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ENCODE

ENCODE: ENCyclopedia Of DNA 

Elements

• Goal: compile a comprehensive encyclopedia 

of all functional elements in the human 

genome

• Initial Pilot Project: 1% of human genome

• Apply multiple, diverse approaches to study 

and analyze that 1% in a consortium fashion
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The ENCODE Project

• 44 regions of the human genome were 

selected, spanning 30 megabases (about 1% of 

the human genome).

• The ENCODE regions include:

– About 50% randomly selected loci

– About 50% containing well-known genes 

• Example: alpha and beta globins, CFTR

• The ENCODE Project Consortium released 

its findings in a 2007 article (>250 coauthors)

Experiment Redundancy

• The ENCODE pilot project aimed to establish 

redundancy with respect to the findings represented 

by different data sets: 

– Multiple experiments based on a similar technique:

• e.g. study transcriptional activity in different tissues using the same 

technology.

– Multiple experiments based on different techniques.

• Such redundancy has allowed methods to be 

compared and consensus data sets to be generated.
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Major Findings of ENCODE

• The majority of all nucleotides are transcribed

as part of 

– Coding transcripts

– Noncoding RNAs

– Random transcripts that may have no biological 

function.

• Many genes have multiple, previously 

undetected, transcription start sites

– Regulatory sequences are as likely to be upstream 

as downstream of the major start sites.

Highlights of ENCODE Project (I)

• The human genome is pervasively transcribed, such 

that the majority of its bases are associated with at 

least one primary transcript.

• Many novel non-protein-coding transcripts have 

been identified:

– many non-protein-coding genes overlap with            

protein-coding loci

– others are located in regions of the genome previously 

thought to be transcriptionally silent.
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Highlights of ENCODE Project (II)

• Numerous previously unrecognized transcription 

start sites have been identified, many of which 

show chromatin structure and sequence-specific     

protein-binding properties similar to well  

understood promoters.

• Regulatory sequences that surround transcription 

start sites are symmetrically distributed, with no 

bias towards upstream regions.
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Comparative Analysis
• 206Mb of genomic sequences orthologous to the human 

ENCODE DNA sequences were generated from 14 
mammalian species 

• The orthologous sequences were aligned using three alignment 
programs: TBA, MAVID and MLAGAN. 

• Four independent methods that generated highly concordant 
results were then used to identify sequences under constraint 
(PhastCons, GERP, SCONE and BinCons). 

• From these analyses, a high-confidence set of ‘constrained 
sequences’ was developed that correspond to 4.9% of the 
nucleotides in the ENCODE regions.

• Constrained sequence is a genomic region associated with 
evidence of negative selection (that is, rejection of mutations 
relative to neutral regions).
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Constrained Sequences

Many important functional 

sequences are not conserved. 

They are even highly 

variable among humans.

ENCODE Portal at UCSC

• The main portal for ENCODE data is provided by the 

UCSC Genome Browser: genome.ucsc.edu/ENCODE/
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ENCODE: First Major Results
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GENCODE Project (I)

• GENCODE: [A subproject of ENCODE] aim 

to produce a reference annotation for ENCODE

• The GENCODE consortium was formed to 

identify and map all protein-coding genes 

within the ENCODE regions. 

– This was achieved by a combination of initial 

manual annotation by the HAVANA (Human And 

Vertebrate Analysis) team, experimental validation 

by the GENCODE consortium and a refinement of 

the annotation based on these experimental results.

GENCODE Project (II)

• GENCODE seeks to identify all protein-coding 

genes in the ENCODE selected regions. 

– For each protein coding gene this means the 

delineation of a complete mRNA sequence for at 

least one splice isoform, and often for a number of 

additional alternative splice forms.

• Coding sequences for the 44 regions in the study 

have been ascertained by the Havana group. 

