
3.1

Aalto University, Summer 2010

Computational  Methods in Genomics: Part Three

©2010 Sami Khuri

©2010 Sami Khuri©2010 Sami Khuri

Sami Khuri

Department of Computer Science

San José State University

San José, California, USA

khuri@cs.sjsu.edu

www.cs.sjsu.edu/faculty/khuri

Computational Methods in 

Genomics 

PART THREE

©2010 Sami Khuri
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� MDR

� Random Forest

� Filtering Algorithms
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Outline 

The Superior Doctor
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Superior doctors prevent the disease

Mediocre doctors treat the disease before evident

Inferior doctors treat the full blown disease
-Huang Dee: Nai - Ching 

(2600 B.C. 1st Chinese Medical Text)

Preventive Medicine

• Prevent disease from occurring

• Identify the cause of the disease

• Treat the cause of the disease rather than the symptoms

• Genomics identifies the cause of disease

• “All medicine may become pediatrics” Paul Wise

• Effects of environment, accidents, aging, penetrance …

• Health care costs can be greatly reduced if

– invests in preventive medicine

– one targets the cause of disease rather than symptoms
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Pathway to Genomic Medicine
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The Reference Human Sequence

• The reference sequence for the human genome 

should not be viewed as just one long string of 

static characters.

• Instead, it is riddled with variable sites all along 

the sequence.

• Given that the number of people exceeds the 

number of bases in the genome, we can imagine 

that every base in the genome has had its chance 

to be different. [Baxevanis & Ouellette, 2005]
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Genomic Variations
• Collection of genomic variations                              

makes any person a unique human                       

being. It contributes to that person’s:

– Potential to learn

– Predisposition to disease 

– Predisposition to drug addiction 

– Response to pharmaceutical interventions 

• There are variations within, as well                           

as, between populations.

• The variation between individual genomes has 

sparked a biotech boom in the area of SNP discovery.

Variation in Human Genome

• How much variation is there in the human 

genome?

– The biomedical field is interested in disease-

causing variations.

– What is often considered as a “simple” disease has 

complex genomic underpinnings.

• How are genomic variations used to 

determine the causes of complex phenotypes?

• How do genomic variations influence 

effective medical interventions?
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Human Genetic Variation

• Copy Number Variation (CNV)

– A polymorphism in which the number of repeats 

of a DNA sequence at a location varies from 

person to person

• Single Nucleotide Polymorphism (SNP)

– Major differences between human beings

• Other structural variations

– Includes deletions, insertions, duplications, 

inversions, and translocations
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Types of Genomic Variations

GCCCGCCTC

CGGGCGGAG

GCCCACCTCCTC

CGGGTGGAGGAG

GCC  CTC

CGG  GAG

Single Nucleotide Polymorphism (SNP)

Copy Number Variant (CNV)

“Indel” Polymorphism

GCCCACCTC

CGGGTGGAG
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SNPs and Human Variations (I)

• A SNP is a single base-pair 

mutation that occurs at a 

specific site in the DNA 

sequence. 

• SNPs are responsible for over 

80% of the variation between 

two individuals

– ideal for the task of hunting 

for correlations between 

genotype phenotype.
©2010 Sami Khuri

SNPs and Human Variations (II)
To classify a variation as a SNP it should 

occur in at least 1% of the population.
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Single Nucleotide Polymorphism
Single Nucleotide Polymorphisms are single 

bases at a particular locus that are different in 

different individuals.

90% of all human chromosomes

have the following sequence at a 

particular location (i.e., unique 

locus)

But 10% of all alleles have a

slightly different sequence at 

that particular location (i.e., 

unique locus)
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What is a Polymorphism?

• A polymorphism is a difference in DNA 

sequence among individuals.

• Genetic variations occurring in more than 

1%  of a population would be considered 

useful polymorphisms for genetic analysis.

• SNP: position in a genome at which two or 

more different bases occur in the population, 

each with a frequency greater than 1%.
©2010 Sami Khuri

Applications of SNPs (I)

SNPs are useful for several types of 

research

1) SNPs and the study of Evolution

– Example: Different combinations of SNPs of the 

taste receptor gene: Tas2R. 

2) SNPs and Fingerprinting

– Example: Criminals and Parental Verification.

©2010 Sami Khuri

Applications of SNPs (II)

3) SNPs in Biomedical Research

Example: Manufacturing genotype-specific 

medication

Most genes contain at least one SNP, some of 

which might have functional consequences.

SNPs could be used to determine which 

combination of coding alleles is associated with 

a particular disease. 
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Phenylthiocarbamide (PTC) 

To some individuals the chemical compound 

phenylthiocarbamide (PTC) has an intensely bitter taste, 

while to others it is tasteless. It depends on the SNPs that 

are present in the receptor gene Tas2R.
©2010 Sami Khuri

SNPs and Evolution

• SNPs can be used in the study of evolution.

• Scientists tested 6 nonhumans primates and 

found that they were all tasters, in other 

words, they had the PAV form of Tas2R.

• Consequently, humans acquired (evolved) 

the other SNPs: AVI, AAV, AAI and PVI, 

after the split from our nearest relative, the 

chimpanzee.
©2010 Sami Khuri
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Do SNPs Produce 

Common Phenotypes?
• Are there point mutations that lead to diseases?

