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Abstract

Walsh functions are orthogonal, rectangular functions that
take values £1 and form a convenient basis for the expansion
of genetic algorithm fitness functions. Since their introduc-
tion into genetic algorithms [2, 8], they have been used to
compute the average fitness values of schemata, to decide
whether functions are hard or easy for genetic algorithms,
and to design deceptive functions for the genetic algorithm.
In [10], Haar functions were introduced as an alternative
to Walsh functions and it was shown that Haar functions
are in general more computationally advantageous. This
paper revisits Haar functions, albeit with a slight variation
o [10]’s definition, uses the functions to construct fully de-
ceptive functions for the genetic algorithm (as was done with
Walsh functions [5]), and studies fast Haar transforms and
fast Walsh-Haar transforms.

1 Introduction

Orthonormal bases have captured the attention of researchers
in a variety of fields. In wavelet theory, “orthonormal wavelet
bases are used as a tool to describe mathematically the ‘in-
crement in information’ needed to go from a coarse approx-
imation to a higher resolution approximation” [3]. Digital
electronics brought the necessity for more practical bases
than Fourier’s sine/cosine functions. Orthogonal, rectan-
gular functions are better suited for digital electronics and
have also been introduced as theoretical tools for the anal-
ysis of genetic algorithms [2, 8]. One of the reasons behind
the success of Walsh’s rectangular functions as a theoret-
ical tool in genetic algorithms is related to the expansion
of schemata in terms of Walsh coefficients. More precisely,
the shorter the order of the schema (the smaller the number
of fixed positions), the fewer Walsh coefficients it needs in
the expansion. In [5], Walsh functions were used to con-
struct fully-deceptive functions. After the introduction of
Haar functions, in which we use a variation to the definition
found in [10], we make use of these functions to construct,

in a more efficient way than with Walsh functions, similar
deceptive functions.

We then study two fast transforms, the fast Haar trans-
form, and the fast Walsh-Haar transform. Because of the
interdependent nature of fast transforms, the computation
of a single term is built upon the values of previous levels:
many more levels for Walsh than Haar. We conclude the pa-
per by reiterating the computational advantage that Haar
functions have over their Walsh counterparts, and observe
that it might be advantageous to use Haar functions rather
than Walsh’s for some applications. In some cases, such as
with symmetrical functions and for very small problem sizes,
it might be preferable to use Walsh functions.

2 Haar Functions

The Haar functions [6] form a complete set of orthogonal
rectangular basis functions. They take values of 1, 0 and
—1, multiplied by powers of v/2 and are usually defined on
an interval normalized to [0, 1) [12].

In the following, the Haar functions are defined on [0, 2¢),
for any positive integer ¢, and are normalized,

Ho(z) = 1 for0<z<?2
_ 1 for0<az<2?
@) = { 1 for 2 <z <2t
V2 for0<z<27?
Hy(z) = —V2 for 272 < g <2i7!
0 elsewhere in [0,2)
V2 for (2)272 <z < (3)2¢2
Hiy(z) = —V2 for (3)2 %< x < (4)2¢-2
0 elsewhere in [0,2)
(V2)? for (2m)2- 9t <z
and z < (2m 4 1)2¢797!
Hyaim(z) = for (2m +1)27 71 <z (1)
and z < (2m 4 2)2¢79!
0 elsewhere in [0, 2)
for 2021 —1) <=z
_ and z < 2' —1
Hye_y(z) = \/—)l U ofor 2 — 1<z <2
elsewhere in [0,2°)



For¢q=0,1,...,/—1, we have m =0,1,...,29 — 1.

The set {H;(x) : j =0,1,2,...,2° —1} forms a basis for
the fitness functions defined on the integers in [0,2%). That
is:

f@) = S35" by H (@), (2)

7=0

where the h;’s, for j = 29 + m, are the Haar coefficients
given by:

1 oty
By = 50 f(@) H (o). 3)

The Haar function, Haa4,(2), has degree ¢ and order
m. Functions with the same degree are such that each one
is just a “right-shift” of the previous function. The position
of the function is given by the order m. The higher the
degree g, the smaller the subinterval with non-zero values
for H;(z). Haar functions of degree g contain 2¢ more non-
zero parts than Haar functions of degree g—1. Consequently,
each Haar coefficient depends only on the local behavior of
f(x). More precisely, the following two results (equivalent
to Beauchamp’s [1]) were obtained in [10]:

Result 1 Every Haar coefficient of degree g has at most
2/=9 non-zero terms. Each term corresponds to a point in
an interval of the form [(i)2°77 (i 4+ 1)2¢77). Consequently,
the linear combination of each Haar coefficient h;, where
j = 29 4+ m, has at most 2°~7 non-zero terms. In addition,
ho has at most 2! non-zero terms. O

Result 2 For any fixed value z € [0,2%), f(z) has at most
¢ + 1 non-zero terms. m|

In the next section, we use the Haar transform to build fully
deceptive functions.