– In total there are 1097 CDS sequences from the 44 

selected regions of the human chromosome. 
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MicroRNA [MiRNA]

� Pri-miRNA

� Drosha

� Precursor miRNA [Pre-miRNA]

� Dicer

� Translation Repression

� Translation Degradation

� MiRNA Gene Prediction

� MiRNA Target Prediction
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Micro RNAs

• Micro RNAs are a class of non-coding RNA 

gene whose products are nucleotide sequences 

(about 22 nucleotides long) that play 

important roles in regulation of translation and 

degradation of mRNAs through base pairing 

of partially complementary sites in the 

untranslated regions (UTRs) of the message.

• miRNAs are a class of small, evolutionarily 

conserved RNA molecules that regulate gene 

expression at the post-transcriptional level.
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First Micro RNAs
• Micro RNAs (miRNA) were first discovered 

by Chalfie et al. through genetic studies in the 
nematode Caenorhabditis elegans as 
essential regulators of development.
– lin-4 and let-7 seemed to be involved in controlling the 

timing of larval development

• Since then, numerous microRNAs have been found 
in different species:
– miRBase (release 13.0) contains 9,499 microRNA 

entries from 103 species, among which 706 are human 
microRNAs.

– many microRNA gene families are conserved among 
diverse species. 
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Producing Micro RNAs

• MiRNAs gene encode precursor RNAs 

that undergo processing to form 

miRNAs of length approximately 22 

nucleotides.
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Molecular origins of cancer: Oncogenes and Cancer“ 

by Carlo M. Croce. New England Journal of Medicine; 

volume 358, number 5; January 31, 2008.
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MicroRNA Binding

Enzyme in Drosophila

that cuts dsRNA 

into ~22 bp fragments

Imperfect binding Perfect binding

~70-200bp

Usually occurs in plants (scarecrow)

Usually occurs in animals 

Examples: lin-4 and let-7

Animal versus Plant Targets

• In plants:
– microRNAs bind almost perfectly to their target mRNAs

– targets have been found anywhere on the mRNA

– relatively few targets because microRNA-mRNA binding 
requires near-perfect complementarity

• In animals:
– partial base-pairings with the target mRNAs 

– targets are typically found in the 3'-UTR, where the 
silencing machinery can easily interact with the initiation 
complex.

– multiple targets on the same mRNA and often multiple 
microRNAs target the same mRNA

©2010 Sami Khuri

Fahlgren et al., 2010
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Lin-4 Regulates Lin-14

MiRNA lin-4 acts to developmentally repress the 

accumulation of the lin-14 protein
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miRNA Challenges and Hope

• The challenges are:

– Predict the functions of the miRNAs

– Identify the potential target mRNAs to which 

miRNAs will bind

– Characterize the consequences of their 

regulatory interactions.

• The hope is:

– RNA interference will be used to inactivate 

tumor genes or viruses.

• miRNA-based therapies are under investigation
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MicroRNAs and Cancer (I)

• More recently, in the past few years, it has been 

discovered that some of the 250 to 300 human 

miRNA are linked to cancers, such as leukemia, 

lung, breast, and colon cancers.

• Mapping of numerous miRNA genes has shown 

that many occur in chromosomal regions that 

undergo rearrangements, deletions, and 

amplifications in cancer cells.

Molecular origins of cancer: Oncogenes and Cancer“ by Carlo M. Croce. 

New England Journal of Medicine; volume 358, number 5; January 31, 2008.
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MicroRNAs and Cancer (II)

Table from “No miR Hype: MicroRNA’s Cancer Role Expands” by Ken Garber

Journal of the National Cancer Institute, Vol. 98, No. 13, July 5, 2006

Chronic Lymphocytic Leukemia (CLL): disease of white blood cells that won’t die. 

It is the most common leukemia.

A miRNA can be a tumor suppressor if in a given cell type its target is an oncogene. 

It can be an oncogene if in a different cell type its target is a tumor-suppressor gene.
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miR-15 and miR-16 in CLL

Table from “No miR Hype: MicroRNA’s Cancer Role Expands” by Ken Garber

Journal of the National Cancer Institute, Vol. 98, No. 13, July 5, 2006

miR-15 and miR-16 induce apoptosis by targeting the key 

survival protein Bcl-2, which is overexpressed in CLL
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MiRNAs and Treatment

• Examples of the role miRNA plays in 
cancer pathophysiology involve miR-15a 
and miR-16-1, which are deleted or down-
regulated in most indolent (slow to develop) 
cases of chronic lymphocytic leukemia.

