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GWAS � Improved Health?

• Use of genetic information regarding common 

disease to individualize providers’ approach to 

patients and change patients’ behaviors in 

ways that lead to improved health 

(“Personalized Medicine”).

• Use of genetic information regarding common 

disease to understand the biology of human 

disease to lead to improved diagnostic, 

therapeutic, and preventive approaches.
©2010 Sami Khuri
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Personalized medicine is the use of diagnostic 
and screening methods to better manage the 
individual patient’s disease or predisposition 
toward a disease.

Personalized medicine will enable risk 
assessment, diagnosis, prevention, and therapy 
specifically tailored to the unique 
characteristics of the individual, thus enhancing 
the quality of life and public health.

Personalized Medicine is Genotype-Specific 
Treatment.

Personalized Medicine

©2010 Sami Khuri

Variation in Medication Responsiveness

• Many human medications are not administered 

in their final and active form.

• The drugs are metabolized in a predictable 

way, and the enzymatic product is the 

therapeutic compound.

• People fall into one of 3 classifications:

– Typical metabolizers

– Poor metabolizers

– Ultra-rapid metabolizers
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Drug Studies and Dosages

• Drug studies are performed on large panels of 

people to determine the optimum dosage for 

the “average” person.

• However, any one person may not have the 

average metabolism, so the ideal dosage for 

him or her may not be the average dosage.

• When drugs are administered to different 

populations, it is important to determine a 

population-specific recommended dosage.

©2010 Sami Khuri

Cytochrome P450

• Cytochrome P450 is a family of enzymes 

(isozymes) that metabolize a large number 

of “pre-drugs”.

• It is encoded by 2 separate genes: 

– 2D6: it has 9 exons and 8 introns, and is on 

chromosome 22

– 2C19: it has 9 exons and 8 introns, and is on 

chromosome 10.
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Cytochrome P450 2D6 (I)

• Twelve SNPs have been identified that lead 

to altered 2D6 protein activity.

– The most common mutation is a G � A 

substitution within exon 4 that alters splicing in 

mRNA formation and results in no protein being 

produced. 

• Over 40 pre-drugs require 2D6 protein 

activation, including heart medication, 

antidepressants, and painkillers.

©2010 Sami Khuri

Cytochrome P450 2D6 (II)

• Cytochrome P450 2D6 is involved in 

metabolizing painkilling medication such as 

codeine.

• 2-10% of the population are homozygous for 

null alleles and cannot use codeine for pain 

relief. 

• It has been hypothesized that cytorochome 

P450 2D6 poor metabolizers are less tolerant 

of pain.
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Cytochrome P450 2C19 (I)

• CYP2C19 (cytochrome P450 2C19) acts on   
5-10% of drugs in current clinical use. 

• About:
– 2-6% of individuals of European origin 

(Caucasians), 

– 15-20% of Japanese, and 

– 10-20% of Africans 

have a slow acting, poor metabolizer form of 
this enzyme.

www.healthanddna.com/healthcare-professional
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Cytochrome P450 2C19 (II)

• Cytochrome P450 2C19 (CYP2C19) is an isoenzyme 

of the cytochrome P450 super family and is 

responsible for the biotransformation (metabolism) 

and elimination of many commonly prescribed drugs 

including: anticonvulsants, antidepressants, cancer 

chemotherapy, antimalaria, antiulcer, and several 

proton pump inhibitors. 

• Pharmacogenetic variation leads to inappropriate 

concentrations of drugs and drug metabolites, which 

may contribute to toxicity and risk of adverse drug 

reactions, or lack of therapeutic benefit.
www.aruplab.com/TestDirectory
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Food and Drug Interactions
• Grapefruit juice can alter the ability of 

absorbing drugs.

• Pills we take pass through the stomach and 
dissolve in the small intestine, where the 
medication is absorbed.

• P-glycoprotein is a protein involved in pumping 
the drug we take into intestinal cells.

• Cytochrome P450 3A is a metabolizer which 
converts the drug into a more readily excreted 
form. 

©2010 Sami Khuri

Blocking P-Glycoprotein & P450 A3

• One glass of grapefruit juice can block             

P-glycoprotein and cytochrome P450 3A for as 

long as 24 hours.

