
Computing with Haar FunctionsSami KhuriDepartment of Mathematics and Computer ScienceSan Jos�e State UniversityOne Washington SquareSan Jos�e, CA 95192-0103, USAkhuri@jupiter.sjsu.eduFax: (408)924-5080Keywords: deceptive function, fast transforms, �tness func-tions, Haar functions, Walsh functionsAbstractWalsh functions are orthogonal, rectangular functions thattake values�1 and form a convenient basis for the expansionof genetic algorithm �tness functions. Since their introduc-tion into genetic algorithms [2, 8], they have been used tocompute the average �tness values of schemata, to decidewhether functions are hard or easy for genetic algorithms,and to design deceptive functions for the genetic algorithm.In [10], Haar functions were introduced as an alternativeto Walsh functions and it was shown that Haar functionsare in general more computationally advantageous. Thispaper revisits Haar functions, albeit with a slight variationto [10]'s de�nition, uses the functions to construct fully de-ceptive functions for the genetic algorithm (as was done withWalsh functions [5]), and studies fast Haar transforms andfast Walsh-Haar transforms.1 IntroductionOrthonormal bases have captured the attention of researchersin a variety of �elds. In wavelet theory, \orthonormal waveletbases are used as a tool to describe mathematically the `in-crement in information' needed to go from a coarse approx-imation to a higher resolution approximation" [3]. Digitalelectronics brought the necessity for more practical basesthan Fourier's sine/cosine functions. Orthogonal, rectan-gular functions are better suited for digital electronics andhave also been introduced as theoretical tools for the anal-ysis of genetic algorithms [2, 8]. One of the reasons behindthe success of Walsh's rectangular functions as a theoret-ical tool in genetic algorithms is related to the expansionof schemata in terms of Walsh coe�cients. More precisely,the shorter the order of the schema (the smaller the numberof �xed positions), the fewer Walsh coe�cients it needs inthe expansion. In [5], Walsh functions were used to con-struct fully-deceptive functions. After the introduction ofHaar functions, in which we use a variation to the de�nitionfound in [10], we make use of these functions to construct,

in a more e�cient way than with Walsh functions, similardeceptive functions.We then study two fast transforms, the fast Haar trans-form, and the fast Walsh-Haar transform. Because of theinterdependent nature of fast transforms, the computationof a single term is built upon the values of previous levels:many more levels for Walsh than Haar. We conclude the pa-per by reiterating the computational advantage that Haarfunctions have over their Walsh counterparts, and observethat it might be advantageous to use Haar functions ratherthan Walsh's for some applications. In some cases, such aswith symmetrical functions and for very small problem sizes,it might be preferable to use Walsh functions.2 Haar FunctionsThe Haar functions [6] form a complete set of orthogonalrectangular basis functions. They take values of 1, 0 and�1, multiplied by powers of p2 and are usually de�ned onan interval normalized to [0; 1) [12].In the following, the Haar functions are de�ned on [0; 2`),for any positive integer `, and are normalized,H0(x) = 1 for 0 � x < 2`H1(x) = � 1 for 0 � x < 2`�1�1 for 2`�1 � x < 2`H2(x) = 8<: p2 for 0 � x < 2`�2�p2 for 2`�2 � x < 2`�10 elsewhere in [0; 2`)H3(x) = 8<: p2 for (2)2`�2 � x < (3)2`�2�p2 for (3)2`�2 � x < (4)2`�20 elsewhere in [0; 2`)...H2q+m(x) = 8>>><>>>: (p2)q for (2m)2`�q�1 � xand x < (2m+ 1)2`�q�1�(p2)q for (2m+ 1)2`�q�1 � xand x < (2m+ 2)2`�q�10 elsewhere in [0; 2`) (1)...H2`�1(x) = 8><>: (p2)`�1 for 2(2`�1 � 1) � xand x < 2` � 1�(p2)`�1 for 2` � 1 � x < 2`0 elsewhere in [0; 2`)