• The discovery of the involvement of 
miRNAs in the initiation and progression of 
human cancer may provide additional 
targets for anticancer treatments.
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Antagomirs

• Chemically modified antisense oligonucleotides  
(i.e., short strings of DNA bases complementary in 
sequence to their targets) injected into mice 
potentially silenced a target miRNA in the liver.

• The oligonucleotides were dubbed antagomirs. 

• It is believed that antagomirs should be more 
effective against cancer-causing miRNAs than 
classic antisense therapy has been against protein-
coding mRNAs:
– antagomirs compete with miRNA targets for binding.   

An easier task than interfering with the protein translation 
machinery, which is the classic antisense mechanism. 

Silencing of microRNAs in vivo with 'antagomirs by Jan Krützfeldt et al. Nature 438, 685-689 (Dec 2005).
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GeneCopoeia

GeneCopoeia offers precursor miRNA 

expression constructs in a feline 

immunodeficiency virus (FIV) based 

lentiviral vector system

www.genecopoeia.com/product/mirna

Computational Problems

• Multiple computational problems exist in 

microRNA research;

most notably:

– microRNA gene prediction

– microRNA target identification

MicroRNA Gene Prediction
• Traditional gene finding algorithms, which use statistical 

properties of coding regions, are not appropriate for finding 
microRNA genes. 

• Homology-based searches fail due to the lack of a clear 
evolutionary model for microRNAs. 

• Current techniques for finding microRNA genes take into 
account the following two properties: 
– the mature microRNA should be approximately 22 nt in length, and 

– it should be processed from a stem-loop precursor of around 65 nt in 
length. 

• Some of the freely available microRNA gene finding tools for 
mammals are MirScan and ProMir, and for plants, 
MIRFINDER and FINDmicroRNA

• We concentrate on Target Prediction.

Target Prediction

• MicroRNA target prediction is an active 
area of research and the search for the 
best method for target prediction 
continues. 

• Since microRNA targets in plants and 
animals show significant differences, 
different computational approaches are 
used. 

Target Prediction

• Algorithms for predicting animal targets can be 
broadly divided into two categories:

– The objective of the methods in the first category 
is to find targets for a given microRNA in the      
3'-UTR:

• use microRNA properties, such as base-pair 
complementarities, cross-species conservation 
and minimization of free energy.

– The methods in the second category use machine 
learning techniques to classify a given  
microRNA-mRNA pair as a true or false 
interaction. 
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Traditional Target Prediction
• microRNA targets are typically found in the 3'-UTR 

region of animal mRNA. 

• The microRNA-mRNA binding in animals is not 
perfect, it often contains mismatches, gaps, and wobble 
pairs (G:U), thus reducing the length of the perfect 
pairwise alignment between the microRNA and its 
target. 

• However, in most microRNA-mRNA bindings, there is 
a region that exhibits a nearly perfect complementarity. 
This region is termed seed and it is found in the 5'-end 
of the microRNA and the 3'-end of the mRNA target. 

• The most popular methods use seeds as primary filters: 
MiRanda, TargetScan, and PicTar.

MiRanda (I)

• Match (align) a microRNA against all 3'-UTR in a genome 
allowing for wobble pairs and small indels and score the 
alignments:

– The algorithm uses higher scores for perfect matches in the 5'-end of 
the microRNA. 

– The scores are weighted based on the nucleotide position with respect 
to the 5'-end of the microRNA.

– Only the alignments with the score above a threshold are kept. 

• Each microRNA-mRNA alignment is filtered based on its 
computed thermostability. 

• Retain only those mRNA targets that have been conserved in 
other (closely related) species. 

MiRanda (II)

• Initially developed for Drosophila melanogaster

• Extended for target prediction in humans and other 
animal species. 

