

A Comparison of DNA Fragment Assembly Algorithms

Lishan Li and Sami Khuri
Department of Computer Science

San José State University
San José, CA 95192-0249, USA

Abstract

As more research centers embark on sequencing
new genomes, the problem of DNA fragment assembly
for shotgun sequencing is growing in importance and
complexity. Accurate and fast assembly is a crucial
part of any sequencing project and many algorithms
have been developed to tackle it. Since the DNA
fragment assembly problem is NP-hard, exact
solutions are very difficult to obtain. In this work, we
present four heuristic algorithms, which we designed,
implemented and tested. We compare the algorithms
and the data structures of the four heuristics and
present results of our experiments. We also compare
our results with the assemblies produced by the well-
known packages: PHRAP and CAP3.

Keywords: Fragment assembly, shotgun, overlap,
layout, consensus, optimization algorithm.

1. The DNA Fragment Assembly Problem

DNA fragment assembly is a technique that
attempts to reconstruct the original DNA sequence
from a large number of fragments, each several
hundred base-pairs long. The DNA fragment assembly
is needed because current technology, such as gel
electrophoresis, cannot directly and accurately
sequence DNA molecules longer than 1000 bases.
However, most genomes are much longer. For
example, a human DNA is about 3.2 billion
nucleotides in length and cannot be read at once. The
following technique was developed to deal with this
limitation. First, the DNA molecule is cut at random
sites to obtain fragments that can be sequenced
directly. The overlapping fragments are then assembled
back into the original DNA molecule. This strategy is
called shotgun sequencing. Originally, the assembly of
short fragments was done by hand, which is not only
inefficient, but also error-prone. Hence, a lot of effort
has been put into finding techniques to automate the
shotgun sequence assembly. The general outline of

most assembly algorithms is first to create a set of
candidate overlaps by examining all pairs, followed by
forming an approximate layout of fragments, and
finally creating a consensus sequence. All existing
methods rely on heuristics, since the fragment
assembly problem is NP-hard. More specifically,
assembling DNA fragments is divided into three
distinct phases:

a) Overlap Phase - Finding the overlapping
fragments. This phase consists in finding the best or
longest match between the suffix of one sequence and
the prefix of another. We compare all possible pairs of
fragments to determine their similarity. Usually, the
dynamic programming algorithm is used in this step to
find semiglobal alignments.

b) Layout Phase - Finding the order of fragments
based on computed similarity scores. This is the most
difficult step because it is hard to determine true
overlaps. After the order is determined, the progressive
alignment algorithm is applied to combine all the
pairwise alignments obtained in the overlap phase.

c) Consensus Phase - Deriving the DNA sequence
from the layout. The most common technique used in
this phase is to apply the majority rule in building the
consensus. Other methods exist for finding the
consensus, such as the use of probabilistic scores in
PHRAP [5].

The DNA fragment assembly problem is NP-hard
[11], therefore, it is not possible to find an exact
algorithm that solves this problem and runs in
polynomial time (unless P = NP). The complexity of
the problem increases even further due to the following
factors.

a) Unknown orientation: After the original
sequence is cut into many fragments, the orientation is
lost. The sequence can be read in either 5’ to 3’ or 3’ to
5’. One does not know which strand should be
selected. If one fragment does not have any overlap

2. DNA Fragment Assembly Using the
Genetic Algorithm

with another, it is still possible that its reverse
complement might have such an overlap.

b) Base call errors: There are three types of base
call errors: substitution, insertion, and deletion errors.
They occur due to experimental errors in the
electrophoresis procedure. Errors affect the detection
of fragment overlaps. Hence, the consensus
determination requires multiple alignments in high
coverage regions.

