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Abstract 
 

As more research centers embark on sequencing 
new genomes, the problem of DNA fragment assembly 
for shotgun sequencing is growing in importance and 
complexity. Accurate and fast assembly is a crucial 
part of any sequencing project and many algorithms 
have been developed to tackle it. Since the DNA 
fragment assembly problem is NP-hard, exact 
solutions are very difficult to obtain. In this work, we 
present four heuristic algorithms, which we designed, 
implemented and tested. We compare the algorithms 
and the data structures of the four heuristics and 
present results of our experiments. We also compare 
our results with the assemblies produced by the well-
known packages: PHRAP and CAP3. 
 
Keywords: Fragment assembly, shotgun, overlap, 
layout, consensus, optimization algorithm. 

 
1. The DNA Fragment Assembly Problem 
 

DNA fragment assembly is a technique that 
attempts to reconstruct the original DNA sequence 
from a large number of fragments, each several 
hundred base-pairs long. The DNA fragment assembly 
is needed because current technology, such as gel 
electrophoresis, cannot directly and accurately 
sequence DNA molecules longer than 1000 bases. 
However, most genomes are much longer. For 
example, a human DNA is about 3.2 billion 
nucleotides in length and cannot be read at once. The 
following technique was developed to deal with this 
limitation. First, the DNA molecule is cut at random 
sites to obtain fragments that can be sequenced 
directly. The overlapping fragments are then assembled 
back into the original DNA molecule. This strategy is 
called shotgun sequencing. Originally, the assembly of 
short fragments was done by hand, which is not only 
inefficient, but also error-prone. Hence, a lot of effort 
has been put into finding techniques to automate the 
shotgun sequence assembly. The general outline of 

most assembly algorithms is first to create a set of 
candidate overlaps by examining all pairs, followed by 
forming an approximate layout of fragments, and 
finally creating a consensus sequence. All existing 
methods rely on heuristics, since the fragment 
assembly problem is NP-hard. More specifically, 
assembling DNA fragments is divided into three 
distinct phases: 

 
a) Overlap Phase - Finding the overlapping 
fragments. This phase consists in finding the best or 
longest match between the suffix of one sequence and 
the prefix of another. We compare all possible pairs of 
fragments to determine their similarity. Usually, the 
dynamic programming algorithm is used in this step to 
find semiglobal alignments.   
 
b) Layout Phase - Finding the order of fragments 
based on computed similarity scores. This is the most 
difficult step because it is hard to determine true 
overlaps. After the order is determined, the progressive 
alignment algorithm is applied to combine all the 
pairwise alignments obtained in the overlap phase.   
 
c) Consensus Phase - Deriving the DNA sequence 
from the layout. The most common technique used in 
this phase is to apply the majority rule in building the 
consensus. Other methods exist for finding the 
consensus, such as the use of probabilistic scores in 
PHRAP [5]. 
 

The DNA fragment assembly problem is NP-hard 
[11], therefore, it is not possible to find an exact 
algorithm that solves this problem and runs in 
polynomial time (unless P = NP). The complexity of 
the problem increases even further due to the following 
factors.   

a) Unknown orientation: After the original 
sequence is cut into many fragments, the orientation is 
lost. The sequence can be read in either 5’ to 3’ or 3’ to 
5’. One does not know which strand should be 
selected. If one fragment does not have any overlap 



 

2. DNA Fragment Assembly Using the 
Genetic Algorithm 

with another, it is still possible that its reverse 
complement might have such an overlap.   

b) Base call errors:  There are three types of base 
call errors: substitution, insertion, and deletion errors. 
They occur due to experimental errors in the 
electrophoresis procedure. Errors affect the detection 
of fragment overlaps. Hence, the consensus 
determination requires multiple alignments in high 
coverage regions. 