For q = 0; 1; : : : ; `� 1, we have m = 0; 1; : : : ; 2q � 1.The set fHj(x) : j = 0; 1; 2; : : : ; 2`�1g forms a basis forthe �tness functions de�ned on the integers in [0; 2`): Thatis: f(x) = �2`�1j=0 hj Hj(x); (2)where the hj 's, for j = 2q + m, are the Haar coe�cientsgiven by: hj = 12`�2`�1x=0 f(x)Hj(x): (3)The Haar function, H2q+m(x), has degree q and orderm. Functions with the same degree are such that each oneis just a \right-shift" of the previous function. The positionof the function is given by the order m. The higher thedegree q, the smaller the subinterval with non-zero valuesfor Hj(x). Haar functions of degree q contain 2q more non-zero parts than Haar functions of degree q�1. Consequently,each Haar coe�cient depends only on the local behavior off(x). More precisely, the following two results (equivalentto Beauchamp's [1]) were obtained in [10]:Result 1 Every Haar coe�cient of degree q has at most2`�q non-zero terms. Each term corresponds to a point inan interval of the form [(i)2`�q ; (i+ 1)2`�q): Consequently,the linear combination of each Haar coe�cient hj , wherej = 2q +m; has at most 2`�q non-zero terms. In addition,h0 has at most 2` non-zero terms. 2Result 2 For any �xed value x 2 [0; 2`), f(x) has at most`+ 1 non-zero terms. 2In the next section, we use the Haar transform to build fullydeceptive functions.3 Designing Fully Deceptive 3-Bit FunctionsIn his quest to identify functions that are suitable for geneticalgorithms, Goldberg, using Walsh coe�cients, constructedfully deceptive 3-bit functions [5]. We use Haar functions toconstruct such a function. If 111 is the optimal point in thesearch space of a maximization problem, then all order-oneschemata should lead away from it. In other words, we have:� f(? ? 1) < f(? ? 0), f(?1?) < f(?0?), andf(1 ? ?) < f(0 ? ?).By using Equation 2 and taking averages, the inequal-ities produce:h4 + h5 + h6 + h7 > 0, h2 + h3 > 0, and h1 > 0,respectively.Similarly, for order-two schemata, we want them to leadaway from the best. In other words, we should have:� f(?00) > f(?01), f(?00) > f(?10), andf(?00) > f(?11);which produce the following inequalities:h4 + h6 > 0, p2(h2 + h3) > �h4 + h5 � h6 + h7,and p2(h2 + h3) > �(h4 + h5 + h6 + h7).� f(0 ? 0) > f(0 ? 1), f(0 ? 0) > f(1 ? 0), andf(0 ? 0) > f(1 ? 1);which yield the following inequalities:h4 + h5 > 0, 2h1 + (h4 + h5 � h6 � h7) > 0, and2h1 + (h4 + h5 + h6 + h7) > 0, respectively.

� f(00?) > f(01?), f(00?) > f(10?), andf(00?) > f(11?);which yield the following inequalities:h2 > 0, 2h1 +p2(h2 � h3) > 0, and2h1 +p2(h2 + h3) > 0, respectively.Finally, since 111 is the optimal point, we must have:� f(111) > f(000), f(111) > f(001), f(111) > f(010),and f(111) > f(011),which yield the following inequalities:2(h1 + h4 + h7) +p2(h2 + h3) < 0,2(h1 � h4 + h7) +p2(h2 + h3) < 0,2(h1 + h5 + h7)�p2(h2 + h3) < 0, and2(h1 � h5 + h7)�p2(h2 � h3) < 0, respectively.� f(111) > f(100), f(111) > f(101), andf(111) > f(110),which produces the following inequalities:h6+h7+p2h3 < 0, �h6+h7+p2h3 < 0, and h7 < 0,respectively.Various solutions for the Haar coe�cients can be ob-tained by solving the simultaneous set of inequalities, thusproducing many fully deceptive functions. A possible solu-tion to the inequalities is:h0 = h1 = 1; h2 = 2p2; h3 = �p2; h4 = 10; h5 = �1;h6 = 8; h7 = �16:By replacing these values in Equation 2, we obtain the fullydeceptive 3-bit function given in Table 1.x 000 001 010 011 100 101 110 111f(x) 26 �14 �4 0 14 �18 �30 34Table 1: A fully deceptive 3-bit function.The average �tness of ?10, for instance, can be expressedas a linear combination of at most four non-zero Walsh co-e�cients: f(?10) = w0 + w1 � w2 � w3:The computation of wi, for i = 1; 2; 3; 4, has 8 terms, re-quiring the values of f(x) at all points in the interval [0; 8),thus bringing the total number of computations to 32.The average �tness of the same schema expressed as alinear combination of Haar coe�cients yields:f(?10) = h0 � p22 (h2 + h3) + h5 + h7:According to Equation 3 and Result 1 from the previoussection, the computation of h2 and of h3 has 23�1 terms each(see Result 1, where q = 1 since 2 = 21+0, and 3 = 21+1),the computation of h5 and h7 have 23�2 terms each (since5 = 22+1 and 7 = 22+3), and h0 requires the computationof 8 terms. Thus, the total number of computations is 20with the Haar expansion, a substantial savings over Walsh'sexpansion.To take advantage of the many repetitive computationsperformed with orthogonal transformations, fast Walsh andfast Haar transforms have been proposed. In the next sec-tion, we explore and compare fast Haar and Walsh trans-forms.