The most challenging step in “overlap-layout-

consensus” DNA fragment assembly is to order the
fragments. Since finding the exact order of the
fragments is an extremely slow process, heuristic
techniques, such as Genetic Algorithm (GA) can be
used. Our GA heuristic was inspired by the work of
Parsons et. al. [10]. The GA population consists of a
set of individuals. Each individual represents one
possible alignment. The search space for the fragment
assembly problem is the set of all possible solutions in
the population. We use the permutation representation
with integer number encoding. Permutation
representation requires special operators to make sure
that we always get legal solutions. In order to maintain
a legal solution, the two conditions that must be
satisfied are: first, all fragments must be presented in
the ordering, and second, no duplicate fragments are
allowed in the ordering.

c) Incomplete coverage: It happens when the
algorithm is not able to assemble a given set of
fragments into a single contig.

d) Repeated regions: Repeats are sequences that
appear two or more times in the target DNA. Repeated
regions have caused problems in many genome-
sequencing projects, and none of the current assembly
programs can handle them perfectly [1].

e) Chimeras and contamination: Chimeras arise
when two fragments that are not adjacent or
overlapping on the target molecule join together into
one fragment. Contamination occurs due to the
incomplete purification of the fragment from the vector
DNA. The fitness function measures the quality of the

alignment and finds the one that yields the best score.
It is applied to each individual and it should guide the
genetic algorithm towards the optimal solution. We
implemented two fitness functions. Fitness function F1
sums the overlap score for adjacent fragments in a
given solution. The goal here consists in finding the
permutation of fragments (an individual in the
population) that has the highest score.

 Over the past decade a number of fragment
assembly packages have been developed, such as
Phrap [5], TIGR assembler [13], STROLL [2], CAP3
(Contig Assembly Program) [6], Celera assembler [9],
and EULER [11]. In our work, we design, implement
and run four programs based on different
computational methods to tackle the problem. We
direct the reader who is interested in this work and who
would like to know more about our algorithms, their
design and implementation, to Li’s work [8].)]1[],[()(1

2

0
∑
−

=

+=
n

i
ififwIF

The remainder of this work is organized as
follows. Section 2 introduces our first algorithm,
Genetic Algorithm (GA). Its fitness functions were
inspired by Parsons’ GA [10]. Section 3 presents the
Greedy Algorithm inspired by Elloumi’s
Approximation Algorithm [3] that constructs and
orders the Best Set of Maximum Weight Contigs
(BSC) instead of ordering fragments. Section 4
introduces the Structured Pattern Matching Algorithm.
It was inspired by Kim’s pattern matching approach
[7], in which we first construct a detailed map of the
problem at hand and then determine the target
sequence based on a fingerprinting scheme. Our
experiments show that this algorithm is the most
accurate and fastest among our four algorithms.
Section 5 discusses the Clustering Heuristic Algorithm,
which uses a clustering technique to order fragments
and progressively builds the fragment layout. Finally,
we give our experimental results in Section 6 followed
by our conclusion.

The second fitness function, F2, not only sums the
overlap score for adjacent fragments, but also sums the
overlap score for all other possible pairs.

])[],[()(2
1

0

1

0

jfifwjiIF
n

i

n

j

×−= ∑∑
−

=

−

=

This fitness function penalizes solutions in which
strong overlaps occur between non-adjacent fragments
in the layouts. The objective of F2 is to minimize the
overlap score. The overlap score in both F1 and F2 is
computed using the semi-global dynamic programming
algorithm.

In genetic algorithms, operators are applied to
a population of individuals to create a new population.
In our assembler, we employ three such operators:
selection, crossover, and mutation. We use ranking
selection mechanism, in which the GA first sorts the
individuals based on their fitness values and then
selects the individuals with the best fitness score until
the specified population size is reached.

We implemented two crossover operators: order-
based and edge-recombination. The purpose of the
crossover operator is to allow partial solutions to
evolve in different individuals and then combine them
to produce a better solution.

The mutation operator is used for modification of
single individual. We use the swap mutation operator,
which randomly selects two positions from a
permutation and then swaps them. It is a good operator
for permutation problems such as ordering fragments.

3. DNA Fragment Assembly Using The
Greedy Algorithm

Our Greedy Algorithm is based on the Best Set of
Maximum Weight Contigs Approach [3]. The
algorithm considers unknown orientation and missing
fragments. The first step of the algorithm is to
construct the Best Set of Maximum Weight Contigs
(BSC). The complexity of this step is O(n2l2), where n
is the number of fragments and l is the average length
of fragments. The second step of the algorithm is to
order the Maximum Weight Contigs (MWC) of BSC
based on contig overlaps order. The complexity of this
step is O(m2l2), where m is the number of MWCs.