 
The most challenging step in “overlap-layout-

consensus” DNA fragment assembly is to order the 
fragments. Since finding the exact order of the 
fragments is an extremely slow process, heuristic 
techniques, such as Genetic Algorithm (GA) can be 
used. Our GA heuristic was inspired by the work of 
Parsons et. al. [10]. The GA population consists of a 
set of individuals. Each individual represents one 
possible alignment. The search space for the fragment 
assembly problem is the set of all possible solutions in 
the population. We use the permutation representation 
with integer number encoding. Permutation 
representation requires special operators to make sure 
that we always get legal solutions. In order to maintain 
a legal solution, the two conditions that must be 
satisfied are: first, all fragments must be presented in 
the ordering, and second, no duplicate fragments are 
allowed in the ordering.  

c) Incomplete coverage: It happens when the 
algorithm is not able to assemble a given set of 
fragments into a single contig. 

d) Repeated regions: Repeats are sequences that 
appear two or more times in the target DNA. Repeated 
regions have caused problems in many genome-
sequencing projects, and none of the current assembly 
programs can handle them perfectly [1].   

e) Chimeras and contamination: Chimeras arise 
when two fragments that are not adjacent or 
overlapping on the target molecule join together into 
one fragment. Contamination occurs due to the 
incomplete purification of the fragment from the vector 
DNA. The fitness function measures the quality of the 

alignment and finds the one that yields the best score. 
It is applied to each individual and it should guide the 
genetic algorithm towards the optimal solution. We 
implemented two fitness functions. Fitness function F1 
sums the overlap score for adjacent fragments in a 
given solution. The goal here consists in finding the 
permutation of fragments (an individual in the 
population) that has the highest score. 

 Over the past decade a number of fragment 
assembly packages have been developed, such as 
Phrap [5], TIGR assembler [13], STROLL [2], CAP3 
(Contig Assembly Program) [6], Celera assembler [9], 
and EULER [11]. In our work, we design, implement 
and run four programs based on different 
computational methods to tackle the problem. We 
direct the reader who is interested in this work and who 
would like to know more about our algorithms, their 
design and implementation, to Li’s work [8].          )]1[],[()(1
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The remainder of this work is organized as 
follows. Section 2 introduces our first algorithm, 
Genetic Algorithm (GA). Its fitness functions were 
inspired by Parsons’ GA [10]. Section 3 presents the 
Greedy Algorithm inspired by Elloumi’s 
Approximation Algorithm [3] that constructs and 
orders the Best Set of Maximum Weight Contigs 
(BSC) instead of ordering fragments. Section 4 
introduces the Structured Pattern Matching Algorithm. 
It was inspired by Kim’s pattern matching approach 
[7], in which we first construct a detailed map of the 
problem at hand and then determine the target 
sequence based on a fingerprinting scheme. Our 
experiments show that this algorithm is the most 
accurate and fastest among our four algorithms. 
Section 5 discusses the Clustering Heuristic Algorithm, 
which uses a clustering technique to order fragments 
and progressively builds the fragment layout. Finally, 
we give our experimental results in Section 6 followed 
by our conclusion.  

The second fitness function, F2, not only sums the 
overlap score for adjacent fragments, but also sums the 
overlap score for all other possible pairs. 
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This fitness function penalizes solutions in which 
strong overlaps occur between non-adjacent fragments 
in the layouts. The objective of F2 is to minimize the 
overlap score. The overlap score in both F1 and F2 is 
computed using the semi-global dynamic programming 
algorithm. 

In genetic algorithms, operators are applied to 
a population of individuals to create a new population. 
In our assembler, we employ three such operators: 
selection, crossover, and mutation. We use ranking 
selection mechanism, in which the GA first sorts the 
individuals based on their fitness values and then 
selects the individuals with the best fitness score until 
the specified population size is reached.   



 

We implemented two crossover operators: order-
based and edge-recombination. The purpose of the 
crossover operator is to allow partial solutions to 
evolve in different individuals and then combine them 
to produce a better solution.  

The mutation operator is used for modification of 
single individual. We use the swap mutation operator, 
which randomly selects two positions from a 
permutation and then swaps them. It is a good operator 
for permutation problems such as ordering fragments. 

