CSCI6506— Genetic Algorithms and Programming

Deception in Genetic Search

» Basic obediveisto provide guidelines regarding what problem properties Genetic Search
strategies, in particular Genetic Algorithms, will find dfficult.

» Schematheory attempts to expressGA seach properties by showing that buil ding blocks
(short order and cefining length schema) are used to efficiently sample the search space

0 Low level building blocks identified and recombined to dred seach towards
above average regions of the search space

 Problem is said to be deceptiveif the buil ding blocks identified adually lead the GA away

from the global objedive.

Example
» Consider the following deceptive order — 3 function

o For deceptionto take placeorder-1 and ader-2 schemaredired the caes of higher
fitnesstowards alow fitnessindividual, where schemas are measured
genatypicdly.

0 Letthegloba optimum be 111; the global minimum be 000.

0 Lower order schema ae now ordered to satisfy the foll owing relationships to

adhieve deception,

F(O**) > f(1%*) F(00*) > f(11*), f(01*), f(10%)
F(*0*) > f(*1*) F(0*0) > f(1*1), f(0*1), f(1*0)
F(**0) > f(**1) F(*00) > f(*11), f(*01), f(*10)
o Thismight lea to the foll owing speafic fitnessvalues for a deceptive function,
Deceptive Function 1 |f(000) = 28 f(001) = 26
f(010) = 22 f(100) = 14
f(110) = 0 f(011) = 0
f(101) = O f(111) = 30
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e Our basic motivation will t herefore be to,
o Provide aframework for buil ding problems with deceptive properties;
0 As®ssGA performanceon such problems.

Definitions
* Hyperplanes — geometric interpretation d schema

o For 3D space
=  Points - schemaof order 3 (or order N in an N dimensional space;
= Lines - schemaof order 2;
» Planes - schemaof order 1.
= In N dimensiona case, ‘hyperplanes of varying order result (points, lines
and pdanes are dl spedal casesof hyperplanes).
= Schema and hyperplane can therefore be used interchangeably.
» Building Blocks
0 Spedal caseof an above average fitness ghemawhich have low order and
defining length;
* Primary hyperplane (schema) competition (of order n)
0 Theset of 2" schema cmpetiti ons of order n involve the schema with n bit values
in the same location.
o E.g. **0*0, **0*1, **1*0, **1*1 arethe schemain a competition o order 2
primary hyperplanes.
0 Global winner of an order n Primary hyperplane competitionis that schema with
the highest fitnessamong the 2" schema.
= Noimplicaionthat such awinning schemaleals to the globally optimal
solution.
* Hyperplane mntainment
0 SchemaX(s,) contains shema (s)) iff o(s)) > o(s,)
0 Concept leadsto ahierarchy of primary hyperplane competitions where alower

order schemamay contain a cmpetition o a higher order schema.
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Deceotion
0 Lower order competitions provide hyperplane competition winnersthat do nd
correspondto the bit values of the global winner at order n.

Deceptive Problem
0 There ist low order hyperplane cmmpetiti ons that have the potential to lead the

genetic seach processaway from the hyperplane cmpetition at order n.

Fully Deceotive Problem (or subproblem) of order n
o All lower order hyperplanes lead towards the same hyperplane of order n, whichis
not aglobal winner.

= Such ahyperplane is a deceptive attractor.

=  Will seelater that such an attrador corresponds to a schemawith a bit
pattern the complement of the a¢ual global winner of a hyperplane
competition at order n.

= E.g. for an arder-3 competition in which the global winner is**1*1**, the
deceptive atrador is**0*0**.

Consistently Deceptive Problem (or subproblem) of order n
0 Only the order 1 hyperplanes result in adeceptive dtrador, where this may eff ect
our ability to determine the global solution at order n.
o Naturally, afully deceptive problem is always Consistently Deceptive, but nat

necessarily the reverse.

Deceotive Function
0 A consistently deceptive problem in which the number of bits encoding the
solution spaceis aso the order of the deceotion.

0 A deceptive function hes the potential to be fully deceptive.

Deceotive Building Block of order n
0 A schema, H, has afitnesshigher than its' competitors, bu all |ower order schema
at the same locaions as H are misleading.