The Greedy Algorithm computes contig overlaps
rather than fragment overlaps. The advantages are
twofold: it enables us to take only the true overlaps
into account and it gives a better guarantee for finding
the orientation of the fragments. The major steps of our
Greedy Algorithm are:

A) Construction of BSC: The algorithm takes as input
a set of fragments and outputs a best set of contigs
stored in a vector template. The linked list template
and the vector template are the major data structures
used in this step. The linked list is composed of the
overlap scores sorted in descending order. Each item
contains a pair of fragment IDs and their overlap score.
The first fragment is from the forward direction and the
second fragment is the reverse complement of another
fragment that has overlap length above some threshold
with the first fragment. The vector represents a set of
contigs. Each Contig object contains a pair of
fragments and their overlap weight.

B) Ordering of Contigs: The time complexity of this
step is O(m2l2), where m is the number of contigs and l
is the average length of the fragments. The algorithm
takes as input the best set of contigs (output of the first
step) and outputs a list representing the contigs
ordering. The algorithm makes use of a vector
representing the contigs information (the output of the
first step).

4. DNA Fragment Assembly using Structured
Pattern Matching

The Structured Pattern Matching Algorithm is
based on a technique called hybridization
fingerprinting that is usually used by biologists to
deduce the overlap information among DNA clones
from biological probes. DNA clones are exact copies
of a particular part of a genome and are much longer
than fragments [7].

To tackle the DNA fragment assembly problem,
our algorithm divides the task into three phases. The
first phase is called probe matching. Instead of using
biological probes, we randomly select short probes
(e.g. 12 bps) from each fragment. We then use exact
pattern matching in determining the relative positions
(i.e. probes occurrences) of the input fragments,
including their reverse complements. Thus, each
fragment is represented as an ordered set of probes and
associated interprobe distances rather than a sequence
of nucleotides. The second phase is called overlap map
construction. It constructs a detailed map to show how
fragments are ordered and how they align. We first
determine how fragments overlap based on the probes
occurrences obtained from the previous phase. Contigs
consisting of a set of fragments are then constructed in
a greedy fashion, guided by a heuristic measure of
fragment alignments. However, it does not solely rely
on scoring pairwise fragment alignments; instead, each
fragment is dynamically scored against each contig.
Comparing a fragment to a contig exploits the multiple
coverage characteristics of shotgun sequencing data.
The third phase is called sequence determination. It is
relatively straightforward since all the information we
need is available from the second phase.

The time complexity of the Structured Pattern
Matching algorithm is approximately linear in the
length of the target sequence. The efficiency is due to
the compact encoding representation of fragments.

We now discuss the three phases of the algorithm

in more detail:

1) Probe matching to identify probe occurrences in
input fragments. It takes as input a set of DNA
fragments and each fragment’s reverse complement.
The output of this phase consists of fragments
represented as ordered set of probe occurrences and not
of nucleotides (as with other traditional algorithms).

2) Overlap map construction:
Once the probes are selected and detected, the
Structured Pattern Matching algorithm greedily
constructs an overlap map based on the patterns of

probe occurrences information obtained in the previous
step. The following steps describe the overview of the
overlap map construction:

Step 1: Construct a pairwise overlap table that
records overlap lengths for all possible pairs.

Step 2: Select the fragment pair with the highest
score and construct an initial contig containing just
these two fragments.

Step 3: The new contig is added to the set of
contigs and rescored against all remaining fragments.

Step 4: The process continues, adding the best-
scoring fragment to the contig and updating the
modified contig’s scores against all remaining
fragments. If no fragment exhibits a significant overlap
score, the process terminates, and a new contig is
constructed.

3) Sequence determination.
Once the overlap map is completed, a consensus
sequence is generated using all the available
information. The time complexity is linear. From the
overlap map, we know the order of the fragments in
each contig and we also know that their relative left
positions occur in the map, which makes the sequence
determination straightforward.

5. DNA Fragment Assembly using the
Clustering Heuristic Algorithm

The traditional three steps: overlap, layout, and
consensus, are used in this algorithm. We use the
semiglobal alignment algorithm to find all possible
pairwise overlaps. When the overlaps are determined,
we use a greedy heuristic in the layout phase to find the
multiple sequence alignment among a set of fragments.
We take the pair of fragments with highest overlap as
the starting point. The layout is constructed by
successively adding the fragment that has the highest
overlap with the assembled fragments. This algorithm
takes the unknown orientation into account. The idea is
based on the clustering concept. It means that the
fragment that is newly added into the alignment has the
best overlap with either the last fragment or with the
first fragment in the current alignment. Each fragment
is progressively added into the existing alignment until
no fragment is left.