• Yes. 

– Example: Sickle Cell Anemia.

• Four more cases:

– Skin pigmentation

– Malaria resistance

– Mitochondrial SNPs

– Incorrect mRNA splicing

©2010 Sami Khuri

Case 1: Skin Pigmentation

• We do not understand skin coloration.

• Are there 50 or 500 genes involved in skin 

pigmentation? We do not know.

• Melanin is a polymer of two oxidized 

derivatives of tyrosine: 

– Pheomelanin which appears in red-yellow

– Eumelanin which is less soluble and appears in 

black-brown.

• Mc1R is a gene involved in skin coloration.
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Variable Selective Pressures at Mc1R

• In “Evidence for Variable Selective 

Pressures at Mc1R” by R. Harding et al.

– “It is widely assumed that genes that 

influence variation in skin and hair 

pigmentation are under selection. To date, 

the melanocortin 1 receptor (Mc1R) is the 

only gene identified that explains substantial 

phenotypic variance in human 

pigmentation.”
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Eumelanin and Pheomelanin

• The allele for red hair and the allele for blond hair are 

both found only in Europeans.

• Europeans have more alleles for the Mc1R gene than 

Africans. 

• Africans have only synonymous alleles of Mc1R that 

all code for eumelanin, a pigment that produces dark 

skin and hair.

• Eurasians have many alleles for pheomelanin, a red-

gold pigment that produces light skin and hair colors.
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Africans and Pheomelanin

• Africans lack alleles for pheomelanin because 

light skin and hair are disadvantageous in 

Africa.

– An African who may have acquired them would 

have been less likely to survive and leave progeny.

• There is a surprising correlation between red 

hair and resistance to the anesthetic midazolam

– The clinical investigators did not discern the 

reason behind this drug resistance.
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Case 2: Malaria Resistance
• A SNP in the promoter of the nitric oxide 

synthase (Nos2) gene may help fight malaria.

• In East African children, a mutation of T�C 

in the promoter of Nos2 gave more Nitric 

Acid in the blood

– their chances of developing fatal malaria were 

reduced by about 80%.

• Drugs: Can we regulate levels of Nitric Acid 

through medication?
©2010 Sami Khuri
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Case 3: Mitochondrial SNPs

• Mitochondria produce most of our cell’s ATP.

• Each mitochondrial gene requires the proper 

function of 22 tRNA genes and 2 rRNA genes 

that are also encoded in the mitochondrial 

genome.

• More than 50 different disease-causing 

mitochondrial SNPs have been identified.

– This number will probably increase as we become 

more proficient at detecting SNPs.
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Case 4: Incorrect mRNA Splicing

• Research over the past few years has revealed 

that exons not only specify amino acids, they 

also contain within their sequences cues 

necessary for intron removal. 

• Chief among these are exonic splicing 

enhancer (ESE) motifs--short sequences of 

about three to eight nucleotides that sit near the 

ends of the exons and define the exon for the 

cellular splicing machinery. 
“Price of Silent Mutations”, Scientific American, June 2009
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Exonic Splicing Enhancer Motifs

• The need for exonic splicing enhancer motifs

can in fact explain a preference for certain 

nucleotides in human genes. 

• Although the codons GGA and GGG, which 

encode glycine, can both occur in splicing 

enhancers, GGA acts as a more potent 

enhancer, leading to more efficient splicing. 

GGA is also correspondingly more common 

close to the ends of exons.
“Price of Silent Mutations”, Scientific American, June 2009
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Exonic Splicing Enhancers & Silencers

• Splicing of RNA to produce a mature mRNA 

involves the 5’ and 3’ ends of each exon, but 

internal sequences are required as well.

• Although the consensus sequences are 

uncertain, exonic splicing enhancers (ESEs) 

and exonic splicing silencers (ESSs) are 

located within exons and are distinct from the 

terminal splicing junctions. 
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ESE and ESS in BRCA1

• Krainer found examples of ESE and ESS 

mutations in BRCA1, which probably 

explains why some women with silent 

mutations develop breast and ovarian 

cancer.

• This illustrates that even silent SNPs can 

have a profound influence on phenotypes, 

including polygenic traits such as cancer. 
©2010 Sami Khuri

SNPs that are Revealed too Late

• We have just studied four cases of SNPs that lead 
to traits and diseases:

Skin pigmentation Malaria resistance

Mitochondrial SNPs Incorrect mRNA splicing

• Unfortunately, some SNPs do not reveal 
themselves until it is too late:

– Fava bean SNP

• What is food to some people may be fierce poison to others

– Variations in medication responsiveness

©2010 Sami Khuri
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A SNP in Fava Beans might Kill

• Some people experience a lysis of their red 
blood cells from the consumption of fava beans.

– Around 10% of the population cannot produce 
glucose-6-phosphate dehydrogenase (G6PD).

• G6PD is a metabolic enzyme found in the 
cytoplasm of every cell.