0 Resultsinthe genetic search being lead away from the fit schemaH.
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Only Challenging Problems are Deceptive
e Theorem [1]:
o “Given afitnessfunctionfor a problem representing some optimization task with a

binary encoding of length L,

1) no deception acaursin any of the hyperplanes associated with that particular
binary encoding and
2) thewinnersof the L order-1 hyperplanes can be corredly determined,
then
the global optimum of the functionis determined by the one string contained in
theintersedion d the L order-1 hyperplane competitionwinners.”
*  What doesthis mean?
* A deceptive problem will always produce d least two primary hyperplane competitions (asin
two dfferent k-arm bandit problems) whose solutions are different bit patterns.
0 The Schema Theorem predicts an exporential increase in the number of
reproductive trials provided to a schemawinner.
0 Such awinner, by definition canna identify the solutionto bah hyperplane
competitions.
o Implication
0 Itisnot possble, or desirable, to solve dl hyperplane competiti ons corredly.
o Solong asthe majority of the hyperplane competitions resolve in favor of the
ided objedive, thereis agoodchancethat the required solutionwill be found.

Construction of fully deceptive functions
» Algorithm for constructing full y deceptive functions of order > 2 on bnary gray coded

representation;
Sort binary strings in terms of relative distancein a Hamming Space
Number strings 1 to N;

0
0

o String #1listhe globa optimum;

o String #N isthe deceptive dtrador;
0

Let string #2 take the fitnessvalue ‘B’;
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o Fori=3toN
»  Fy(String(#)) = Fy(String(# — 1)) + C;
0 Fqy(String(#1)) = Fy(String(#N)) + C;
* Notes
0 Thesort operation d step 1 povides aBinomia distribution d 1'sand Os.
0 Fqy(Jisthe ‘deceptive’ function;

» Example Fully Deceptive Function

0 Order-4 fully deceotive functionwithB =0; C = 2.
Deceptive Function 2
f(1111) = 30 f(0100) = 22 f(0110) = 14 f(1110) = 6
f (0000) = 28 f (1000) = 20 f(1001) = 12 f(1101) = 4
f (0001) = 26 f(0011) = 18 f(1010) = 10 f(1011) = 2
f (0010) = 24 f(0101) = 16 f(1100) = 8 f(0111) = O
* Notes

0 Thedeceptive atrador, sy = 000,isalocd optimum in the Hamming space
o0 Deceptivefunctions 1 and 2are both fully deceptive;
= Thedecetive dtrador hasabasin of attradion, which spans the entire
(Hamming) space other than the paint of the single isolated global

optimum.

Deceptive Attractor Theorem
» Thefollowing theorems will all be static,

0 They are based puely on olservations regarding the relationship between binary
strings and hyperplanes in an N-dimensional hypercube.
o Moddlingthe GA asadynamica system may not result in the same @nclusions.
*  Currently observed that,
o IF
= theproblem isfully deceptive
o THEN
= Thedecetive dtrador isthe complement of the required global optimum;
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= Theorder N information which would have leal to the global optimum
now leads to the deceptive dtrador.

 Theorem2[1]:

o

« Note,

o Consider,

Decepti ve

“In arder for afunction a building block of order nto be mnsistently deceptivein
al relevant lower-order hyperplanes, the deceptive dtrador must be the
complement of the string which represents the global optimum in the deceptive
function, a in the cae of adeceptive buil ding block, the deceptive dtrador must
be the complement of the schema representing the “global winner” of the relevant
primary hyperplane cmpetition at order n that is superior to all of its
competitors.”

This theorem says nathing about the value of the deceptive dtrador in adeceptive
function.

Thus, does adeceptive dtrador have to have a'high’ fithessvalue?

Or, does adeceotive atrador in afully deceptive function have to represent a

locd optimum in Hamming space?

Function 3

f(1111) =

30 f (0100)

27 f(0110)

1
ol

f(1110)

1
o

f (0000) =
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1
ol

f(1101)

1
o

f(0001) =

25 f (0011)

1
ol
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1
ol
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1
o

f(0010) =
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1
(62

f (1100)

1
ol
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1
o

« Notes
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The deceptive atrador, sq = 0000, a@fines abasin which isfully deceptive, bu the
fitnessisonly 1/3 o the global optimum.