In what follows, we describe the main parts of the

Clustering Heuristic Algorithm.

Step 1: Construct a score table for all possible

pairs of fragments considering forward directions and
reverse complements.

Step 2: Sort the score in descending order and
insert all FragmentPair objects (a pair whose score is
above some threshold) into a linked list. Each
FragmentPair node contains a pair of fragment IDs and
overlap score. If the score is positive, it indicates that
both fragments are from the same strand. A negative
score means that the two fragments are from different
strands.

Step 3: Select the first node (a,b) in the linked list
as a starting point to order the rest of the fragments. Set
a to be the first fragment and b to be the last fragment
in the current layout.

Step 4: Select the next node in the linked list and
compare the pair of fragments with the first and the last
fragments in the current layout. If the clustering is
successful, the fragment ID joins the set. If it needs to
be inserted in the front, we reset the first fragment in
the layout. If it needs to be appended at the end, we
reset the last fragment in the layout. Otherwise, we put
the node in a temporary sorted linked list. The process
continues until the current linked list is traversed. Note
that only one possible direction for each fragment can
be chosen.

Step 5: When the current linked list is being
traversed, a new contig is created. We need to remove
the nodes that contain IDs in the selected fragment set
from the temporary linked list. Next, we reset the
temporary linked list as the current linked list and
continue from Step 3 until no more fragments are left.
Each contig contains the list of ordered fragment IDs.

6. Experimental Results

We basically conducted experiments on two types
of sequence data to test our various algorithms. The
two types differ in the average size of fragments: we
have fragments with average length of around 380
base-pairs, and fragments of size approximately 700
base-pairs long. The first fragment size is very close to
the size of fragments that were used in the Human
Genome Project, while the second fragment size of 700
bps reflects the size of sequences that modern
sequencers can handle nowadays. We chose our target
sequences from NCBI (http://www.ncbi.nlm.nih.gov).
We used GenFrag [4] to generate the different data sets
shown in Table 1. GenFrag is a UNIX/C application
created to accept DNA sequence input and generate
shotgun format cleavages with fragment overlaps, in
order to test any reassembly application. In other
words, GenFrag performs DNA sequence cleavage to
simulate wet lab fragmentation. It takes a known DNA
sequence and uses it as a parent strand from which to
randomly generate fragments according to the criteria
(mean fragment length and coverage of parent

http://www.ncbi.nlm.nih.gov/

sequence) supplied by the user. The target sequences in
Table 1 are arranged in increasing sizes, from 3,835
bps to 77,292 bps. Target Sequence displays the
accession number of the corresponding sequence,
while the number between parentheses under Data Set
Name represents the coverage at each position of the
target sequence.

We now describe the sequences that are
summarized in Table 1.
(1) Target sequence X60189: A human MHC class
III region DNA with fibronectin type-II repeats
HUMMHCFIB. Sequence length is 3,835 bps.
(2) Target sequence NM_007123: A human Usher
type 2. Sequence length is 6,332 bps.
(3) Target sequence M15421: A human
apolopoprotein HUMAPOBF. Sequence length is
10,089 bps.
(4) Target sequence NC_001453: A sea urchin
(Echinoderm) entire mitochondrial genome. Sequence
length is 15,650.
(5) Target sequence NC_001807: The human
(Homo sapiens) entire mitochondrial genome.
Sequence length is 16,571.
(6) Target sequence J02459: First 40% of base pairs
from LAMCG, the complete genome of bacteriophage
lambda. Sequence length is 20,100 bps.
(7) Target sequence BX842596: A Neurospora crassa
(common bread mold) BAC. Sequence length is
77,292 bps.

As can be seen in Table 1, sequences with
accession numbers X60189, M15421, and J02459 have
fragments of lengths in the neighborhood of 380 bps.
Sequences NM_007123, NC_001453, NC_001807,
and BX842596 all have fragments with sizes around
700 bps.

The four fragment assembly algorithms were
implemented in C++. Each program runs from the
command line and takes the fragments’ data set in
FASTA format as input. The Genetic Algorithm also
takes a configuration file with parameters. All the
experimental runs were performed on a Dell Inspiron
4150 with a 512MB memory and 1.7 Ghz CPU.