• Cytochrome P450 3A is inactivated by an 

unknown component of grapefruit juice, causing 

the enzyme to be destroyed.

• There is very little research in the area of 

genomic interactions with drugs and food, even 

though they affect human health. 
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Pharmacogenomics

• Pharmacogenomics deals with the influence of genetic 
variation on drug response in patients by correlating 
gene expression or SNPs with a drug's efficacy or 
toxicity. 

• Pharmacogenomics aims to optimize drug therapy, 
with respect to the patients' genotype, to ensure 
maximum efficacy with minimal adverse effects. 

• Such approaches promise the advent of “personalized 
medicine” in which drugs and drug combinations are 
optimized for each individual's unique genetic makeup.

www.wikipedia.com
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From Population 

to Subpopulation
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W. Evans and M. Relling

• Evans and Relling considered the efficacy and 

toxicity of a drug that requires two genes:

– An activator with 2 alleles, and 

– A binding site with 2 alleles.

• There are 9 possible genotypes.

• Therapeutic effects depend on the genotype of 

the drug receptors in combination with the 

amount of active drug in circulation. 

©2010 Sami Khuri
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Therapeutic Effects of Drugs

• Therapeutic effects depend on the genotype of 
drug receptors in combination with the amount 
of active drug in circulation.

• The example highlights the complex web of 
protein interactions that pharmacogenomics 
hopes to decipher.

• Drug response is polygenic, and new 
technologies are needed to understand the 
connections between relevant proteins 
involved in drug responses.

©2010 Sami Khuri

Clinically Relevant SNPs

• Traditionally, drug development has been 

aimed at delivering medications that are 

effective and safe for everyone.

– But enzyme polymorphism can have clinically 

significant consequences.

• Pharmaceutical companies are spending a lot 

of money to discover clinically relevant SNPs 

in order to produce SNP haplotype-specific 

medications.
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Genotype-Specific Medication

• If genotype-specific medication becomes 

viable, when a person is diagnosed with an 

illness, the physician will need to know the 

genotype of the person to determine the 

appropriate medication and dosage for optimal 

therapy.

• Pharmacagenomics is not as futuristic as it 

may sound as we see in the Iressa case.

©2010 Sami Khuri

Non-Small-Cell Lung Cancer

• Every year 140,000 patients are diagnosed 

with non-small-cell lung cancer, which is 

nearly always fatal.

• During clinical trials of Iressa, about 10% of 

patients were completely cured, but all others 

died.

• A mutation in the epidermal growth factor 

receptor (EGFR) gene determines if Iressa will 

cure or not.
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Iressa: To Cure or Not to Cure

Three CAT scans of a person who is cured by taking Iressa:

The right lung is hazy with invasive non-small-cell lung cancer.

Within 3 months, the cancerous lung is clearing. 

Two years later, the cancer is gone.

©2010 Sami Khuri©2010 Sami Khuri

Some Diseases Involve Many Genes
• There are a number of classic “genetic diseases” caused 

by mutations of a single gene 

– Huntington’s, Cystic Fibrosis, Tay-Sachs, PKU, etc.

• There are also many diseases that are the result of the 

interactions of many genes:

– asthma, heart disease, cancer

• Each of these genes may be considered to be a risk 

factor for the disease.

• Groups of genetic markers (SNPs) may be associated 

with  a disease without determining a mechanism.
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SNPs as Biomarkers
• A lot of effort has been focused on discovering 

SNPs that are in the proximity of genes.

• The hope is that identifying such SNPs will 

lead to the diagnosis and treatment of more 

diseases more effectively.

• However, this task is rendered more 

problematic by the realization that drug 

effectiveness is hampered by genomic 

variations.

©2010 Sami Khuri©2010 Sami Khuri

Biomarkers and Human Disease

• Improve clinical trial design

• Identify disease subsets 

• Guide disease selection for new therapies
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Prostate Cancer Diagnosis

cancercontrol.cancer.gov/od/phg/presentations/Xu.pdf

©2010 Sami Khuri©2010 Sami Khuri

GWAS and Prostate Cancer 

cancercontrol.cancer.gov/od/phg/presentations/Xu.pdf
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23andme.com
decodeme.com
navigenics.com

Genetic Testing for the Public

©2010 Sami Khuri©2010 Sami Khuri

Direct-to-Consumer Disease Risk

• More than 1,000 DNA variants associated with diseases and traits 
have been identified. 

