¢) Maximum Weighted Matching
A heuristic algorithm. Edge weight definition utilize energy
functions and covariation scores.
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