• The latest version of the algorithm was updated to 
include microRNA expression profiles derived from 
sequencing a large set of mammalian tissues and cell 
lines. 

• The MiRanda software currently predicts 1,934,522 
target sites in 31,869 human gene isoforms.

TargetScan (I)

• Takes as input microRNAs that are conserved across 
a group of organisms and scans them against a set of 
orthologous 3’-UTR from the same organisms. 

• All potential seeds, i.e. perfect matches in positions  
2-8 of the microRNA, are extended to target sites,
which may contain wobble pairs, indels and 
mismatches. 

• A folding algorithm is used to determine the 
secondary structure of the microRNA-mRNA duplex 
and to compute the folding free energy. 

TargetScan (II)

• Each target site receives a score based on the number 

of matches predicted for the same 3’-UTR and their 

respective free energies. 

• Target sites with a score above a threshold are output.

• Current versions of the software include specialized 

TargetScanHuman, TargetScanFly and 

TargetScanMouse.

PicTar
• Search for near-perfect seven nucleotide-long seeds 

starting at position 1 or 2 in the 5’-end of microRNA.

• Extend seeds into target sites and filter each target 
site based on the minimum free energy of the 
resulting microRNA-mRNA duplex. 

• A second filter is applied to retain only the target sites 
that fall into overlapping positions of aligned 
orthologous sequences. 

• The target sites that pass both filters are given a score 
that takes into account multiple binding sites for a 
single microRNA. 

• Target sites with a score higher than a threshold are 
output.
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miRBase and the Number of miRNAs

August 4, 2010. www.mirbase.org

Target Identification

• Main problem: lack of verified targets:

– thousands of microRNA genes have been 
experimentally verified, only a few of these genes 
have been assigned a function:

• miRBase has 9,499 microRNA entries from 103 species

– TarBase5.0, the database of experimentally 
supported targets, contained only 1,300 entries for 
nine species.

Problems of Traditional Methods

• Lack of high-throughput experimental techniques to 
confirm the thousands of predicted targets.

• The numbers of predicted targets differ among 
programs, with only limited overlap in the top-
ranking targets:

– mainly due to differences in selection criteria and the use 
of numerical cutoffs

– TargetScan: complementarity in positions 2-7 from 5’ end 
of microRNA, whereas in PicTar: positions 1-8 or 2-9.

Machine Learning Approaches (I)

• Machine-learning methods try to classify  
microRNA-mRNA duplexes using a set of 
experimentally verified positive and negative 
interactions. 

• The aim of these methods is to classify the predicted 
microRNA-mRNA target interactions as true or 
false and this is done by considering both, seed and 
non-seed regions of the target. 

Machine Learning Approaches (II)

• Kim et. al implemented miTarget, a support vector 
machine that considers position, thermodynamic 
properties and structure of the 5’ and 3’ half of the 
hybridization site in microRNA-mRNA interactions.

• Saetrom et al. developed a TargetBoost algorithm that 
combines genetic programming with boosting.

– The genetic programming component evolves a series of 
patterns which try to generalize properties of microRNA 
target sites, i.e. existence of a seed or a bulge of unpaired 
nucleotides. 

– Each of these patterns is a classifier itself. The boosting 
technique assigns a weight to each classifier, depending on 
its performance on the training set.

Weaknesses of 

Machine Learning Approaches
• The main weakness of the classifier methods is the 

small size (or even lack of) negative training data. 

[Negative Training Data: Known miRNA binds to 
mRNA but it is experimentally known that the 
binding site is NOT a target].

• Some authors attempt to overcome this drawback by 
artificially generating negative target sites and using 
them in their classifiers. 

• However, until one has the technology for verifying 
microRNA-mRNA interactions, this weakness will 
persist.
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Alternatives
• “Assessing potential microRNA targets based 

on a Markov model” by Fu et al., 2009:

– developed a Markov model to learn from known 

microRNA-mRNA duplexes and applied it to filter 

out predictions of traditional algorithms:

• only 30% of MiRanda predictions were picked 

up by the model.