• G6PD produces nicotinamide adenine 
dinucleotide phosphate (NADPH) which helps 
regenerate the enzymes used to neutralize the 
cellular toxin hydrogen peroxide.
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G6PD Deficiency

• G6PD deficiency is the most common human 
enzyme deficiency

– An estimated 400 million people worldwide are 
affected by this enzymopathy. 

• One benefit of having G6PD deficiency is that it 
confers a resistance to malaria. 

• G6PD deficiency is also sometimes referred to 
as favism since some G6PD deficient 
individuals are also allergic to fava beans.

rialto.com/g6pd
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G6PD and SNPs

• SNP 376A � G produces G6PD with normal 
activity.

– It is found in 20% of African males.

• SNP 202G � A reduces G6PD activity.

– The reduction in G6PD activity is about 10% in 20% 
of African males.

• SNP 563C � T produces an enzyme with nearly 
undetectable activity.

– It is found in 20% of the alleles of Caucasian males 
living around the Mediterranean Sea.

– It is known as the “Mediterranean G6PD”.
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Linkage Disequilibrium

• Linkage refers to how close 2 loci 
are to each other on a chromosome. 
If they are near each other, we say 
the 2 loci are linked. 

• Linkage disequilibrium describes 
alleles rather than loci. If 2 alleles 
(or SNPs) tend to be inherited 
together more often than would be 
predicted, we say the SNPs are in 
linkage disequilibrium. In other 
words, they are inherited together 
more often than other possible SNP 
combinations.

©2010 Sami Khuri

genome.wellcome.ac.uk

Genetic Mapping

• Genetic mapping is the localization of 

genes underlying phenotypes on the basis 

of correlation with DNA variation, 

without the need for prior hypotheses 

about biological function.
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Genetic Mapping in Human Disease, Altshuler et al., 2008

Genetic Association in Populations

• A possible path forward emerged from 

population genetics and genomics. 

• Instead of mapping disease genes by tracing 

transmission in families, one might localize 

them through association studies—that is, 

comparisons of frequencies of genetic variants 

among affected and unaffected individuals.

©2010 Sami Khuri

Genetic Mapping in Human Disease, Altshuler et al., 2008
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SNPs and Biomedical Research (I)
Two Populations

Single-locus disease
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SNPs and Biomedical Research (II)
Two Populations

Single-locus disease

©2010 Sami Khuri

Hypothetical example in which 2 SNPs and one gene are 

associated with a monogenic disease.

SNPs and Biomedical Research (III)

The allele and its flanking SNPs define one locus.

The two SNPs: 1’ and 2’, and the recessive allele a

are in linkage disequilibrium.
©2010 Sami Khuri

• Systematic effort to try to catalogue the 

common variants that exist across human 

populations.

• Goal: Implication (Correlation) of 

genetic variants (SNPs and haplotypes) 

with human diseases.

HapMap Project
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International Haplotype 

Map Project (I)

• The goal of the International Haplotype Map 

Project is to develop a haplotype map of the 

human genome.

• The “HapMap” describes common patterns of 

human DNA sequence variation, and is a key 

source for researchers to find genes affecting 

health, disease, and responses to drugs, and 

environmental factors.
[Baxevanis & Ouellette, 2005]
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International Haplotype 

Map Project (II)

The International Haplotype Map Project is 

in the process of refining the ever-increasing 

number of polymorphisms in the human 

genome to a more manageable set that still 

captures the underlying variation information, 

allowing the design of more cost effective 

association studies.

[Baxevanis & Ouellette, 2005]

©2010 Sami Khuri
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SNP Frequencies and LD Patterns

• The International HapMap Project was 

launched in 2002, with the goal of 

characterizing SNP frequencies and local LD 

patterns across the human genome in 270 

samples from Europe, Asia, and West Africa.

• The project genotyped about 1 million SNPs 

by 2005 and more than 3 million by 2007.

©2010 Sami Khuri

Genetic Mapping in Human Disease, Altshuler et al., 2008

Correlation of Common SNPs

• Sequence data collected by the project 

confirmed that the vast majority of common 

SNPs are strongly correlated to one or more 

nearby proxies: 500,000 SNPs provide 

excellent power to test over 90% of common 

SNP variation in out-of-Africa populations, 

with roughly twice that number required in 

African populations

©2010 Sami Khuri
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To produce a genome-wide map of common variation

Genotype 6 Million SNPs in Four populations in Two Phases:  

• CEPH (CEU) (Europe - n = 90, trios)

• Yoruban (YRI) (Africa - n = 90, trios)

• Japanese (JPT) (Asian - n = 45)

• Chinese (HCB) (Asian - n =45)

Nature 437: 1299-320, 2005

www.hapmap.orgwww.hapmap.org
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SNP: rs2162709 on chromosome 5 

©2010 Sami Khuri ©2010 Sami Khuri

International Haplotype Map Project

• Goal of International Haplotype Map Project

– Develop a haplotype map of the human genome.

• The “HapMap” describes common patterns of human 

DNA sequence variation

– key source for researchers to use to find genes affecting 

health, disease, and responses to drugs, and environmental 

factors.

• Haplotypes are groups of SNPs transmitted in “blocks”.

• These blocks can be characterized by a subset of their 

SNPs (tags).
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Tag SNP
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Multi-locus SNP Profiles

• There will be a few hundred to a few 

thousand SNPs linked to medically important 

alleles in the next ~10 years.