• Direct-to-consumer (DTC) companies are harnessing these 
discoveries by offering DNA tests that provide insights

“An agenda for personalized medicine” by P. Ng et al., Nature, October 2009
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Pharmaceutical Companies

• Most of the major pharmaceutical companies 
are currently collecting pharmacogenomic data 
in their clinical trials.

• Data is yet to be published.

• Genetic indications for drug use are still a 
couple of years away.

• Plan to sell the drug with the gene test

©2010 Sami Khuri©2010 Sami Khuri

Genotyping Costs

GWAS Bioinformatics by Kevin Jacobs
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Origins of African Americans 

Source: Esteban González Burchard
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Ancestry Informative Marker

• An Ancestry-Informative Marker (AIM) is 
a set of polymorphisms for a locus which 
exhibits substantially different frequencies 
between populations from different 
geographical regions.

• By using a number of AIMs one can estimate 
the geographical origins of the ancestors of an 
individual and ascertain what proportion of 
ancestry is derived from each geographical 
region. 

en.wikipedia.org/wiki/
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SNPs and AIMs

Source: Esteban González Burchard
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Origins of Latinos and African Amer.

African AmericansSource: Esteban González Burchard
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Self-Identified Race: Genetic Ancestry

©2010 Sami Khuri

Retroviruses

� Intracellular Parasites

� gag, pol, & env genes

� HIV-1

� Immune System

� Macrophage

� T-Cells

� AIDS

©2010 Sami Khuri
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What is a Virus?

Viruses: Small living particles that can infect 

cells and change how the cells function. 

Infection with a virus can cause a person to 

develop symptoms. 

The disease and symptoms that are caused 

depend on the type of virus and the type of 

cells that are infected.

www.medterms.com

©2010 Sami Khuri
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Ancient Egypt and Viruses

©2010 Sami Khuri
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HIV Case Study

• Why have promising AIDS treatments, like 

drug azidothymidine (AZT) proven ineffective 

in the long run?

• Why does HIV kill people?

• Why are some people resistant to becoming 

infected or to progressing to disease once they 

are infected?

• Where did HIV come from?

©2010 Sami Khuri

Retrovirus

• A retrovirus is a single-stranded RNA virus 

that employs a double-stranded DNA 

(dsDNA) intermediate for replication.

• The RNA is copied into DNA by the enzyme 

reverse transcriptase.

• The dsDNA is integrated into the host 

chromosomes, from which it is transcribed 

to produce the viral genome and proteins 

that form new viral particles.

©2010 Sami Khuri



4.23

Aalto University, Summer 2010

Computational Methods in Genomics: Part Four

©2010 Sami Khuri

©2010 Sami Khuri©2010 Sami Khuri

©2010 Sami Khuri

HIV

• The human immunodeficiency virus 
(HIV) is the virus that causes acquired 
immune deficiency syndrome (AIDS).

• HIVmoves from person to person 
when a bodily fluid containing the 
virus, usually blood or semen, carries 
the virus from an infected person 
directly onto a mucous membrane or 
into the bloodstream of an uninfected 
person.
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What is HIV?

• Like all viruses, HIV is an intracellular 

parasite. 

• It is incapable of an independent life and is 

highly specific in the cell types it afflicts.

• HIV parasitizes components of the human 

immune system: macrophages and T cells.

• HIV uses the enzymatic machinery and 

energy found in these cells to make copies 

of itself, killing the host cells in the process.

http://www.niaid.nih.gov/factsheets/howhiv.htm

©2010 Sami Khuri

Macrophages and T Cells

• Macrophage - a large immune system cell that 
devours invading pathogens and other intruders. 
Stimulates other immune system cells by 
presenting them with small pieces of the 
invaders.

• CD4+ T cells - white blood cells that orchestrate 
the immune response, signaling other cells in the 
immune system to perform their special 
functions. Also known as T helper cells, these 
cells are killed or disabled during HIV infection.
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HIV is a Lentivirus

• HIV is a retrovirus that belongs to the class of 

lentiviruses:

– Lentiviruses are slow viruses. The course of infection with 

these viruses is characterized by a long interval between 

initial infection and the onset of serious symptoms.