We evaluated each assembly result in terms of the
number of contigs assembled. Since we obtain
fragments from a known target sequence, we can
compare our assembled consensus sequence with the
target. Table 2 gives a summary of the results. As for
the running times of the four algorithms, the times
ranged from a few seconds to several hours. An
overlap length of 30 was used as a threshold for all
four algorithms and packages.

The Structured Pattern Matching Algorithm runs
much faster than the other three algorithms. The time
difference becomes even larger as we move to larger
data sets. The Greedy Algorithm seems to perform
poorer than the other three algorithms in finding the
number of contigs. It is also the slowest of all four
algorithms, sometimes requiring up to 6 hours to run to
completion.

Table 1. Sixteen data sets generated with GenFrag

Target
Sequence

Sequence
Length (bps) Data Set Name Number of

Fragments
Average Fragment

Length (bps) Coverage

X60189(4) 39 395 4
X60189(5) 48 386 5
X60189(6) 66 350 6

X60189 3,835

X60189(7) 68 387 7
NM_007123(4) 37 691 4 NM_007123 6,332
NM_007123(7) 64 680 7

M15421(5) 127 398 5
M15421(6) 173 350 6 M15421 10,089
M15421(7) 177 383 7

NC_001453(4) 90 708 4 NC_001453 15,650
NC_001453(7) 157 676 7
NC_001807(4) 95 694 4 NC_001807 16,571
NC_001807(7) 166 674 7

J02459 20,100 J02459(7) 352 405 7
BX842596(4) 442 708 4 BX842596 77,292
BX842596(7) 773 703 7

Since the Greedy Algorithm, the Clustering
Algorithm and the Genetic Algorithm were
substantially slower than the Pattern Matching
Algorithm , we decided not to run the three algorithms
with BX842596 (of size 77,292 bps).

For data sets X60189(4), X60189(5),
NM_007123(7), M15421(6), M15421(7) and
NC_001453(7) all four algorithms assembled
fragments as well as the commercially available
packages: PHRAP and CAP3. For data sets
X60189(6), X60189(7), and NM_007123(4) only the
Greedy Algorithm produced two contigs while all other
programs and packages gave only one contig. For
sequences M15421(6) , M15421(7) and NC_001453(7)
all algorithms produced two contigs.

As can be seen in Table 2, for 14 data sets out of
the 16 data sets, the results obtained by the Pattern
Matching Algorithm are the same as PHRAP’s. The
Pattern Matching Algorithm performed as well CAP3
for 14 data sets, and outperformed CAP3 with
M15421(5).

We conclude that all four algorithms obtain
excellent results on small problem instances. For the
larger data sets, there is some variability in the number
of contigs found by our four algorithms. Our Pattern
Matching Algorithm competes pretty well with
PHRAP and CAP3 for all the sizes of fragments we
considered in this work.

7. Conclusion

The DNA fragment assembly is a very complex
problem in computational biology. Since the problem
is NP-hard, the optimal solution is extremely difficult
to find. Hence, there are many computational
techniques that attempt to find good solutions for this
problem. In this work, we designed, implemented,
tested, and analyzed four different algorithms in detail.

The algorithms use different techniques to tackle
the DNA fragment assembly problem. For smaller data
sets, all four algorithms got the same result in
approximately the same running time. However, the
results and the performance vary as the data sets
become larger. For larger data sets, i.e., 50 or more
fragments, the performance of the algorithms ranking
from best to worst is: Structured Pattern Matching
Algorithm, Clustering Heuristic Algorithm, Genetic
Algorithm, and finally the Greedy Algorithm.