• Haplotypes will reduce the number that need 

to be screened (one SNP gives information 

about a group of linked genes).

• Some genes will turn out to be involved in 

many important pathways.

©2010 Sami Khuri

GWAS: The New Wave

Hokusai: The Great Wave

The New Wave:

Genome Wide 

Association Studies
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Genome-Wide Association Study

• Method for interrogating all 10 million 

variable points across human genome.

• Variation is inherited in groups, or blocks, so 

not all 10 million points have to be tested.

• NIH is interested in advancing genome-wide 

association studies (GWAS) to identify 

common genetic factors that influence health 

and disease.

Teri A. Manolio, NHGRI, 2008

©2010 Sami Khuri

GWAS at NIH (I)

• NIH is interested in advancing genome-wide 
association studies (GWAS) to identify 
common genetic factors that influence health 
and disease. 

• A genome-wide association study is defined 
as any study of genetic variation across the 
entire human genome that is designed to 
identify genetic associations with observable 
traits (such as blood pressure or weight), or the 
presence or absence of a disease or condition. 

©2010 Sami Khuri

GWAS at NIH (II)

• Whole genome information, when combined 

with clinical and other phenotype data, offers 

the potential for increased understanding of 

basic biological processes affecting human 

health, improvement in the prediction of 

disease and patient care, and ultimately the 

realization of the promise of personalized 

medicine. 
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GWAS at NIH (III)

• Rapid advances in understanding the patterns 

of human genetic variation and maturing high-

throughput, cost-effective methods for 

genotyping are providing powerful research 

tools for identifying genetic variants that 

contribute to health and disease. 

Testing 10 Million SNPs?

• Would Genome-Wide Association Studies 

require directly testing each of the nearly 10 

million common variants for association to 

disease? 

– In other words, if only 5% of variants were tested, 

would 95% of associations be missed? 

• Or could a subset serve as reliable proxies for 

their neighbors?

©2010 Sami Khuri Genetic Mapping in Human Disease, Altshuler et al., 2008

Low Recombination Rates

• Each disease-causing mutation arises on a particular 

copy of the human genome and bears a specific set of 

common alleles in cis at nearby loci, termed a 

haplotype. 

• Because the recombination rate is low (about 1 

crossover per 100 megabases (Mb) per generation), 

disease alleles in the population typically show 

association with nearby marker alleles for many 

generations, a phenomenon termed linkage 

disequilibrium (LD)

©2010 Sami Khuri Genetic Mapping in Human Disease, Altshuler et al., 2008
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Mapping Relationships Among SNPs

Christensen and Murray, 2007
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Distances Among East Coast Cities
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Color Coded Distances (III)
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SNP with its two allelic possibilities

Associations between

SNP variants: various 

shades from white

to red. Deepest red 

indicating the 

strongest association.

Patterns of triangular

blocks of strong association 

are separated by short nodes 

with very little association.

Finding set of tags is equivalent to

“Minimum Dominating Set Problem”

Minimum Dominating Set Problem

©2010 Sami Khuri

A dominating set is a set of nodes S such that every node in 

the network graph G is a neighbor of at least one element of S.

The Minimum Dominating Set (MDS) problem is to find a 

minimum such S for a given network graph.

http://www.cs.iastate.edu/~chaudhur/cs611/Sp07/notes/lec22.pdf

©2010 Sami Khuri

SNP with its two allelic possibilities

Testing for one 

SNP might provide 

almost complete genetic 

information for that block.

Tagging SNP: 

block 1 � 3t

block 2 � 8t 

They can serve as a surrogate 

for any variant within its block

©2010 Sami Khuri

Myocardial Infarction and rs1333049 

Homozygote Odds Ratio = 1.90

Allelic Odds Ratio = 1.38

--------------------------------------

Heterozygote Odds Ratio = 1.47

829 (28.2)1,431 (48.7)676 (23.0)Controls
1.1 x 10-1459.7

378 (19.6)960 (49.9) 586 (30.5)Cases

P-value
χ2 

(2df) 

GG

N (%)

CG 

N (%)

CC 

N (%)

1.2 x 10-13

P-value 

55.1

χ2

(1df)

3,089 (52.6)2,783 (47.4)Controls

1,716 (44.6)2,132 (55.4)Cases

G

N (%)

C 

N (%)

Genome-wide Association Analysis of Coronary Artery Disease, by Samani et al, NEJM 2007

Association of alleles of rs1333049 with Myocardial Infarction

Association of genotypes

of rs1333049 with 

Myocardial 

Infarction

Common Disease 

Common Variant Hypothesis
• It is believed that genetic variations with alleles 

that are common in the population will explain 

much of the heritability of common diseases.

• These studies were made possible by 

– the sequencing of the human genome (International 

Human Genome Sequencing Consortium, 2004) 

and 

– the completion of the subsequent human haplotype 

mapping (HapMap) project.

©2010 Sami Khuri ©2010 Sami Khuri Genetic Mapping in Human Disease, Altshuler et al., 2008
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Common 

and 

rare 

genetic 

variation 

in 10 

individuals, 

carrying 

20 distinct 

copies of 

the human 

genome. 