 
3. DNA Fragment Assembly Using The 
Greedy Algorithm 
  

Our Greedy Algorithm is based on the Best Set of 
Maximum Weight Contigs Approach [3]. The 
algorithm considers unknown orientation and missing 
fragments. The first step of the algorithm is to 
construct the Best Set of Maximum Weight Contigs 
(BSC). The complexity of this step is O(n2l2), where n 
is the number of fragments and l is the average length 
of fragments. The second step of the algorithm is to 
order the Maximum Weight Contigs (MWC) of BSC 
based on contig overlaps order. The complexity of this 
step is O(m2l2), where m is the number of MWCs.   

The Greedy Algorithm computes contig overlaps 
rather than fragment overlaps. The advantages are 
twofold: it enables us to take only the true overlaps 
into account and it gives a better guarantee for finding 
the orientation of the fragments. The major steps of our 
Greedy Algorithm are: 
 
A) Construction of BSC: The algorithm takes as input 
a set of fragments and outputs a best set of contigs 
stored in a vector template. The linked list template 
and the vector template are the major data structures 
used in this step. The linked list is composed of the 
overlap scores sorted in descending order. Each item 
contains a pair of fragment IDs and their overlap score. 
The first fragment is from the forward direction and the 
second fragment is the reverse complement of another 
fragment that has overlap length above some threshold 
with the first fragment. The vector represents a set of 
contigs. Each Contig object contains a pair of 
fragments and their overlap weight.    

 
B) Ordering of Contigs: The time complexity of this 
step is O(m2l2), where m is the number of contigs and l 
is the average length of the fragments. The algorithm 
takes as input the best set of contigs (output of the first 
step) and outputs a list representing the contigs 
ordering. The algorithm makes use of a vector 
representing the contigs information (the output of the 
first step).   

4. DNA Fragment Assembly using Structured 
Pattern Matching  
 

The Structured Pattern Matching Algorithm is 
based on a technique called hybridization 
fingerprinting that is usually used by biologists to 
deduce the overlap information among DNA clones 
from biological probes. DNA clones are exact copies 
of a particular part of a genome and are much longer 
than fragments [7].   

To tackle the DNA fragment assembly problem, 
our algorithm divides the task into three phases. The 
first phase is called probe matching. Instead of using 
biological probes, we randomly select short probes 
(e.g. 12 bps) from each fragment. We then use exact 
pattern matching in determining the relative positions 
(i.e. probes occurrences) of the input fragments, 
including their reverse complements. Thus, each 
fragment is represented as an ordered set of probes and 
associated interprobe distances rather than a sequence 
of nucleotides. The second phase is called overlap map 
construction. It constructs a detailed map to show how 
fragments are ordered and how they align. We first 
determine how fragments overlap based on the probes 
occurrences obtained from the previous phase. Contigs 
consisting of a set of fragments are then constructed in 
a greedy fashion, guided by a heuristic measure of 
fragment alignments. However, it does not solely rely 
on scoring pairwise fragment alignments; instead, each 
fragment is dynamically scored against each contig. 
Comparing a fragment to a contig exploits the multiple 
coverage characteristics of shotgun sequencing data. 
The third phase is called sequence determination. It is 
relatively straightforward since all the information we 
need is available from the second phase. 

The time complexity of the Structured Pattern 
Matching algorithm is approximately linear in the 
length of the target sequence. The efficiency is due to 
the compact encoding representation of fragments.  

 
We now discuss the three phases of the algorithm 

in more detail: 
 

1) Probe matching to identify probe occurrences in  
input fragments. It takes as input a set of DNA 
fragments and each fragment’s reverse complement. 
The output of this phase consists of fragments 
represented as ordered set of probe occurrences and not 
of nucleotides (as with other traditional algorithms).  

 
2)  Overlap map construction: 
Once the probes are selected and detected, the 
Structured Pattern Matching algorithm greedily 
constructs an overlap map based on the patterns of 



 

probe occurrences information obtained in the previous 
step. The following steps describe the overview of the 
overlap map construction: 

Step 1: Construct a pairwise overlap table that 
records overlap lengths for all possible pairs. 

Step 2: Select the fragment pair with the highest 
score and construct an initial contig containing just 
these two fragments. 

Step 3: The new contig is added to the set of 
contigs and rescored against all remaining fragments.   