4 Fast TransformsFast transforms are represented by layered 
owcharts wherean intermediate result at a certain stage is obtained byadding (or subtracting) two intermediate results from theprevious layer. Thus, when dealing with fast transforms, itis more appropriate to count the number of operations (ad-ditions or subtractions), which is equivalent to counting thenumber of terms [13]. These are in-place algorithms, and somemory storage for intermediate-stage computations is notneeded. The calculated pair of output values can replacethe corresponding pair of data in the preceding stage.We study the fast Haar and the fast Walsh-Haar trans-forms, which are modi�ed Cooley and Tukey algorithms,modeled after the fast Fourier transform.f(000)f(001)f(010)f(011)f(100) h1f(101)f(110)f(111)
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Figure 1: Fast Haar transform.
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4.1 Fast Haar TransformFast Haar transforms can be implemented with on the or-der of at most 2` computations. More precisely, Roeserand Jernigan's fast Haar transform requires 2(N � 1) op-erations [13], where N = 2`. A 
ow diagram of their algo-rithm, with ` = 3, is shown in Figure 1. Each term from theleftmost column is either added to (solid line) or subtractedfrom (dashed line) its adjacent term to produce a new termfor a subsequent stage of the algorithm.Some operations have multiplying factors greater thanone and their values can be seen over the corresponding join-ing lines. The 
ow diagram going from left to right producesthe Haar coe�cients (after multiplying by 12` , according toEquation 3), while the opposite direction produces the valueof the function for any point x 2 [0; 2` � 1].For example, to compute h2, we locate it in the �gure,and read from right to left to obtain:h2 = 18 [p2(f(000) + f(001)) �p2(f(010) + f(011))]:To compute f(010), we read from left to right (thick line):f(010) = h0 + h1 �p2h2 + 2h5:Note that the numbers of terms in the expansions of h2and f(010) are consistent with Results 1 and 2, respectively,from the previous section.We also note that the total number of operations (ad-ditions and subtractions) in Figure 1, is (going from left toright), 8 on the �rst layer, 4 on the second, and 2 on thelast, i.e., 14, which is equal to 2(2` � 1) for ` = 3.Note that the coe�cients do not occur in sequential or-der. When ` = 3, reading from top to bottom, the orderis: h0; h4; h2; h5, h1; h6; h3; h7. To locate a coe�cient, thefollowing equation is used [13]:2(`�q)(2�1 +m)for 0 < m < 2q � 1 and 0 < q < ` where q is the degree,and m the member to be determined. For instance, if ` = 3,then the location of h5, i.e., h22+1, is 2(3�2)(2�1 + 1) = 3.In the next section, we show an algorithm that gives bothWalsh and Haar transforms.Strings Fitness1111 0000 01110 0001 161101 0010 311011 0100 291010 0101 251001 0110 391000 0111 23Table 2: Binary strings with their �tness values.4.2 The Fast Walsh-Haar TransformEither the Walsh or the Haar expansion can be obtainedfrom Fino's composite Walsh-Haar transform [4]. The trans-form is presented by the 
ow diagram of Figure 2 for ` = 3.The multiplying constants employed in the routine for theHaar transform are shown in the diagram as the constants



j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15wj 398 0 0 �46 0 �82 �86 0 0 �2 �118 0 �66 0 0 2hj 398 0 �33p2 33p2 �102 �16 16 102 �32p2 �10p2 8p2 32p2 �32p2 �8p2 10p2 32p2Table 3: Binary strings with their �tness values.associated with the levels. At level B, the multiplier is 2, atlevel C the multiplier is p2 and at level D, the multiplieris 1. Each term from the leftmost column is either addedto (solid line) or subtracted from (dashed line) its adjacentterm to produce a new term of a subsequent stage of thealgorithm. The 
ow diagram going from left to right pro-duces the Haar coe�cients (after multiplying by 12` and theappropriate level multiplier) or the Walsh coe�cients (aftermultiplying by 12` ). Going in the opposite direction pro-duces the value of the function for any point x 2 [0; 2` � 1].For instance, going from right to left:h7 = 2[f(110) � f(111)] 18 :And h2 = p2[f(000) + f(001) � f(010) � f(011)] 18 :Going from left to right, we can compute f(110) in terms ofHaar coe�cients:f(110) = h0 � h1 �p2h3 + 2h7;or as a linear combination of Walsh coe�cients:f(110) = w0 � w4 � w2 + w6 + w1 � w5 � w3 + w7:We note that the total number of operations to get Walshcoe�cients, in Figure 2, (additions and subtractions), is 23in each of the 3 layers. i.e., 24, which is equal to 3(2`)for ` = 3. The Haar