• Other lentiviruses infect nonhuman species. 

– Example

• Feline immunodeficiency virus (FIV) infects cats

• Simian immunodeficiency virus (SIV) infects monkeys 

and other nonhuman primates.

©2010 Sami Khuri
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How Does HIV Cause AIDS?

• The human body responds to HIV infection 

by destroying virions floating in the 

bloodstream and by killing its own infected 

cells before new virions are assembled and 

released.

• Ultimately, the supply of CD4 helper T cells 

depletes and the immune system collapses.
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Disease Progression

©2010 Sami Khuri
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Difficulty of HIV Treatment

• HIV uses the host cell’s own 
enzymatic machinery: 

– its polymerase

– its ribosome

– its tRNAs

• Drugs that interrupt the life cycle of 
the virus are almost certain to 
interfere with the host’s cell enzymatic 
as well and thus causing serious side 
effects.
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Inhibit protease

Inhibit integrase

Inhibit RT

Potential Drugs
Inhibit fusion

©2010 Sami Khuri

Azidothymidine (AZT) Blocks 

Reverse Transcriptase
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Azidothymidine Results

• AZT worked in early tests:
– Effectively halted the loss of macrophages and 

T cells in AIDS patients.

• AZT can cause serious side effects because 
it sometimes fools DNA polymerase and 
interrupts DNA synthesis in host cells.

• After a few years of use, patients stop 
responding to treatment.

©2010 Sami Khuri

AZT Resistance
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Mutations in Reverse Transcriptase

©2010 Sami Khuri

Some People are Resistant to HIV

• In the early 1990s, work from several 
laboratories demonstrated that some people 
remain uninfected even after repeated 
exposure to the virus and some people who 
are infected with the virus survive many 
years longer than expected.

• Resistant individuals have unusual forms of 
the coreceptor molecules and these mutant 
proteins thwart HIV entry.
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Human CC-CKR-5

• CC-CKR-5 gene is located on chromosome 3

• CC-CKR-5 gene encodes a protein called C-C 
chemokine receptor-5, abbreviated CCR5
– CCR5 is a cell surface protein found on white blood cells.

– The CCR5 function is to bind chemokines, which are 
molecules released as signals by other immune system 
cells.

• When a white blood cell is simulated by chemokines binding to 
its receptors, the cell moves into inflamed tissues to help fight an 
infection.

– CCR5 is also exploited as a coreceptor by most sexually 
transmitted strains of HIV-1

©2010 Sami Khuri

CCR5 Function in HIV-1 Infection

HIV entry into the cell 

requires binding to a 

CD4 molecule and, in 

the majority of cases, 

to a coreceptor, either 

chemokine coreceptor 

4 (CXCR4) or 5 

(CCR5). 

CD4

coreceptor
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Rong Liu et al.

• A CKR-5 allele present in the human population 
appears to protect homozygous individuals from 
sexual transmission of HIV-1 strain R5.

• These individuals appear to have inherited a 
defective CKR-5 allele that contains an internal 32 
base pair deletion. 

• The deletion occurs within the coding region and 
results in a frame shift.

• The encoded protein is severely truncated and 
cannot be detected at the cell surface. 

©2010 Sami Khuri

Determining CCR5 Genotypes

• Functional allele is CCR5+, or just +

• The allele with 32-bp deletion is CCR5-∆32, or 
just ∆32

• Individuals with +/+ genotype are susceptible to 
HIV-1

• Individuals with +/∆32 genotype are susceptible, 
but may progress to AIDS more slowly

• Individuals with ∆32/∆32 genotype are resistant to 
HIV-1 R5
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Genotyping Individuals

• DNA gel electrophoresis of 

the pattern resulting from 

PCR amplification and 

EcoRI cleavage.

• A 735-bp PCR product is 

cleaved into a common 

band of 332 for both alleles 

and into 403-bp and 371-bp 

bands for the + allele and 

∆32 alleles, respectively.