Step 4: The process continues, adding the best-
scoring fragment to the contig and updating the 
modified contig’s scores against all remaining 
fragments. If no fragment exhibits a significant overlap 
score, the process terminates, and a new contig is 
constructed. 

  
3) Sequence determination.   
Once the overlap map is completed, a consensus 
sequence is generated using all the available 
information. The time complexity is linear. From the 
overlap map, we know the order of the fragments in 
each contig and we also know that their relative left 
positions occur in the map, which makes the sequence 
determination straightforward.      

 
5. DNA Fragment Assembly using the 
Clustering Heuristic Algorithm 
 

The traditional three steps: overlap, layout, and 
consensus, are used in this algorithm. We use the 
semiglobal alignment algorithm to find all possible 
pairwise overlaps. When the overlaps are determined, 
we use a greedy heuristic in the layout phase to find the 
multiple sequence alignment among a set of fragments. 
We take the pair of fragments with highest overlap as 
the starting point. The layout is constructed by 
successively adding the fragment that has the highest 
overlap with the assembled fragments. This algorithm 
takes the unknown orientation into account. The idea is 
based on the clustering concept. It means that the 
fragment that is newly added into the alignment has the 
best overlap with either the last fragment or with the 
first fragment in the current alignment. Each fragment 
is progressively added into the existing alignment until 
no fragment is left.   

 
In what follows, we describe the main parts of the 

Clustering Heuristic Algorithm. 
 
Step 1: Construct a score table for all possible 

pairs of fragments considering forward directions and 
reverse complements. 

Step 2: Sort the score in descending order and 
insert all FragmentPair objects (a pair whose score is 
above some threshold) into a linked list. Each 
FragmentPair node contains a pair of fragment IDs and 
overlap score. If the score is positive, it indicates that 
both fragments are from the same strand. A negative 
score means that the two fragments are from different 
strands. 

Step 3: Select the first node (a,b) in the linked list 
as a starting point to order the rest of the fragments. Set 
a to be the first fragment and b to be the last fragment 
in the current layout. 

Step 4: Select the next node in the linked list and 
compare the pair of fragments with the first and the last 
fragments in the current layout. If the clustering is 
successful, the fragment ID joins the set. If it needs to 
be inserted in the front, we reset the first fragment in 
the layout. If it needs to be appended at the end, we 
reset the last fragment in the layout. Otherwise, we put 
the node in a temporary sorted linked list. The process 
continues until the current linked list is traversed. Note 
that only one possible direction for each fragment can 
be chosen. 

Step 5: When the current linked list is being 
traversed, a new contig is created. We need to remove 
the nodes that contain IDs in the selected fragment set 
from the temporary linked list. Next, we reset the 
temporary linked list as the current linked list and 
continue from Step 3 until no more fragments are left. 
Each contig contains the list of ordered fragment IDs. 
 
6. Experimental Results  
 

We basically conducted experiments on two types 
of sequence data to test our various algorithms. The 
two types differ in the average size of fragments: we 
have fragments with average length of around 380 
base-pairs, and fragments of size approximately 700 
base-pairs long. The first fragment size is very close to 
the size of fragments that were used in the Human 
Genome Project, while the second fragment size of 700 
bps reflects the size of sequences that modern 
sequencers can handle nowadays. We chose our target 
sequences from NCBI (http://www.ncbi.nlm.nih.gov). 
We used GenFrag [4] to generate the different data sets 
shown in Table 1. GenFrag is a UNIX/C application 
created to accept DNA sequence input and generate 
shotgun format cleavages with fragment overlaps, in 
order to test any reassembly application. In other 
words, GenFrag performs DNA sequence cleavage to 
simulate wet lab fragmentation. It takes a known DNA 
sequence and uses it as a parent strand from which to 
randomly generate fragments according to the criteria 
(mean fragment length and coverage of parent 

http://www.ncbi.nlm.nih.gov/


 

sequence) supplied by the user. The target sequences in 
Table 1 are arranged in increasing sizes, from 3,835 
bps to 77,292 bps. Target Sequence displays the 
accession number of the corresponding sequence, 
while the number between parentheses under Data Set 
Name represents the coverage at each position of the 
target sequence.  