Genetic Mapping in Human Disease, Altshuler et al., 2008 ©2010 Sami Khuri

The amount of variation shown here is typical for a 5-kb stretch of 

genome and is centered on a strong recombination hotspot. 

The 12 common variations include 10 SNPs, an insertion-deletion 

polymorphism (indel), and a tetranucleotide repeat polymorphism. 
Genetic Mapping in Human Disease, Altshuler et al., 2008

©2010 Sami Khuri

The six common 

polymorphisms  on the 

left side are strongly 

correlated. 

Although these six 

polymorphisms could 

theoretically occur in 

26 possible patterns, 

only three patterns are 

observed (indicated by 

pink, orange, and 

green). These patterns 

are called haplotypes.
Genetic Mapping in Human Disease, Altshuler et al., 2008 ©2010 Sami Khuri

Similarly, the six 

common 

polymorphisms on 

the right side are 

strongly correlated 

and reside on only 

two haplotypes.

The haplotypes are 

indicated by blue 

and purple. 
Genetic Mapping in Human Disease, Altshuler et al., 2008
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The haplotypes occur because there has not been much genetic          

recombination between the sites. By contrast, there is little correlation 

between the two groups of polymorphisms, because a hotspot of 

genetic recombination lies between them.
Genetic Mapping in Human Disease, Altshuler et al., 2008 ©2010 Sami Khuri

In addition to the common polymorphisms, lower-frequency 

polymorphisms also occur in the human genome. Five rare SNPs 

are shown, with the variant nucleotide marked in red and the 

reference nucleotide not shown. In addition, on the second to last 

chromosome, a larger deletion variant is observed that removes 

several kilobases of DNA. Such larger deletion or duplicationevents 

(i.e., CNVs) may be common and segregate as other DNA variants.
Genetic Mapping in Human Disease, Altshuler et al., 2008
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©2010 Sami Khuri Genetic Mapping in Human Disease, Altshuler et al., 2008

The pairwise correlation between the common sites is shown 

by the red and white boxes below, with red indicating strong 

correlation and white indicating weak correlation.

MDECODE
• Molecular Diversity and Epidemiology of 

Common Disease (MDECODE) is a 

multidisciplinary and multinational project 

created to gain a greater understanding of the 

type and amount of human DNA sequence 

variation, its history, and the relationship of its 

contemporary organization to the continuous 

distribution of measures of human health among 

individuals in the population at large (such as 

blood pressure or plasma cholesterol levels).  
©2010 Sami Khuri

http://droog.mbt.washington.edu/mdecode

Understanding DNA Variations (I)

• An important goal of human genetics and 

genetic epidemiology is to understand the 

mapping relationship between interindividual 

variation in DNA sequences, variation in 

environmental exposure and variation in 

disease susceptibility. 

©2010 Sami Khuri

“Bioinformatics challenges for genome-wide association studies” by Moore et al., 2010

• Stated another way, how do one or more 

changes in an individual’s DNA sequence 

increase or decrease their risk of developing 

disease through complex networks of 

biomolecules that are hierarchically organized, 

highly interactive and dependent on 

environmental exposures? 

©2010 Sami Khuri

Understanding DNA Variations (II)

“Bioinformatics challenges for genome-wide association studies” by Moore et al., 2010

• Understanding the role of genomic 

variation and environmental context in 

disease susceptibility is likely to improve 

diagnosis, prevention and treatment.

©2010 Sami Khuri

Understanding DNA Variations (III)

“Bioinformatics challenges for genome-wide association studies” by Moore et al., 2010

The Importance of Non-Linearity (I)

• Success in this important public health 

endeavor will depend critically on the 

amount of non-linearity in the mapping of 

genotype to phenotype and our ability to 

address it. 

• An outcome is non-linear if it cannot be 

easily predicted by the sum of the individual 

genetic markers. 

©2010 Sami Khuri

“Bioinformatics challenges for genome-wide association studies” by Moore et al., 2010



3.15

Aalto University, Summer 2010

Computational  Methods in Genomics: Part Three

©2010 Sami Khuri

The Importance of Non-Linearity (II)

• Non-linearity can arise from phenomena 

such as: 

– locus heterogeneity (i.e. different DNA 

sequence variations leading to the same 

phenotype), 

– phenocopy (i.e. environmentally 

determined phenotypes that do not have a 

genetic basis)

©2010 Sami Khuri

“Bioinformatics challenges for genome-wide association studies” by Moore et al., 2010

The Importance of 

Non-Linearity (III)

– the dependence of genotypic effects on 

environmental exposure (i.e. gene–

environment interactions or plastic 

reaction norms), and 

– genotypes at other loci (i.e. gene–gene 

interactions or epistasis).

©2010 Sami Khuri

“Bioinformatics challenges for genome-wide association studies” by Moore et al., 2010

Overcoming Three Challenges (I) 
• Three significant challenges that must be overcome if 

we are to successfully identify those genetic variations 
that are associated with health and disease using a 

genome-wide approach.

1) Powerful data mining and machine learning 
methods will need to be developed to computationally 
model:

– the relationship between combinations of SNPs, 

– other genetic variations, and 

– environmental exposure with disease susceptibility.