3 Designing Fully Deceptive 3-Bit Functions

In his quest to identify functions that are suitable for genetic
algorithms, Goldberg, using Walsh coefficients, constructed
fully deceptive 3-bit functions [5]. We use Haar functions to
construct such a function. If 111 is the optimal point in the
search space of a maximization problem, then all order-one
schemata should lead away from it. In other words, we have:

o f(x*1) < f(xx0), f(x1x) < f(x0x), and
FLxx) < F(0%%):
By using Equation 2 and taking averages, the inequal-
ities produce:
ha + hs + he + h7 > 0, ha + hs > 0, and h1 > 0,
respectively.

Similarly, for order-two schemata, we want them to lead
away from the best. In other words, we should have:

e f(%x00) > f(x01), f(*x00) > f(%10), and
F(x00) > F(x11);
which produce the following inequalities:
ha + he >0, V2(ha + hs) > —ha + hs — he + hr,
and V2(hy + h3) > —(ha + hs + he + hz).

e f(0x0)> f(0x1), f(Ox0) > f(1%0), and
F0%0) > F(1x1);
which yield the following inequalities:
ha + hs >0, 2h1 +(h4+h57h67h7) >0, and
2h1 + (ha + hs + he + h7) > 0, respectively.

e f(00x) > f(01x), f(00%) > f(10%), and
F(00%) > F(110);
which yield the following inequalities:
ha > 0, 2h1 ++/2(ha — h3) > 0, and
2hy + \/i(hg + h3) > 0, respectively.

Finally, since 111 is the optimal point, we must have:

o £(111) > £(000), f(111) > £(001), f(111) > £(010),
and f(111) > f(011),

which yield the following inequalities:

2(h1 + ha + h7) + V2(ha + hs) <0,

2(h1 — ha + h7) + V2(h2 + h3) < 0,

2(h1 4 hs + hr) — V2(h2 + h3) < 0, and

2(h1 — hs + h7) — \/§(h2 — h3) < 0, respectively.

e £(111) > £(100), f(111) > £(101), and
f(111) > £(110),

which produces the following inequalities:

he +h7+v/2hs < 0, —he+h7++/2hs < 0, and hy < 0,
respectively.

Various solutions for the Haar coefficients can be ob-
tained by solving the simultaneous set of inequalities, thus
producing many fully deceptive functions. A possible solu-
tion to the inequalities is:

ho=h1 =1,hy =22, hs = —/2,ha =10, hs = —1,
he = 8, hy = —16.

By replacing these values in Equation 2, we obtain the fully
deceptive 3-bit function given in Table 1.

z 000 001 010 011 100 101 110 111
Fl) | 26 —14 —4 0 14 —18 —30 34

Table 1: A fully deceptive 3-bit function.

The average fitness of x10, for instance, can be expressed
as a linear combination of at most four non-zero Walsh co-
efficients:

f(*l(]) = wo + w1 — w2 — ws.

The computation of w;, for + = 1,2,3,4, has 8 terms, re-
quiring the values of f(z) at all points in the interval [0, 8),
thus bringing the total number of computations to 32.

The average fitness of the same schema expressed as a
linear combination of Haar coefficients yields:

>
F(x10) = ho — %(h2 + hs) + hs + ho.

According to Equation 3 and Result 1 from the previous
section, the computation of he and of hs has 23=1 terms each
(see Result 1, where ¢ = 1 since 2 = 2! 40, and 3 = 2! 4 1),
the computation of hs and h; have 23=2 terms each (since
5=22+1and 7 = 22+ 3), and ho requires the computation
of 8 terms. Thus, the total number of computations is 20
with the Haar expansion, a substantial savings over Walsh’s
expansion.

To take advantage of the many repetitive computations
performed with orthogonal transformations, fast Walsh and
fast Haar transforms have been proposed. In the next sec-
tion, we explore and compare fast Haar and Walsh trans-
forms.



4 Fast Transforms

Fast transforms are represented by layered flowcharts where
an intermediate result at a certain stage is obtained by
adding (or subtracting) two intermediate results from the
previous layer. Thus, when dealing with fast transforms, it
is more appropriate to count the number of operations (ad-
ditions or subtractions), which is equivalent to counting the
number of terms [13]. These are in-place algorithms, and so
memory storage for intermediate-stage computations is not
needed. The calculated pair of output values can replace
the corresponding pair of data in the preceding stage.