The deceptive dtrador isweder than its neighbars and therefore caana be alocd
optimum in Hamming space

Such adeceptive dtrador needsto be surrounced by strong neighbars however in
order to hide the we&k fitnessof the dtrador.
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e Theorem 3[1]:

0 “A deceptive atrador of order-n for abinary encoded problem canna maintain
full deception at order-niif it iswedker than any string or schemawhich dffers
from the deceptive datrador by exadly two hbits.”

« That is, the single deceptive dtrador is replaced by more than ore dtrador, which will then
bre& the control of the dtradive basin and pdentially reducethe dfedivenessof the
deceotion (with resped to the optimal hyperplane).

Remapping Strategies
* Remapping isthe processby which the representation scheme is completely (e.g. binary to

gray coding) or partially changed.

e Only problem hereisthat a priori knowledge is necessary to identify whether the problem
requires remapping.

* Knowledge of the exad locaion d any deceptive dtrador is as difficult to ascertain asthe

global optima.

Deception and Linkage
» Decetionis much more difficult to deted when the degreeof linkage between deceptive

building blocks is we&.
0 We& linkage — deceptive bits or buil ding blocks are widely distributed acoss
the length of the bit string.
o0 Schematheorem alrealy indicaes that those schemas, which are mncise and have
above average fitness will be reproduced with exporential rates of reproduction.
= By distributing the deceptive buil ding blocks, multi ple instances of

diff erent deceptive schemawill seereproduction.

Deceptive test problem generator
e 30 [t function

0 Composed from 10 copies of afully deceptive order 3 hit (sub)function.
0 Ead subfunctionisuniformally and maximally distributed acossthe length,
= Say the subfunction hesabit at positioni, i + 10andi + 20.
e 40 [t function
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o0 Composed from 10 copies of afully deceptive order 4 hit (sub)function.
0 Ead subfunctionisuniformally and maximally distributed acossthe length,
= Say the subfunction hes abit a positioni, i + 10,i + 20andi + 30.
*  Crosover,
0 4 casesconsidered (tested individually)
= 1-point crosover
= Uniform crossover
= Bit tagging
» Separate tag bit used to denate order — crosover employs ONE
parent to define the ordering.
e 1-point crosover isthen applied
» providesfor the basisfor the evolution d bit order.
= Distributed GA
* Multi-popuation model,
0 Ead popuation evolves independently;
0 Migration ketween popuations permitted.
* Experimental Results

Problem Crossover Pop. Size Solved Evaluations
Order-3 1-point 200 27% 10,000
Uniform 27%
Tagged 53%
1-point 2,000 38% 50,000
Uniform 35%
Tagged 64%
Parall el 55%
Order-4 1-point 200 7% 10,000
Uniform 3%
Tagged 16%
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Conclusions
» Tagged hitsappea to provide auseful methodfor addressng the linkage problem

0 Let the GA evolve the relevant bit sequencing;
o Other reseachers have questioned its usefulnessas the size of the search spaceis
significantly increased.
 “Messy GAS’ not evaluated, and might also provide amore robust scheme for deding with
deceptive problems,
* Multi-popuation results may also cary over to niche based methods (e.g. crowding) in

which the popuationis able to foll ow multi ple optima @ncurrently.

Reference:
* Whitley L.D., “Fundamental Principles of Deceptionin Genetic Search,” Foundcitions of

Genetic Algorithms, Volume 1, Rowlins G.J.E. (ed). Morgan Kaufmann, ISBN 1-55860170
8.1991, pp 22P41.

Additional Reading
» Grefenstette J.J., “Deception Considered Harmful,” Founditions of Genetic Algorithms,

Volume 2, Whitley L.D. (ed). Morgan Kaufmann, ISBN 1-55860263-1. 1993, pp 7®1.

» Forest S, Mitchell M., “Relative Building-Block Fitnessand the Building Block
Hypothesis,” Foundhtions of Genetic Algorithms, Volume 3, Whitley L.D. andVose M.D.
(ed). Morgan Kaufmann, ISBN 1-55860356-5. 1995, pp 104.26.

 HornJ., Goldberg D.E., “Genetic Algorithm Difficulty and the Modality of Fitness
Landscapes,” Foundhtions of Genetic Algorithms, Volume 3, Whitley L.D. andVose M.D.
(ed). Morgan Kaufmann, ISBN 1-55860356-5. 1995, pp 24269.

Malcolm I. Heywood o}