©2010 Sami Khuri

Amino acids as the result of 

32bp deletion

10bp repeat
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Genotyping Individuals

• Samson et al. took DNA samples from a 

large number of individuals from different 

parts of the world, examined the gene for 

CCR5 in each individual and calculated the 

frequency of the normal and ∆32 alleles in 

each population.

©2010 Sami Khuri

Calculating Allele Frequencies

• For example, to calculate the frequency of the ∆32 
allele in the Ashkenazi population in Europe from 
Martinson et al. (1997):

• 43 individuals were tested:
– 26 were homozygous for + allele

– 1 was homozygous for ∆32 allele

– 16 were heterozygous

• Genotype frequencies are:

+/+: 26/43 = 0.605

+/∆32: 16/43 = 0.372

∆32/∆32: 1/43 = 0.023
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Calculating Allele Frequencies

• Genotype frequencies are:

+/+: 26/43 = 0.605

+/∆32: 16/43 = 0.372

∆32/∆32: 1/43   = 0.023

• The frequency of the ∆32 allele is the 

frequency of ∆32/∆32 plus half the frequency 

of +/ ∆32:

0.023 + ½ * 0.372 = 0.209 

©2010 Sami Khuri

CCR5-∆32 Allele Distribution

• Gene frequency of about 10% was observed 
for CCR5-∆32 in populations of European 
descent.

• As we move away from northern Europe, both 
to the east and to the south, the frequency of 
the ∆32 allele declines.

• Outside of Europe, Middle East, and western 
Asia, the ∆32 allele is virtually absent.
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www.hivgene.com
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Why Two Forms of CCR5?

• Why would one form of a gene be relatively 

common in one population, but absent in 

others?

• Two possible explanations:

– The CCR5-∆32 allele may have been recently 

favored by natural selection in European 

populations; or

– The allele could have risen to high frequency by 

chance, in a process called genetic drift.

©2010 Sami Khuri

Natural Selection Hypothesis

• The ∆32 allele confers protection against a 

pathogen other than HIV, such as bubonic 

plague or smallpox.

• The ∆32 allele would have risen to high 

frequency because of the survival advantage it 

offered during devastating epidemics that 

swept Europe during the past millennium.
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Genetic Drift Hypothesis

• The ∆32 allele first appeared and achieved 

a high frequency among the Vikings and 

then was disseminated across Europe 

during the Vikings raids of the 8th, 9th, and 

10th centuries.

©2010 Sami Khuri

• Molecular biologists are trying to design drugs that 
mimic the effect of the resistance alleles.

• One approach is to find small molecules that bind to 
the CCR5 protein on the surface of host cells and 
block HIV’s attempt to use the protein as coreceptor:
– Maraviroc is the first CCR5 coreceptor antagonist to 

receive marketing approval from the Food and Drug 
Administration (FDA) for the treatment of CCR5-tropic 
human immunodeficiency virus (HIV) infection as part of 
an optimized antiretroviral regimen in treatment-
experienced patients. 

Coreceptor Antagonists
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Next Generation 

Sequencing Techniques

� Roche 454

� Illumina Solexa

� AB SOLiD

� Emulsion 

� Pyrosequencing

� Paired Reads

� Transcriptome

©2010 Sami Khuri
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Next Generation Sequencing Tech.

Stephan Shuster 2008
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Bioinformatics and NGS

Bioinformatics approaches for genomics and post genomics applications of next-

generation sequencing by Horner et al., 2009

©2010 Sami Khuri

Current Trends
• Next generation sequencing (NGS) techniques have 

been proposed:
– high-throughput sequencing

– massively parallel sequencing

– flow-cell sequencing

• Sequencing devices are commercially available from:
– Roche (formerly: 454)

– Illumina (formerly: Solexa) of San Diego, CA: 
“GenomeAnalyzer”

– Applied Biosystems (ABI) of Carlsbad, CA: “SOLiD
system”

– Helicos of Cambridge, MA: “Helicoscope”
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Roche 454

• Presented in 2005

• emulsion PCR

• pyrosequencing (polymerase-based)

• read length: 250 bp

• paired read separation: 3 kb

• 300 Mb per day

• $60 per Mb

• error rate: around 5% per bp

• dominant type of error: indels

©2010 Sami Khuri

Illumina

• Second on the market

• bridge PCR

• polymerase-based sequencing-by-synthesis

• 32-40 bp (newest models: up to 100 bp)