We study the fast Haar and the fast Walsh-Haar trans-
forms, which are modified Cooley and Tukey algorithms,
modeled after the fast Fourier transform.
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Figure 1: Fast Haar transform.
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Figure 2: Fast Walsh-Haar transform.

4.1 Fast Haar Transform

Fast Haar transforms can be implemented with on the or-
der of at most 2 computations. More precisely, Roeser
and Jernigan’s fast Haar transform requires 2(N — 1) op-
erations [13], where N = 2°. A flow diagram of their algo-
rithm, with £ = 3, is shown in Figure 1. Each term from the
leftmost column is either added to (solid line) or subtracted
from (dashed line) its adjacent term to produce a new term
for a subsequent stage of the algorithm.

Some operations have multiplying factors greater than
one and their values can be seen over the corresponding join-
ing lines. The flow diagram going from left to right produces

the Haar coefficients (after multiplying by 2, according to

2¢€
Equation 3), while the opposite direction produces the value
of the function for any point z € [0, 2¢ — 1].
For example, to compute ha, we locate it in the figure,

and read from right to left to obtain:

ho = é[\/i(f(ooo) + £(001)) — V2(£(010) + f(011))].

To compute f(010), we read from left to right (thick line):

£(010) = ho + h1 — V/2hg + 2hs.

Note that the numbers of terms in the expansions of ha
and f(010) are consistent with Results 1 and 2, respectively,
from the previous section.

We also note that the total number of operations (ad-
ditions and subtractions) in Figure 1, is (going from left to
right), 8 on the first layer, 4 on the second, and 2 on the
last, i.e., 14, which is equal to 2(2° — 1) for £ = 3.

Note that the coefficients do not occur in sequential or-
der. When ¢ = 3, reading from top to bottom, the order
is: ho, ha, ha, hs, hi,he, hs, h7. To locate a coefficient, the
following equation is used [13]:

207027 4 m)

for 0 < m < 2?7 —1 and 0 < ¢ < ¢ where ¢ is the degree,
and m the member to be determined. For instance, if £ = 3,
then the location of hs, i.e., hy2,, is 2(3*2)(2’1 +1) = 3.
In the next section, we show an algorithm that gives both
Walsh and Haar transforms.

Strings Fitness
1111 0000 0
1110 0001 16
1101 0010 31
1011 0100 29
1010 0101 25
1001 0110 39
1000 0111 23

Table 2: Binary strings with their fitness values.

4.2 The Fast Walsh-Haar Transform

Either the Walsh or the Haar expansion can be obtained
from Fino’s composite Walsh-Haar transform [4]. The trans-
form is presented by the flow diagram of Figure 2 for ¢ = 3.
The multiplying constants employed in the routine for the
Haar transform are shown in the diagram as the constants



j 10 1 2 3 1 5 6 7 8 9 10 11 12 13 14 15
w; [ 398 0 0 —46 0 82 -8 0 0 —2 118 0 —66 0 0 2
h; [ 398 0 —33v2 33v/2 —102 —16 16 102 —32v/2 —10v/2 8&/2 32v2 —32v/2 —-8/2 10/2 32V/2

Table 3: Binary strings with their fitness values.

associated with the levels. At level B, the multiplier is 2, at
level C' the multiplier is /2 and at level D, the multiplier
is 1. Each term from the leftmost column is either added
to (solid line) or subtracted from (dashed line) its adjacent
term to produce a new term of a subsequent stage of the
algorithm. The flow diagram going from left to right pro-
duces the Haar coefficients (after multiplying by 2LZ and the
appropriate level multiplier) or the Walsh coefficients (after
multiplying by 2%) Going in the opposite direction pro-
duces the value of the function for any point z € [0, 2 — 1].
For instance, going from right to left:

hr = 2[f(110) — f(111)]

oo =

And

ha = V2[£(000) + £(001) — £(010) — f(Oll)]é.

Going from left to right, we can compute f(110) in terms of
Haar coefficients:

f(110) = ho — h1 — V2h3 + 2hz,
or as a linear combination of Walsh coefficients:
F(110) = wo — wa — w2 + we + w1 — w5 — w3 + wr.

We note that the total number of operations to get Walsh
coefficients, in Figure 2, (additions and subtractions), is 2°
in each of the 3 layers. i.e., 24, which is equal to 3(2°)
for £ = 3. The Haar coefficients are obtained much faster
than the Walsh. Indeed, Haar requires 2(2° — 1) operations
compared to Walsh’s £(2°). Thus, £2° — 2°*! 4+ 2 more op-
erations are needed with Walsh than with Haar functions.
For instance, for ¢ = 10, we need to perform 8,192 more
operations when the Walsh fast transform is used instead of
the Haar transform.