©2010 Sami Khuri

“Bioinformatics challenges for genome-wide association studies” by Moore et al., 2010

Overcoming Three Challenges (II) 
2) Accurate and powerful selection methods will 

have to be developed to determine which subset of 

SNPs should be included in the analysis.

– If non-linear interactions between genes explain a 
significant proportion of the heritability of common 
diseases, then combinations of SNPs will need to be 
evaluated from a list of thousands or millions of 
candidates. 

– Filtering algorithms and/or stochastic search or 
wrapper algorithms will play an important role in 
GWAS because there are more combinations of SNPs 
to examine than can be exhaustively evaluated using 
modern computational horsepower.

©2010 Sami Khuri

“Bioinformatics challenges for genome-wide association studies” by Moore et al., 2010

Overcoming Three Challenges (III) 
3) Correct biological interpretation of non-linear 

genetic models has to be achieved.

– Even when a computational model can be used to 

identify SNPs with genotypes that increase 

susceptibility to disease, the specifics of the 

mathematical relationships cannot be translated into 

prevention and treatment strategies without 

interpreting the results in the context of human 

biology. 

– Making etiological inferences from computational 

models may be the most important and the most 

difficult challenge of all.

©2010 Sami Khuri

“Bioinformatics challenges for genome-wide association studies” by Moore et al., 2010 [MOO10]

Bioinformatics GWAS Pipeline (I)

©2010 Sami Khuri
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[MOO10]

Bioinformatics GWAS Pipeline (II)

©2010 Sami Khuri

Flowchart for bioinformatics analyses of GWAS data. The use of filter 

and wrapper algorithms along with computational modeling approaches 

is recommended in addition to parametric statistical methods. 

Biological knowledge in public databases has a very important role to 

play at all levels of the analysis and interpretation.

Data Mining and Machine Learning

• Data mining and machine learning 

methods:

– Will reveal numerous significant interactions and 

other complex genotype–phenotype 

relationships when they are widely applied to 

GWAS data

– Are much more consistent with the idea of 

letting the data tell us what the model is rather 

than forcing the data to fit a preconceived notion 

of what a good model is.

©2010 Sami Khuri

[MOO10]

©2010 Sami Khuri

Methods Used for SNP Analysis
• Regression Models

• Exhaustive Searches

– Two-Locus Interaction

– Higher-Order Interaction

• Recursive Partitioning 

Approach

• Random Forest Approach

• Multifactor 

Dimensionality Reduction

• Bayesian model selection
Detecting gene-gene interactions that underlie human diseases” by Cordell, Nature, June 2009 

Computational Modeling using

Decision Trees and Random Forests

• What are Decision Trees?

• An example of a Decision Tree

• What is a Random Forest (RF)?

• How are individual Decision Trees in RF 

constructed?

• Advantages of Random Forests

• Limitations of Random Forests

©2010 Sami Khuri

Decision Trees

• A Decision Tree classifies subjects as case or 

control by sorting them through a tree from node 

to node where each node is an attribute

(example: SNP) with a decision rule that guides 

that subject through different branches of the tree 

to a leaf that provides its classification (case or 

control).

• Decision Trees are widely used for modeling the 

relationship between one or more attributes and a 

discrete end point, such as the case-control status.

©2010 Sami Khuri

Advantages of Decision Trees

• Advantages of Decision Tree: 

The tree is simple to visualize and can be  

interpreted as a series of IF-Then rules.

• Additional nodes or attributes below the root 

node allows hierarchical dependencies to be 

modeled.

©2010 Sami Khuri
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Decision Tree Classifiers

Decision tree classifies subjects as case or control.

Each node represents 

an attribute with a 

decision rule

Leaves of tree represent case or control that provide classification for subject.

Each subject travels from 

root node to leaf node, 

guided by the decision 

rules.

©2010 Sami Khuri

Decision Trees Revisited

• Decision trees offer a series of rules by which 

samples may be classified by SNPs and other 

variables (attributes).

©2010 Sami Khuri

Random Forests to the Rescue

• Building a decision tree is a greedy process by which the best 

attribute at dividing the classes is chosen at each step.

• However, this may not find the best solution -- the best decision 

may be based on a combination of attributes.

• Solution: Random Forests...
©2010 Sami Khuri

Random Forests

• Random Forests extend decision trees for 

the analysis of more complex data.

• A Random Forest is a collection of 

individual decision tree classifiers, where 

each tree in the forest has been trained using 

bootstrap sample of instances from the data, 

and each attribute in the tree is chosen from 

among a random subset of attributes 

(Breiman, 2001).

©2010 Sami Khuri

Random Forests
• Random Forests consist of many (100s ~ 1000s) decision trees 

that are built using subsets of the attributes and data.

• This gives different combinations of attributes a chance.

• The trees in the forest then vote on the best classification of a sample.

[MOO10]

©2010 Sami Khuri

Steps for Building Random Forests
• Steps to construct individual trees from data having N 

samples and M attributes :

1. Choose a training set by selecting N samples, with 
replacement, from the data.

2. At each node in the tree, randomly select m attributes 
from the entire set of M attributes in the data.

3. Choose the best split at that node from among the m 
attributes.

4. Iterate the second and third steps until the tree is fully 
grown.

• Repetitions of the algorithm yields a forest of decision 
trees.