coe�cients are obtained much fasterthan the Walsh. Indeed, Haar requires 2(2` � 1) operationscompared to Walsh's `(2`). Thus, `2` � 2`+1 + 2 more op-erations are needed with Walsh than with Haar functions.For instance, for ` = 10, we need to perform 8; 192 moreoperations when the Walsh fast transform is used instead ofthe Haar transform.It is generally more advantageous to use the Haar trans-form rather than its Walsh counterpart. However, the nextsection examines a special case for which the latter mightbe preferable.5 Symmetrical Fitness FunctionsIf f(x) is a symmetrical function, then many Walsh coe�-cients will vanish while the Haar coe�cients will have non-zero values. This is due to the symmetry properties of Walshtransforms. More precisely, the proof of the following re-sult [14] can be found in the Appendix.Result 3 Let f(x) be a symmetric function, i.e.,f(x) = f(�x), where �xi = 1 � xi. Then every Walsh coe�-cients wj that contains an odd number of ones in its index j,is zero.The maximum cut problem illustrates this situation.Given a weighted graph G = (V;E) where V = f1; : : : ; ng

is the set of vertices, E the set of edges, and wij the weightof the edge between vertices i and j, the problem consistsin partitioning V into two disjoint sets V0 and V1, such thatthe sum of the weights of the edges from E that have oneendpoint in V0 and the other in V1 is maximized.Example 1 Consider the instance of the maximum cut prob-lem with four vertices, and �ve edges with the followingweights: w12 = w21 = 6, w13 = w31 = 10, w23 = w32 = 11,w24 = w42 = 15, w34 = w43 = 8, and wij = 0 for all othervalues of i and j. If we let xi = 0 when vertex i is in V0 andxi = 1 when i is in V1, then each string in f0; 1g4 will rep-resent a possible partition of the vertices. Since wij = wjifor 1 � i; j � 4, the �tness function to maximize is given by([11]):f(x) = �n�1i=1 �nj=i+1 [xi(1� xj) + xj(1� xi)] wijwith n = 4.The function is symmetrical and every binary string hasthe same �tness value as its complement. For instance,f(1010) = f(0101) = 25. Table 2 gives all possible solu-tions with their corresponding �tness values.The Walsh and Haar coe�cients tabulated in Table 3have to be multiplied by 116 .We note that although it is more e�cient to compute theHaar coe�cients, it might still be preferable to use theWalshtransform in this problem, since half of the coe�cients dropout while all but one of the Haar coe�cients have non-zerovalue, and since, more importantly, ` is very small.6 ConclusionThe aim of this article is to bring to the attention of re-searchers involved in theoretical aspects of genetic algorithmsthe existence and some of the properties of Haar functions.More precisely, these functions can be used as a tool, tocompute �tness averages, to compute schemata, and to con-struct deceptive functions. Because of the computationaladvantages, Haar functions might be used for certain appli-cations instead of Walsh functions.Using Haar functions a basis, the expansion of the �tnessfunction requires substantially fewer terms than with Walshfunctions. The Haar coe�cients too can be written as lin-ear combinations of very few points that are \close together"and do not require the computation of all points, as is thecase with Walsh coe�cients. The computational di�erencebetween Walsh and Haar functions can also be seen by con-sidering fast transforms. With these implementations, mod-eled after the fast Fourier transform, Haar coe�cients re-quire O(N) transformations, whereas O(N log2N) transfor-mations are required for Walsh, where N = 2`. We showedthat the di�erence between the total number of terms re-quired for the computation of the expansions of Walsh andof Haar remains exponential in ` (of order `2`).
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AppendixResult 3Let f(x) be a symmetric function, i.e., f(x) = f(�x), where�xi = 1� xi. Then every Walsh coe�cients wj that containsan odd number of ones in its index j, is zero.Note that 1� 2 �xi = 1� 2 (1� xi) = (�1) � (1� 2xi).The Walsh coe�cient wj is calculated bywj = 2l�1Xx=0 f(x) lYi=1(1� 2xi)ji= 2l�1�1Xx=0 f(x) lYi=1(1� 2xi)ji+ 2l�1Xx=2l�1 f(x) lYi=1(1� 2xi)ji= 2l�1�1Xx=0 f(x) lYi=1(1� 2xi)ji+ 2l�1�1Xx=0 f(�x) lYi=1(1� 2 �xi)ji= 2l�1�1Xx=0 "f(x) lYi=1(1� 2xi)ji + f(�x) lYi=1(1� 2 �xi)ji#= 2l�1�1Xx=0 f(x)" lYi=1(1� 2xi)ji+ lYi=1(�1)ji � (1� 2xi)ji#= 2l�1�1Xx=0 f(x)" lYi=1(1� 2xi)ji! � 1 + lYi=1(�1)ji!#= 2 2l�1�1Xx=0 f(x)" lYi=1(1� 2xi)ji! (1� kjk1 mod 2)#= ( 2 �P2l�1�1x=0 f(x)Qli=1(1� 2xi)ji if kjk1 even0 if kjk1 oddwhere kjk1 = Pli=1 ji denotes the l1{norm of j in binarynotation. 2