It is generally more advantageous to use the Haar trans-
form rather than its Walsh counterpart. However, the next
section examines a special case for which the latter might
be preferable.

5 Symmetrical Fitness Functions

If f(z) is a symmetrical function, then many Walsh coeffi-
cients will vanish while the Haar coefficients will have non-
zero values. This is due to the symmetry properties of Walsh
transforms. More precisely, the proof of the following re-
sult [14] can be found in the Appendix.

Result 3 Let f(z) be a symmetric function, i.e.,
f(x) = f(z), where &, = 1 — z;. Then every Walsh coeffi-
cients w; that contains an odd number of ones in its index j,
is zero.

The maximum cut problem illustrates this situation.
Given a weighted graph G = (V, E) where V = {1,...,n}

is the set of vertices, E the set of edges, and w;; the weight
of the edge between vertices ¢ and j, the problem consists
in partitioning V into two disjoint sets Vi and Vi, such that
the sum of the weights of the edges from E that have one
endpoint in Vp and the other in Vi is maximized.

Example 1 Consider the instance of the maximum cut prob-
lem with four vertices, and five edges with the following
WeightSZ wiz = w21 = 6, wiz = w31 = 10, waz = w3z = 11,
wa4 = wap = 15, was = waz = 8, and w;; = 0 for all other
values of ¢ and j. If we let ; = 0 when vertex i is in Vp and
x; = 1 when 4 is in Vi, then each string in {0,1}* will rep-
resent a possible partition of the vertices. Since ws;; = wy;
for 1 <14,j < 4, the fitness function to maximize is given by

([11]):
fl@) =S S w1 —2) + 25 (1 — @) wyj

with n = 4.

The function is symmetrical and every binary string has
the same fitness value as its complement. For instance,
f(1010) = f(0101) = 25. Table 2 gives all possible solu-
tions with their corresponding fitness values.

The Walsh and Haar coefficients tabulated in Table 3
have to be multiplied by %.

We note that although it is more efficient to compute the
Haar coefficients, it might still be preferable to use the Walsh
transform in this problem, since half of the coefficients drop
out while all but one of the Haar coefficients have non-zero
value, and since, more importantly, ¢ is very small.

6 Conclusion

The aim of this article is to bring to the attention of re-
searchers involved in theoretical aspects of genetic algorithms
the existence and some of the properties of Haar functions.
More precisely, these functions can be used as a tool, to
compute fitness averages, to compute schemata, and to con-
struct deceptive functions. Because of the computational
advantages, Haar functions might be used for certain appli-
cations instead of Walsh functions.

Using Haar functions a basis, the expansion of the fitness
function requires substantially fewer terms than with Walsh
functions. The Haar coefficients too can be written as lin-
ear combinations of very few points that are “close together”
and do not require the computation of all points, as is the
case with Walsh coefficients. The computational difference
between Walsh and Haar functions can also be seen by con-
sidering fast transforms. With these implementations, mod-
eled after the fast Fourier transform, Haar coefficients re-
quire O(N) transformations, whereas O(N log, N) transfor-
mations are required for Walsh, where N = 2°. We showed
that the difference between the total number of terms re-
quired for the computation of the expansions of Walsh and
of Haar remains exponential in £ (of order £2°).
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Appendix

Result 3

Let f(x) be a symmetric function, i.e., f(z) = f(z), where
Z; =1 —x;. Then every Walsh coefficients w; that contains
an odd number of ones in its index j, is zero.

Note that 1 —2z; =1—2(1 —z;) = (—1) - (1 — 2 z5).

The Walsh coefficient w; is calculated by

w; = E::Of(-r) ﬂ(lzmh
= QIzl;f(x) f[lu—nz)h
+ ZIlelfcr) ﬁ(lzmw

- leiolf(m ﬁ(lzmw
+2§:01f(w) ﬁ(l - 25"

= ) PQ:IIU—QxV'+f IIl—Qm ]

z=0 =

[H (1—2m,)
+ [ a- 2mi)fi]

21 1_ 1 .
) (i)

2 Z f(x) Kﬂ(l - 2xi>”> (1 —1ljlli mod 2)]
{ 2. Zi;ofl F@) [T, (1~ 22;)%
0

2l=1_1

:Zf

if ||4]|1 even
if {51l odd

where ||j]l1 = Zi:l-ji denotes the l;-norm of j in binary
notation. O