• but when the model was applied to the 

intersection of MiRanda and PicTar predictions, 

the model picked 70% of the targets.

Binding Representation

The 0-1 sequences generated by the model represent 

microRNA-target complementarity base-pairing binding patterns:

Lack of Uniqueness
The 0-1 sequence can represent different binding scenarios:

Selecting the Model

• On the basis of the 0-1 sequence representation, a generative 
chain model was chosen:

– Each 0-1 sequence can be viewed as being generated by the model with 
a certain probability. 

– Since the 0-1 sequence stemming from biological molecular sequence 
(i.e., the microRNA sequence), we assume that the 0-1 sequence has a 
first-order Markov property. 

• Since different sites have significantly different properties with 
respect to base-pairing binding statistical characteristics, a 
non-homogeneous rather than homogeneous Markov model is 
adopted.

Model States

• Two states were assigned for the ith base site of     

22-nucleotide-length microRNA from 5’ to 3’,     

state 1 and state 0. 

• Either state can be viewed as a value of a variable si. 

– State 1 stands for forming Watson-Crick pairing, while 

the state 0 stands for unforming pairing. 

• From the state si, either the next state 1 or 0 can be 

transferred with probability pi
si,0 or pi

si,1, 

respectively.

Probability of a Sequence

For Example: 0111111101110000001111
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Estimating Model Parameters

• All of the model parameters were estimated by 
maximum likelihood estimation method.

• Used 128 0-1 sequences, corresponding to 128 known 
human microRNA-mRNA bindings from TarBase.

• Discovered that not all transition probabilities were 
needed, probability parameters corresponding to sites 
2-11 achieve the maximal recognition rates.

• Model identified 110 targets from the set of 128 
(86%).
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• Ambion, Inc,

www.ambion.com/main/explorations/mirna.html

• Nature Genetics 

www.nature.com/ng/supplements/micrornas/rosetta_video.mpg

• Rosetta Genomics

Developer of microRNA-based diagnostic tests and therapeutic 

tools

www.rosettagenomics.com/inner_video.asp?first_tier=97

• Nature Genetics – Several articles on miRNAs

www.nature.com/ng/journal/v38/n6s/index.html

Links for MiRNA
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Genome Rearrangement

� Reversals

� Translocations 

� Fusions

� Fissions

� Mammalian Evolution

� Mathematical Models
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Chromosomal Exchanges

• During biological evolution, inter- and intra-

chromosomal exchanges of chromosomal 

fragments disrupt the order of genes on 

a chromosome.

• Genome rearrangement approach: 

The  use of combinatorial optimization 

techniques to infer a sequence of 

rearrangement events to account for the 

differences among the genomes
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Genome Rearrangement

• Genes are arranged along the genome.

• Distinct species often have surprisingly many 

genes in common, but in different order and 

with different orientations.

• Periodic, large-scale genome rearrangement

events, that alter the order and/or orientation 

of gene sequences occurred. 
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Genome Rearrangement Events

• The most common rearrangement events:

– Reversal (inversion): reverses the order of genes in a 
chromosome.

– Transposition: removes a sequence of genes from the 
chromosome and inserts it into another place on the 
same chromosome. 

– Translocation: same as transposition but the sequence 
of genes is inserted in a different chromosome.

– Fusion: concatenates 2 chromosomal regions into one.

– Fission: does the opposite work of fusion.
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The Mighty Mouse

Approximately the 

same number of 

chromosomes and 

local gene order in 

mammals.

Insights into mouse 

genetics are likely to 

illuminate human 

genetics as well.