We would like to add that although the algorithms
were influenced by techniques and algorithms that are
found in the literature, our design and implementations
vary from the original algorithms. Many features
advanced by the authors of the original algorithms
were either ignored or completely modified by our
design and implementation. Therefore, our conclusions
are valid only for our interpretations

Table 2. Results of the four algorithms and two packages with the sixteen data sets

Data Set Name PHRAP CAP3 Greedy
Algorithm

Clustering
Algorithm

Genetic
Algorithm

Pattern
Matching
Algorithm

X60189(4) 1 1 1 1 1 1
X60189(5) 1 1 1 1 1 1
X60189(6) 1 1 2 1 1 1
X60189(7) 1 1 2 1 1 1
NM_007123(4) 1 1 2 1 1 1
NM_007123(7) 1 1 1 1 1 1
M15421(5) 1 2 6 2 1 1
M15421(6) 2 2 2 2 2 2
M15421(7) 2 2 2 2 2 2
NC_001453(4) 3 3 6 3 3 3
NC_001453(7) 2 2 2 2 2 2
NC_001807(4) 2 2 7 2 3 3
NC_001807(7) 2 2 3 2 3 2
J02459(7) 1 1 3 1 2 1
BX842596(4) 6 6 N/A N/A N/A 7
BX842596(7) 2 2 N/A N/A N/A 2

(designing and implementations) and do not reflect in
any performance of the original algorithms.

It is important to realize that we did not attempt to
take into consideration measures to handle repetitive
sequences. Repeats are very difficult to assemble and
often cause the fragment assembly problem to
assemble fragments that come from different locations
of the target sequence. Most algorithms in the literature
have specific operators to handle repeats. For example,
it is often the case that the algorithm is preceded by a
preprocessing step that discards repeats. Our four
algorithms do not have any special operators for
handling repeats. One of the successful attempts for
handling repeats can be found in the sequencer based
on graph theory by Pevzner et al. [12].

The major reason behind the faster running times
for the Structured Pattern Matching Algorithm is that it
uses multiple pattern matching to detect pairwise
overlaps, while the other three algorithms use the
dynamic programming algorithm. When the number of
fragments becomes larger and the average fragment
length longer, the dynamic programming runs very
slowly. Therefore, we believe that designing a hybrid
pairwise pattern alignment in the overlap phase of the
Genetic Algorithm and the Clustering Heuristic
Algorithm should improve the running times
dramatically without any loss of accuracy.

8. References

[1] Chen, T. and Skiena, S.S. A case study in genome-level
fragment assembly. Bioinformatics, 16, 494-500, 2000.

[2] Chen, T. and Skiena, S.S. Trie-based data structures for
sequence assembly. The Eighth Symposium on
Combinatorial Pattern Matching, 206-223, 1997.

[3] Elloumi, M. and Kaabi, S., “Exact and approximation
algorithms for the DNA sequence assembly problem”, SCI in
Biology and Medicine, Volume 8, 1999.

[4] Engle, M.L. and Burks, C., “Artificially generated data
sets for testing DNA fragment assembly algorithms”,
Genomics, 16, 1996.

[5] Phrap,
http://www.mbt.washington.edu/phrap.documentation.html
1994.

[6] Huang, X. and Madan, A, “CAP3: A DNA sequence
assembly program”, Genome Research, vol. 9, 1999, pp.
868-877, 1998.

[7] Kim, S. and Segre, A. M, “AMASS: A structured pattern
matching approach to shotgun sequence assembly”, Journal
of Computational Biology, 6(2), pp. 163-186, 1999.

[8] Li, L, “Computational Techniques for the DNA Fragment
Assembly Problem”, MS thesis, Computer Science
Department, San Jose State University, CA, USA, May 2003.

[9] Myers, E. W., “Towards simplifying and accurately
formulating fragment assembly”, Journal of Computational
Biology, 2(2), pp. 275-290, 2000.

[10] Parsons, R. and Johnson, M. E., “A case study in
experimental design applied to genetic algorithms with
applications to DNA sequence assembly”, American Journal
of Mathematical and Management Sciences, no. 17, pp. 369-
396, 1995.

[11] Pevzner, P. A., Computational molecular biology: An
algorithmic approach, The MIT Press, London, England,
2000.

[12] Pevzner, P. A., Tang, H. and Waterman, M. S. An
Eulerian path approach to DNA fragment assembly. Proc.
Nat. Acad. Sci., 98 (17), pp. 9748-9753, 2001.

[13] Sutton, G., White, O., Adams, M., and Kerlavage, A.,
“TIGR Assembler: A new tool for assembling
large shotgun sequencing projects”, Genome Science &
Technology, no. 1, pp. 9-19, 1995.

	The Greedy Algorithm computes contig overlaps rather than fragment overlaps. The advantages are twofold: it enables us to take only the true overlaps into account and it gives a better guarantee for finding the orientation of the fragments. The major ste