©2010 Sami Khuri

[MOO10]
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Random Forest Algorithm

1) N samples 

chosen from 

the dataset

2) Randomly 
select 
m attributes

3) Choose best split
among m attributes

4) Repeat steps 2 and 3
until the tree is built

©2010 Sami Khuri

[MOO10]

Advantages of Random Forests (I)

• Advantages of the Random Forest approach is that 

the final decision tree models may uncover 

interactions among genes and/or environmental 

factors that do not exhibit strong marginal effects.

• Random Forests capitalize on the benefits of 

decision trees and have been shown excellent 

predictive performance when the forest is diverse.

• It has also been shown that Random Forests are 

robust in the presence of noisy or potential false 

positive SNPs.

©2010 Sami Khuri

[MOO10]

Advantages of Random Forests (II)

• Random Forest are often used initially for 

selecting the subset of attributes.

• It has been shown that Random Forests have 

outperformed traditional methods, such as the 

Fisher’s exact test when the ‘risk’ SNPs interact. 

Lunetta et al. (2004) 

– This study revealed that the relative superiority 

of the Random Forest method increases as 

more interacting SNPs are added to the model.

©2010 Sami Khuri

[MOO10]

Applications of Random Forests

• Random Forest have been applied to genetic data 

in studies of:

– Asthma (Bureau et al., 2005)

– Rheumatoid arthritis (Sun et al., 2007) 

– Glioblastoma (Chang et al, 2008)

– Age-related macular degeneration (Jiang et al., 

2009)

– Vaccination response (McKinney et al., 2009)

• It is expected that random forests will prove to be 

a useful tool for detecting gene-gene interaction. 

©2010 Sami Khuri

[MOO10]

Computational Modeling using

Multifactor Dimensionality Reduction

• Multifactor Dimensionality Reduction (MDR) 

was developed as a non-parametric (i.e. no 

parameters are estimated) and genetic model-free 

(i.e. no genetic model is assumed) data mining and 

machine learning strategy for identifying 

combinations of discrete genetic and 

environmental factors that are predictive of a 

discrete clinical end point. (Hahn et al., 2003)

©2010 Sami Khuri

[MOO10]

Multifactor Dimensionality Reduction

• MDR was designed to detect interactions in the 

absence of detectable marginal effects and thus 

complements statistical approaches such as 

logistic regression and machine learning methods 

such as random forests and neural networks.

• At the heart of the MDR approach is a feature or 

attribute construction algorithm that creates a 

new variable or attribute by pooling genotypes 

from multiple SNPs (Moore and White, 2006).
©2010 Sami Khuri

[MOO10]
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Constructive Induction

• MDR uses Constructive Induction 

(aka Attribute Construction) were a new 

attribute is defined as a function of two or more 

other attributes.

• The MDR method is based on the idea that 

changing the representation space of the data 

will make it easier for methods such as logistic 

regression, classification trees or a naive Bayes

classifier to detect attribute dependencies.
©2010 Sami Khuri

[MOO10]

Modifications of MDR (I)

• Many modifications and extensions to MDR

have been proposed. These include 

– Entropy-based interpretation methods (Moore and   

White, 2006), 

– The use of odds ratios (Chung et al., 2007), 

– Log-linear methods (Lee et al., 2007), 

– Generalized linear models (Lou et al., 2007),

– Methods for imbalanced data (Velez et al., 2007). 

©2010 Sami Khuri

[MOO10]

Modifications of MDR (II)

– Permutation testing methods (Greene et al., 2010a; 

Pattin et al., 2009), 

– Methods for dealing with missing data (Namkung et 

al., 2009a), 

– Model-based methods (Calle et al., 2008), 

– Parallel implementations (Bush et al., 2006; Sinnott

Arnstrong et al., 2009), and

– Different evaluation metrics (Bush et al., 2008; Mei 

et al., 2007; Namkung et al., 2009b).
©2010 Sami Khuri

[MOO10]

Multifactor Dimensionality Reduction 

• Creates combinations of attributes to decrease their 
overall number.

• Attributes are grouped into low risk or high risk based on 
the ratio of their occurrences in disease cases to control 
cases.

• Low Risk and High Risk become the new attributes. 
Statistical analysis are performed on those new attributes.

[MOO10]
©2010 Sami Khuri

High Risk: Dark-shaded cells 
Low Risk: Light-shaded cells 

[MOO10]

Number of 

CASES

Number of 

CONTROLS

©2010 Sami Khuri

Low Risk and High Risk

become the new attributes.

[MOO10]

Number of 

CASES

Number of 

CONTROLS

©2010 Sami Khuri
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MDR Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer, Ritchie et al, 2001

©2010 Sami Khuri
MDR Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer, Ritchie et al, 2001

A set of n genetic 

factors is selected 

from the pool of 

all factors.