Mouse versus Human
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Mighty Mouse vs Human Genome (I)

• Humans and mice have 

similar genomes, but  

their genes are ordered 

differently

• ~245 rearrangements

– Reversals

– Fusions

– Fissions

– Translocation
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Translocation – Fusion - Fission

Translocation
1  2  3 9 8 7   

44 5  6 2 4 1

1  2 6 2 4 1

4 5 3 9 8 7

1  2  3  4  

5  6
1  2  3  4  5  6

Fusion

Fission

Burkitt’s Lymphoma t(8;14)

The Biology of Cancer by R. Weinberg. Garland Science 2007
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Introduction to Microarrays 

� Spotted arrays

� Affymetrix

� Learning basic biology 

� Yeast

� Gene Expression

� Guilt by association

� “What if” questions 

Fundamentals of Microarrays

• Microarrays are composed of short DNA sequences 

attached to a slide at high density

• Microarrays work by exploiting the ability of an 

mRNA molecule to bind specifically to the DNA 

sequence from which it originates

• This RNA (or its DNA derivative) is fluorescently 

labeled so that the amount of hybridization can be 

quantitatively measured

©2010 Sami Khuri
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Hybridization of Target to Probe 
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History of DNA Microarrays
• Microarrays descend from Southern and Northern blotting.  

Unknown DNA is transferred to a membrane and then probed 
with a known DNA sequence with a label.

• In microarrays, the known DNA sequence (or probe) is on the 
membrane while the unknown labeled DNA (or target) is 
hybridized and then washed off so only specific hybrids 
remain. 

• Dot blots of different genes in an array were used to assay 
gene expression as early as 1987.

• Complete genome of all Saccharomyces cerevisiae ORFs on a 
microarray were published in 1997 by Lashkari et al.
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Microarray Applications
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Definitions

• Gene expression: 

– A process by which inheritable information from a gene is 
made into a functional gene product

• Gene expression profiling: 

– A measurement of the activity of thousands of genes at 
once, creating a global profile of cellular function.

– Profiles can for example distinguish between cells that are 
actively dividing, or show how the cells react to a 
particular treatment.

– The sequence tells us only what the cell could possibly do, 
the expression profile tells us what the cell is actually 
doing at that moment.
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Microarray Assay

□

Scanning

Data extraction

Hybridization

Amplification

Reverse transcription

Labeling

Preprocessing

Secondary 

Data analysis

Biological 

Interpretation
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Microarray Technology
• Basic idea: mRNA hybridizes best to exactly 

complementary sequences.

• Method:

– Probes are attached to a substrate in a known location

– mRNA in one or more samples are fluorescently labelled

– samples are hybridized to probe array, excess is washed off, 

and fluorescence reading are taken for each position

• Two major classes:

– “custom” cDNA arrays (probes are full length cDNAs)

– “Affymetrix” oligonucleotide arrays (probes are unique  

~25bp segments from genes & ESTs)

©2010 Sami Khuri
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Two Color versus 

One Color Microarray
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Gene Expression 

Experiment Pipeline

Preprocessing

Secondary analysis
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• Objective

– Convert image of thousands of 
signals to a signal value for each 
gene or probe set.

• Multiple step

– Image analysis

– Background and noise subtraction

– Normalization

– Expression value for a gene or 
probe set

• Usually done by proprietary software

Data Preprocessing
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Microarray Image Analysis
� Red dots indicate 

induced (more  
mRNA) gene in the 
experiment

� Green dots indicate 
repressed (less  
mRNA) gene in the 
experiment

� Yellow dots indicate 
no change Molecular Biology of the Cell ( Fifth addition) 2008  Fig 8-73 
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Biological Interpretation

• Annotation

• Clustering

• Pathway analysis

• Gene Set Enrichment Analysis (GSEA)
©2010 Sami Khuri

• Class comparison:

– identify genes that are expressed 

differently, e.g. tumour vs. normal 

tissue or treated vs. untreated 

samples

• Class discovery:

– divides samples into reproducible 

classes that have similar behaviour 

or properties 

– Classification unsupervised

• Class prediction:

– Classification supervised

– Biological annotation

– Pathway analysis

Data Analysis

©2010 Sami Khuri
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Class Comparison

• Differential expression analysis: 

– What genes are up regulated between control and 

test or multiple test conditions? 

• Normal vs. tumor

• Treated vs. untreated

• Fold change

• Statistics

– t-test, non-parametric tests, ANOVA, SAM 
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• Which classes are similar?

• Are there subgroups?