We now describe the sequences that are 
summarized in Table 1. 
(1) Target sequence X60189: A human MHC class 
III region DNA with fibronectin type-II repeats 
HUMMHCFIB. Sequence length is 3,835 bps. 
(2) Target sequence NM_007123: A human Usher 
type 2. Sequence length is 6,332 bps. 
(3) Target sequence M15421: A human 
apolopoprotein HUMAPOBF. Sequence length is 
10,089 bps. 
(4) Target sequence NC_001453: A sea urchin 
(Echinoderm) entire mitochondrial genome. Sequence 
length is  15,650. 
(5) Target sequence NC_001807: The human  
(Homo sapiens) entire mitochondrial genome. 
Sequence length is  16,571. 
(6) Target sequence J02459: First 40% of base pairs 
from LAMCG, the complete genome of bacteriophage 
lambda. Sequence length is 20,100 bps. 
(7) Target sequence BX842596: A Neurospora crassa 
(common bread mold) BAC. Sequence length is 
77,292 bps. 

As can be seen in Table 1, sequences with 
accession numbers X60189, M15421, and J02459 have 
fragments of lengths in the neighborhood of 380 bps. 
Sequences NM_007123, NC_001453, NC_001807, 
and BX842596 all have fragments with sizes around 
700 bps.  

The four fragment assembly algorithms were 
implemented in C++. Each program runs from the 
command line and takes the fragments’ data set in 
FASTA format as input. The Genetic Algorithm also 
takes a configuration file with parameters. All the 
experimental runs were performed on a Dell Inspiron 
4150 with a 512MB memory and 1.7 Ghz CPU. 

We evaluated each assembly result in terms of the 
number of contigs assembled. Since we obtain 
fragments from a known target sequence, we can 
compare our assembled consensus sequence with the 
target. Table 2 gives a summary of the results. As for 
the running times of the four algorithms, the times 
ranged from a few seconds to several hours. An 
overlap length of 30 was used as a threshold for all 
four algorithms and packages.  

The Structured Pattern Matching Algorithm runs 
much faster than the other three algorithms. The time 
difference becomes even larger as we move to larger 
data sets. The Greedy Algorithm seems to perform 
poorer than the other three algorithms in finding the 
number of contigs. It is also the slowest of all four 
algorithms, sometimes requiring up to 6 hours to run to 
completion.   

 
Table 1.  Sixteen data sets generated with GenFrag 

 

Target 
Sequence 

Sequence 
Length (bps) Data Set Name Number of 

Fragments 
Average Fragment 

Length (bps) Coverage 

X60189(4) 39 395 4 
X60189(5) 48 386 5 
X60189(6) 66 350 6 

X60189 3,835 

X60189(7) 68 387 7 
NM_007123(4) 37 691 4 NM_007123  6,332 
NM_007123(7) 64 680 7 

M15421(5) 127 398 5 
M15421(6) 173 350 6 M15421 10,089 
M15421(7) 177 383 7 

NC_001453(4) 90 708 4 NC_001453 15,650 
NC_001453(7) 157 676 7 
NC_001807(4) 95 694 4 NC_001807 16,571 
NC_001807(7) 166 674 7 

J02459 20,100 J02459(7) 352 405 7 
BX842596(4) 442 708 4 BX842596 77,292 
BX842596(7) 773 703 7 



 

Since the Greedy Algorithm, the Clustering 
Algorithm and the Genetic Algorithm were 
substantially slower than the Pattern Matching 
Algorithm , we decided not to run the three algorithms 
with BX842596 (of size 77,292 bps). 

For data sets X60189(4), X60189(5), 
NM_007123(7), M15421(6), M15421(7) and 
NC_001453(7) all four algorithms assembled 
fragments as well as the commercially available 
packages: PHRAP and CAP3. For data sets 
X60189(6), X60189(7), and NM_007123(4) only the 
Greedy Algorithm produced two contigs while all other 
programs and packages gave only one contig.  For 
sequences M15421(6) , M15421(7) and NC_001453(7) 
all algorithms produced two contigs.   