1

©2010 Sami Khuri
MDR Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer, Ritchie et al, 2001

The n factors and their 

possible multifactor 

classes (cells) are 

represented in n-

dimensional space

22

©2010 Sami Khuri
MDR Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer, Ritchie et al, 2001

The ratio of the number of cases to the number 

of controls is estimated within each multifactor 

class. Each multifactor cell in n-dimensional 

space is labeled either as “high-risk,” if the 

cases: controls ratio meets or exceeds some 

threshold (e.g., 1.0), or as “low-risk,” if that 

threshold is not exceeded.

23(a)

©2010 Sami Khuri
MDR Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer, Ritchie et al, 2001

In this way, a model for both cases and controls 

is formed by pooling high-risk cells into one

group and low-risk cells into another group. 

This reduces the n-dimensional model to a one-

dimensional model (i.e., having one variable 

with two multifactor classes—high risk and low 

risk).

23(b)

©2010 Sami Khuri
MDR Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer, Ritchie et al, 2001

The prediction error of each model is estimated by 

10-fold cross-validation. The data (i.e., subjects) are 

randomly divided into 10 equal parts.

The MDR model is developed for each possible 

9/10 of the subjects and then is used to make 

predictions about the disease status of each possible 

1/10 of the subjects excluded. 

4a
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MDR Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer, Ritchie et al, 2001

The proportion of subjects for which an incorrect

prediction was made is an estimation of the 

prediction error. To reduce the possibility of poor 

estimates of the prediction error that are due to 

chance divisions of the data set, the 10-fold cross-

validation is repeated 10 times, and the prediction 

errors are averaged.

4b The Attribute Selection Challenge

• It is now commonly assumed that at least one 

million carefully selected SNPs are necessary 

to capture much of the relevant variation 

across the human genome.

• With this many attributes, the number of 

higher order combinations is astronomical. 

• What is the optimal computational approach to 

this problem?

©2010 Sami Khuri

[MOO10]

Selecting Attributes 

for Predictive Models
• There are two general approaches to selecting 

attributes for predictive models. 

• The filter approach preprocesses the data by 

algorithmically assessing the quality or 

relevance of each variable and then using that 

information to select a subset for analysis.

• The wrapper approach iteratively selects 

subsets of attributes for classification using 

either a deterministic or stochastic algorithm.
©2010 Sami Khuri

[MOO10]

Selecting Attributes: 

Filtering Algorithms (I)

• It is computationally infeasible to combinatorially

explore all high-order interactions among the SNPs in 

a genome-wide association study.

• A standard statistical strategy in human genetics is to 

assess the quality of each SNP using a chi-square test 

of  independence followed by a correction of the 

significance level that takes into account an increased 

false positive rate due to multiple tests. 

©2010 Sami Khuri

[MOO10]

Selecting Attributes: 

Filtering Algorithms (II)
• This standard statistical strategy is a very 

efficient filtering method for assessing the 

independent effects of SNPs on disease 

susceptibility but it ignores the dependencies 

or interactions between genes.

• Several filtering algorithms have been 

devised to solve the gene-gene interaction 

issue.

©2010 Sami Khuri

[MOO10]

Filtering Algorithms: 

Relief Family of Algorithms

1) Randomly choose a test sample from the data 

set.

2) Find the best matching case and control for 

that test sample. These are the nearest 

neighbors.

3) Compare the attributes from the test sample to 

the nearest neighbors to determine quality 

estimates of those attributes.

– Repeat steps 1-3 for another test sample.
©2010 Sami Khuri
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Relief Variants
• ReliefF: Instead of choosing just one nearest case and control 

neighbor, use the n nearest neighbors.

• SURF (Spatially Uniform ReliefF): Put an upper bound on the 

distance between the test sample as a nearest neighbor.

• TuRF (Tuned ReliefF): After each round, remove low scoring 

attributes, so future neighbor-matching will not rely on them.

[MOO10]
©2010 Sami Khuri

Wrapping: Genetic Programming

– A collection of programs consisting of lists of SNPs, 
other attributes, and mathematical functions describing 
them are randomly generated.

– The programs are evaluated automatically. High scoring 
programs are recombined, crossbred and mutated.

– Step 2 repeats until some threshold is reached. The result 
is the best found set of attributes and relations between 
them.
Results so far have been mixed. Finding good methods to 
evaluate the programs and intelligent ways of 
recombining programs is necessary.

©2010 Sami Khuri

[MOO10]

The Genetic Programming

©2010 Sami Khuri
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Bioinformatics Challenges for GWAS

• In the past GWAS looked for one to one association 
between SNP's and disease risk. 

• Now need to start looking at gene-gene and gene-
environment interaction when conducting GWAS.

• If we know the pathway interactions of a disease. 
Only look at SNPs in those pathways 

• Get information on pathways from biological 
databases 

• Quality of results is dependent on the quality of 
information in the database.

©2010 Sami Khuri
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Understanding the link between -

DNA sequence                 Biology/Disease

(Genotype)                    (Phenotype)

Environment
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The Next Challenge
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The Next Wave of GWAS

• To date GWAS have identified a fraction of the 
genetic relative risk

– Mostly focused on ‘common disease, common 
variant’ hypothesis

• 1000 Genomes Project is a large sequencing project 
whose goal is to comprehensively catalogue rare 
variants

• Copy number variants are currently under-
represented on products used in GWAS

• Gene-Gene interactions
Source: Keith W. Jones, Affymetrix