• Methods:

– Unsupervised methods:

• Cluster analysis

• K-means clustering, 

• Principal Component Analysis (PCA)

• Self-organizing maps (SOM)

– Supervised methods:

• Partial Least Square (PLS)

• Hierarchical clustering

Class Discovery 
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Functional Genomics

• Take a list of "interesting" genes and find their 

biological relationships.

• Gene lists may come from 

significance/classification analysis of 

microarrays, proteomics, or other high-

throughput methods.

• Requires a reference set of “biological 

knowledge”.
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Gene Annotation
• Gene ontology is a gene annotation system, a controlled vocabulary used to 

describe gene products:

– What does a gene product do?

– Why does it perform these activities?

– Where does it act?

– Are several genes involved in the same process?

• Different platforms provide gene ontology mining tool which returns GO 
terms for probe sets:

– Panther (Applied Bios stems)

– NetAffx Analysis Center (Affymetrix)

– DAVID database

– www.geneontology.org/GO.tools.microarray.shtmlm

• Annotation challenges

– Databases change regularly

– Various databases refer to the same protein by different names

– A changing understanding of protein function
– A gene product may be part of several different ontologies
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Pathway Analysis

• Discover relationships between the annotated 

genes:

• KEGG http://www.genome.jp/kegg/

• Pubgene http://www.pubgene.com/

©2010 Sami Khuri

GSEA
• Gene Set Enrichment Analysis (GSEA) uses patterns to find 

regulated genes.

• A computational method that determines whether an a priori 

defined set of genes shows statistically significant differences 

between two biological states:

– Do any of the previously defined gene sets exhibit unusual 

behavior in the current expression profile?

http://www.broad.mit.edu/gsea/
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The Importance of Yeast
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The Yeast Genome
• The yeast genome has about 6,200 genes.

• All 6,200 genes are amplified by polymerase 

chain reaction (PCR).

• The PCR products are verified, purified, and 

spotted onto an ordinary glass microscope slide 

by a robot.

• The spotted DNA is denatured and covalently 

linked to the glass slide.

• Each spot contains many amplified copies of a 

single gene.
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Gene Expression Microarrays

Each purple spot indicates the location of a PCR product on the glass 

slide. One particular spot has been chosen to illustrate the presence 

of one gene’s sequence. 

On a real microarray, each spot is about 100 µm in diameter.
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Yeast DNA Chip Experiment

• Cells are grown in two different conditions:

– In the presence of oxygen

– In the absence of oxygen.

• The 2 populations of mRNAs are harvested 

from each population of cells and separately 

converted into cDNAs.

• The two populations of cDNAs are colored 

either green or red, each representing the 

transcriptome from one population of cells.
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The red and green cDNAs are mixed, placed on the chip, 

covered by a glass cover slip, and incubated overnight with 

the DNA microarray.

Hybridization
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Results From a Single DNA Chip

Diagram of a single DNA chip showing:

a) the red transcriptome, b) the green transcriptome, 

c) which genes are expressed in both transcriptomes. 

Some genes are not expressed in either growth condition (gray spots).

The microarray is put under a scanner that uses light to

excite the dyes and sensors to detect the dyes to record the

location and two-color intensities for each spot.
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Image Analysis

• Scanning one microarray chip takes about 

20 minutes.

• When completed, the green color image and 

the red color image are stored in a computer 

for image analysis.

• The computer also generates a new merged 

image, with yellow spots indicating the 

open reading frames (ORFs) that are 

transcribed in both transcriptomes 
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Conversion of 

Color Spots to Table

• Yellow spots are a visual way of depicting a 

red-to-green ratio 1:1. More typically, the 

merged image will be a bit more green or a 

bit more red.

• The color spots are then converted to 

numbers that represent the light intensity of 

– red dye, 

– green dye, and 

– the ratio of red to green. 
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Conversion Table for 14 Genes (I)

©2010 Sami Khuri

The fluorescence intensity of each color was determined and the ratio 

of red signal to green signal was calculated.

The table shows data for 14 of the 6,200 genes on the full microarray.

Note that the location of each spot is shown in the table.