• paired read separation: 200 bp

• 400 Mb per day (getting better)

• $2 per Mb

• error rate: 1% per bp (good reads: 0.1%)

• dominant error type: substitutions
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Applied Biosystems SOLiD

• Since late 2007

• emulsion PCR

• ligase-based sequencing

• read length: 50bp

• paired read separation: 3 kb

• 600 Mb per day

• $1 per Mb

• very low error rate: <0.1% per bp (still high compared to 
Sanger capillary sequencing: 0.001%)

• dominant error type: substitutions (due to color shift)
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Helicos (“Helicoscope”)

• On the market since a 2007

• no amplification

• single-molecule polymerase-based sequencing

• read length: 25-45 bp

• 1200 Mb per day

• $1 per Mb

• error rate: <1% (manufacturer claim)
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Polonator

• On the market since less than a year

• emulsion PCR

• ligase-base sequencing

• very short read-length: 13 bp

• but: low-cost instrument ($150,000)

• <$1 per Mb
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Nextgen vs. Sanger Sequencing

• Two main differences between next generation and  

Sanger capillary sequencing:

– The library is not constructed by cloning, but by a novel 

way of doing PCR, where the fragments are separated by 

physico-chemical means (emulsion PCR or bridge PCR).

• Many fragments are sequenced in parallel in a flow 

cell (as opposed to a capillary), observed by a 

microscope with Charge Coupled Device (CCD) 

camera.
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Uses for Nextgen Sequencing
• De-novo sequencing and assembly of small genomes

• Transcriptome analysis (RNA-Seq, sRNA-Seq, ...)
– Identifying transcribed regions

– Expression profiling

• Resequencing to find genetic polymorphisms:
– SNPs, micro-indels

– CNVs

• ChIP-Seq, nucleosome positions, etc.

• DNA methylation studies (after bisulfite treatment)

• Environmental sampling (metagenomics)
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RNA-Seq and ChIP-Seq

• RNA-Seq:
– processed mRNA is converted to cDNA and sequenced, 

– is enabling the identification of previously unknown genes and 
alternative splice variants

• ChIP-Seq:
– sequences immunoprecipitated DNA fragments bound to proteins, 

– is revealing networks of interactions between transcription factors and 
DNA regulatory elements

• The whole-genome sequencing of tumor cells is 
uncovering previously unidentified cancer-initiating 
mutations
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Paired-end Sequencing

• The two ends of the fragments get different 

adapters.

• Hence, one can sequence from one end with 

one primer, then repeat to get the other end 

with the other primer.

• This yields “pairs” of reads, separated by a 

known distance (200bp for Illumina).
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Uses of Paired-end Sequencing

• Paired-end sequencing is useful:

– to find micro-indels

– to find copy-number variations

– to look for splice variants
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Need for Bioinformatics

• New generation DNA sequencers provide billions of 
bases rapidly and inexpensively:
– Illumina/Solexa: 75-75bp read pairs, 100 million in a run

– ABI/SOLiD: similar in scale (50-50bp)

– Roche/454: ~300-500bp reads, 100Mbp a run

• New algorithms are required for:
– Alignment (read mapping) 

– Assembly

– Statistical tests

– Visualization
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‘Mapping’ the Reads

• In contrast to whole-genome assembly, in which 
these reads are assembled together to reconstruct a 
previously unknown genome, many of the next-
generation sequencing projects begin with a known, 
or so-called ‘reference’, genome.

• To make sense of the reads, their positions within the 
reference sequence must be determined. 
– This process is known as aligning or ‘mapping’ the read to 

the reference.
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Read Mapping Problems

• In one version of the mapping problem, short-
read mapping problem, reads must be aligned 
without allowing large gaps in the alignment.

• A more difficult version of the problem, 
spliced-read mapping problem, arises 
primarily in RNA-Seq, in which alignments 
are allowed to have large gaps corresponding 
to introns.
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Challenges of Mapping Short Reads

• Need very efficient algorithms, in which every bit of 
memory is used optimally or near optimally.
– if the reference genome is very large, and if we have 

billions of reads, how quickly can we align the reads to the 
genome?