As can be seen in Table 2, for 14 data sets out of 
the 16 data sets, the results obtained by the Pattern 
Matching Algorithm are the same as PHRAP’s. The 
Pattern Matching Algorithm performed as well CAP3 
for 14 data sets, and outperformed CAP3 with 
M15421(5). 

We conclude that all four algorithms obtain 
excellent results on small problem instances. For the 
larger data sets, there is some variability in the number 
of contigs found by our four algorithms. Our Pattern 
Matching Algorithm competes pretty well with 
PHRAP and CAP3 for all the sizes of fragments we 
considered in this work. 
 

7. Conclusion 
 

The DNA fragment assembly is a very complex 
problem in computational biology. Since the problem 
is NP-hard, the optimal solution is extremely difficult 
to find. Hence, there are many computational 
techniques that attempt to find good solutions for this 
problem. In this work, we designed, implemented, 
tested, and analyzed four different algorithms in detail. 

The algorithms use different techniques to tackle 
the DNA fragment assembly problem. For smaller data 
sets, all four algorithms got the same result in 
approximately the same running time. However, the 
results and the performance vary as the data sets 
become larger. For larger data sets, i.e., 50 or more 
fragments, the performance of the algorithms ranking 
from best to worst is: Structured Pattern Matching 
Algorithm, Clustering Heuristic Algorithm, Genetic 
Algorithm, and finally the Greedy Algorithm.  

We would like to add that although the algorithms 
were influenced by techniques and algorithms that are 
found in the literature, our design and implementations 
vary from the original algorithms. Many features 
advanced by the authors of the original algorithms 
were either ignored or completely modified by our 
design and implementation. Therefore, our conclusions 
are valid only for our interpretations  
 

Table 2. Results of the four algorithms and two packages with the sixteen data sets 
 

Data Set Name PHRAP CAP3 Greedy 
Algorithm

Clustering 
Algorithm

Genetic 
Algorithm 

Pattern 
Matching 
Algorithm

X60189(4) 1 1 1 1  1  1 
X60189(5) 1 1 1 1  1  1 
X60189(6) 1 1 2 1  1  1 
X60189(7) 1 1 2 1  1  1 
NM_007123(4) 1 1 2 1 1 1 
NM_007123(7) 1 1 1 1 1 1 
M15421(5) 1 2 6 2  1  1 
M15421(6) 2 2 2 2  2  2 
M15421(7) 2 2 2 2  2  2 
NC_001453(4) 3 3 6 3 3 3 
NC_001453(7) 2 2 2 2 2 2 
NC_001807(4) 2 2 7 2 3 3 
NC_001807(7) 2 2 3 2 3 2 
J02459(7) 1 1 3 1  2  1 
BX842596(4) 6 6 N/A N/A N/A 7 
BX842596(7) 2 2 N/A N/A N/A 2 



 

(designing and implementations) and do not reflect in 
any performance of the original algorithms.  

It is important to realize that we did not attempt to 
take into consideration measures to handle repetitive 
sequences. Repeats are very difficult to assemble and 
often cause the fragment assembly problem to 
assemble fragments that come from different locations 
of the target sequence. Most algorithms in the literature 
have specific operators to handle repeats. For example, 
it is often the case that the algorithm is preceded by a 
preprocessing step that discards repeats. Our four 
algorithms do not have any special operators for 
handling repeats. One of the successful attempts for 
handling repeats can be found in the sequencer based 
on graph theory by Pevzner et al. [12].  

The major reason behind the faster running times 
for the Structured Pattern Matching Algorithm is that it 
uses multiple pattern matching to detect pairwise 
overlaps, while the other three algorithms use the 
dynamic programming algorithm. When the number of 
fragments becomes larger and the average fragment 
length longer, the dynamic programming runs very 
slowly. Therefore, we believe that designing a hybrid 
pairwise pattern alignment in the overlap phase of the 
Genetic Algorithm and the Clustering Heuristic 
Algorithm should improve the running times 
dramatically without any loss of accuracy. 
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