©2010 Sami Khuri

Conversion Table for 14 Genes (II)

Red–Green Color Scale

• Humans process visual data much faster 
than numbers.

• So the numerical data ratios of red to green 
is converted into a visually comprehensive 
system.  
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Induced and Repressed Genes

• Genes that are equally transcribed in both conditions 

are coded black.

• Experimentally induced genes (stimulated to produce 

more mRNA) are colored red.

• Experimentally repressed genes (stimulated to 

produce less mRNA) are colored green.
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Ratio: Red to Green
• The cDNA produced from the control population of 

cells is green.

• The cDNA produced from the experimental condition 

(e.g., absence of oxygen) is red.

• The ratio is always taken with the value for the red 

dye (from the experimental cells) in the numerator and 

the value for the green dye (from the control cells) in 

the denominator.
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Bright Red and Bright Green

• We are interested in numerical ratios (converted to 

colors) for each spot on the microarray. 

• The color scale is meant to be easier to read when 

there are thousands of data points to examine.

The greater the induction 

the brighter the red

The greater the repressed 

the brighter the green
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Gradual Loss of Oxygen (I)

a) The graph of oxygen 

consumption over time

by yeast growing in a 

closed container.

b) Transcriptional 

response of three 

genes to the gradual 

loss of oxygen.
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Gradual Loss of Oxygen (II)

DNA microarray data given in the form of ratios. 

To calculate a ratio, one gene’s activity in cells gradually 

consuming all the available oxygen was divided by its 

activity in control cells with unlimited oxygen.
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The Need to Organize Data 

in Meaningful Patterns
• Measure the cellular response every 2 hours to 

a depletion of oxygen over a 10-hour period.

• At the end, the experiment produces:

5 x 6,200 = 31,000 gene expression ratios.

• How can we organize the data so as to see the 

genes that responded in similar ways to the 

depletion of oxygen?

• Organize the data into meaningful patterns.   
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Organizing Data: Example (I)

Data showing fold change (experimental/control) in mRNA

production of 12 hypothetical genes: gene C to gene N
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Organizing Data: Example (II)

Reorganization (clustering) of gene order from the previous table 

based on similarity of expression patterns or profiles
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• As can be seen from the example, when the 

genes are reorganized, or clustered, 

according to the similarity of their 

expression ratios, it is easier to detect 

genes with similar activity.

• If these ratios are then converted to 

colors, one can quickly understand patterns 

of gene activity.

Organizing Data: Example (III)
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Organizing Data: Example (IV)

a) Gene expression ratios from the 

previous table were converted to 

colors. Color conversion of ratios  

facilitates the interpretation of 

changes in gene expression profiles. 

b) Color scale used to convert 

induced genes to red and repressed 

genes to green. 

Genes with ratios of 1:1 are colored 

black.
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Organizing Data: Example (V)
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Organizing Data: Example (VI)
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Gene Expression Clusters (I)
• When gene expression 

ratios are clustered and 

converted to colors, trends 

are easier to see than when 

the data were unorganized 

ratios.

• When all 6,200 genes are 

clustered this way, the 

boxes are reduced to thin 

lines.
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Gene Expression Clusters (II)
Each row represents a 
different gene, and each 
column represents a different 
time point. Green indicates 
repression and red indicates 
induction of genes. Genes 
have been clustered so they 
are near other genes with 
similar expression patterns. 
Notice that the genes at the 
bottom were repressed for the 
first few time points.
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“What if?” Questions
• What would happen if we delete a transcription 

factor gene?

• What would happen if we overexpress a  

transcription factor?

• These questions are “discovery science” and not 

hypothesis driven.

• Cell and molecular biology have been powered by 

hypothesis-driven for many years.

• With the advent of genomic methods, such as 

microarrays, people are asking different types of 

questions: “What if …?”
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Anatomy Lesson of Dr. Nicolaes Tulp

1632 oil painting by Rembrandt Harmenszoon van Rijn
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If Rembrandt was Around Today

Source: Carlos Cordon-Cardo, Columbia University