• DNA sequencers produce millions of reads per run.

• Complete assays may involve many runs.

– The recent cancer genome sequencing project by Ley et al. 
generated nearly 8 billion reads from 132 sequencing runs.

• A large, expensive computer grid might map the reads from this 
experiment in a few days.
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Mapping Efficiency

BAC dataset: 3 415 291 reads; Lin, H. et al., 2008
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Repeat Challenges

• Need a strategy for resolving repeats. 
– if a read comes from a repetitive element in the reference, a 

program must pick which copy of the repeat the read 
belongs to.

• The program must report multiple possible locations for each read 
or to pick a location heuristically.

– Sequencing errors or variations between the sequenced 
chromosomes and the reference genome exacerbate this 
problem:

• the alignment between the read and its true source in the genome 
may actually have more differences than the alignment between the 
read and some other copy of the repeat.



4.50

Aalto University, Summer 2010

Computational Methods in Genomics: Part Four

©2010 Sami Khuri

©2010 Sami Khuri

Additional Challenges

• Read errors:

– dominant cause for mismatches in the alignment

– detection of substitutions?

– Importance of the base-call quality (“phred 

scores”)

• Unknown reference genome

– “de-novo” assembly
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Short Read Mappers

• In the last few years, many tools for short-read 

alignments have been published:

Trapnell, C. & Salzberg, S.L., 2009
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Indexing is the Key Strategy

• Short read mappers use a computational 

strategy known as ‘indexing’ to speed up their 

mapping algorithms. 

• An index of a large DNA sequence allows one 

to rapidly find shorter sequences embedded 

within it.
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Maq

• Maq is based on a straightforward but effective 
strategy called spaced seed indexing.

• Each read is divided into four segments of equal 
length, called the ‘seeds’. 
– If the entire read aligns perfectly to the reference genome, 

then clearly all of the seeds will also align perfectly.

– If there is one mismatch, however, perhaps due to a single-
nucleotide polymorphism (SNP), then it must fall within 
one of the four seeds, but the other three will still match 
perfectly.

– Two mismatches will fall in at most two seeds, leaving the 
other two to match perfectly.
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Aligning Seed Pairs in Maq

• By aligning all possible pairs of seeds (six possible 
pairs) against the reference, it is possible to determine 
the list of candidate locations within the reference, 
where the full read may map, allowing at most two 
mismatches.

• The resulting set of candidate reads is typically small 
enough that the rest of the read—that is, the other two 
seeds that might contain the mismatches—may be 
individually checked against the reference.
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Differences Between Tools

• Alignment tools differ in:
– Speed

– suitability for use on compute clusters

– memory requirements

– Accuracy:
• Is a good match always found?

• What is the maximum number of allowed mismatches?

– ease of use

– available down-stream analysis tools
• Are there SNP and indel callers that can deal with the tool's output 

format?

• Is there an R package to read in their output?
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Additional Differences

• Alignment tools also differs in whether they can:

– make use of base-call quality scores

– estimate alignment quality

– work with paired-end data

– report multiple matches

– work with longer than normal reads

– match in color space (for SOLiD systems)

– align data from methylation experiments

– deal with splice junctions
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Short-read Alignment Ideas

• Short-read alignment algorithms use one of 

these ideas:

– use spaced seed indexing

• hash seed words from the reference

• hash seed words from the reads

– sort reference words and reads lexicographically

– use the Burrows-Wheeler transform (BWT)

– use the Aho-Corasick algorithm
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BWT

• The Burrows-Wheeler transform seems to be 

the winning idea:

– very fast

– sufficiently accurate

– used by the newest tools (Bowtie, SOAPv2, 

BWA).
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Review of Alignment Algorithms

• Hashing the reference genome:
– Pros: easy to multi-thread

– Cons: large memory footprint

• Hashing the read sequences
– Pros: flexible memory footprint

– Cons: difficult to multi-thread

• Alignment by merge sort:
– Pros: flexible memory

– Cons: hard for paired reads

• Indexing genome by Burrows-Wheeler Transform
– Pros: fast and relatively small memory footprint

– Cons: not applicable to long reads
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Popular Alignment Tools

• Eland (Solexa)
– supplied by Illumina as part of the Solexa Pipeline

– very fast

– does not make use of quality scores

• Maq (Li et al., Sanger Institute)
– widely used

– interprets quality score and estimates alignment score

– downstream analysis tools (SNP, indel calling)

– can deal with SOLiD colour space data

– being replaced by BWA

• Bowtie (Langmead et al., Univ of Maryland)
– based on Burrows-Wheeler transform

– very fast, good accuracy

– downstream tools available
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Aligning Hashed Reads

• Naive algorithm:

– Make a hash table of the first 28mers of each read, so that 

for each 28mer, we can look up quickly which reads start 

with it.

– Then, go through the genome, base for base. For each 

28mer, look up in the hash table whether reads start with it, 

and if so, add a note of the current genome position to these 

reads.

• Problem: What if there are read errors in the first 28 

base pairs?
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De Novo Assembly

• NGS offers the possibility to sequence 

anything and aligning the reads against 

“reference” genome is straightforward.

• But what if there is no such “reference” 

genome?

– “de novo” assembly
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De Novo Assembly

• Assembly requires specialized software, typically 
based on so-called de-Brujin graphs

• Most popular assembly tool:
– Velvet (Zerbino et al.)

– ABySS (Simpson et al.)

• Solexa reads are too short for de novo assembly of 
large genomes:
– for prokaryotes and simple eukaryotes, reasonably large 

contigs can be assembled.

• Using paired-end reads with very large end separation 
is crucial.
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Paired Read Alignment

• When aligning mate paired-end data, the aligner can 
use the information that mate-paired reads have a 
known separation:
– Try to align the reads individually

– Then, for each aligned read, attempt to align the mate in a 
small window near the first read's position with a more 
sensitive algorithm, e.g., Smith-Waterman to allow for 
gaps.

• Be sure to tell the aligner the minimal and maximal 
separation.
– This allows to find small indels.
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SNP Calling

• NGS is well suited for re-sequencing
– If a base differs from the reference in most reads that are 

aligned to this locus, it is a likely SNP

– If the difference occurs in half of the reads, it is a 
heterozygous SNP.

– If it appears in only a few reads, it could also be a read 
error.

• Calculating a p-value for a SNP call is 
straightforward
– Complication: Include base-call and alignment qualities as 

priors; interdependence of bases causes bias
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SNP Calling Software

• Some aligners com with SNP calling functionality
– Maq

– SOAP

– Bowtie has a converter to Maq's format to allow to use 
Maq's facilities

– For BWA, the SAMtools can be used

• Output is a list of SNPs, if possible with p-values
– Due to large number of alignment software no standard 

modules for SNP calling have been developed.
• SAM (the Sequence/Alignment Map format) may become a 

standard.
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Maq Pipeline
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BWA/SAMTools Pipeline
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Tools for RNA-Seq

• RNA-Seq has additional challenges:
– Reads may straddle splice junctions

– Paralogy between genes prevent unique mappings

– One may want to incorporate or amend known gene models

• Specialized tools for RNA-Seq alignment:
– ERANGE

– TopHat

– G-Mo.R-Se

– edgeR

– BayesSeq
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Writing Own Software

• The “glue” to combine the available tools is 
mostly missing.

• You will have to write your own scripts.

• Often used languages:
– Perl

– Python

– R

– Java

– C/C++
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Using R
• Pros:

– Huge statistical library

– Large bioinformatics library

– Good plotting facilities

– Convenient interactive shell

• Cons:

– Call-by-value semantics not well suited for very large 

amounts of data

– Slow due to lack of bytecode compiler

– Poor string-handling abilities
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Bioconductor NGS Packages

• Biostrings

• BSGenome

• ShortRead

• TileQC

• GenomeGraphs

• HilbertVis

• TileQC

• ChipSeq

• edgeR
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Pathway to Genomic Medicine

Sequencing of

the human 

DNA

Personalized

medicine 

Cure for diseases

Implicating genetic

variants with 

human disease

Interpreting

the human 

genome 

sequence

Human 

Genome 

Project 

ENCODE 

Project 

HapMap 

Project

Genomic

Medicine

In spite of the tremendous progress, WHY are 

we still very far from Personalized Medicine?


