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ABSTRACT. At present, studies on microRNA mainly focus on 
the identification of microRNA genes and their mRNA targets. 
Although researchers have identified many microRNA genes, 
relatively few microRNA targets have been identified by experi-
mental methods. Computational programs designed for predicting 
potential microRNA targets provide numerous targets for exper-
imental validation. We used a Markov model to examine base-
pairing binding patterns of known microRNA targets. Using this 
model, potential microRNA targets in human species predicted 
by four well-known computational programs were assessed. Each 
potential target was assigned a score reflecting consistency with 
known target binding patterns. Targets with scores higher than 
the cutoff value would be identified by our model. The predicted 
targets identified by our model have base-pairing binding pat-
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terns consistent with known targets. This model was efficient for 
evaluating the extent to which a potential target was accurately 
predicted.

Key words: Markov chain model; Machine-learning method; 
MicroRNA target prediction; Maximum likelihood estimation; 
Potential target assessment

INTRODUCTION

MicroRNA (miRNA) is a new and large class of genes that do not encode pro-
teins. They produce roughly 22-nucleotide-long transcripts that recognize and bind to 
partially complementary sites in the 3’ untranslated regions of target genes in animals 
and, by unknown mechanisms, regulate protein production of the target transcripts. The 
earliest identified miRNAs, lin-4 and let-7, are involved in the timing of developmental 
processes and bantam has been shown to affect cell proliferation and death (Brennecke et 
al., 2003), and mir-14 regulates the expression of the cell death pathway and fat metabo-
lism (Xu et al., 2003).  To understand the biological functions of miRNAs, it is necessary 
to identify their targets. Although a large number of animal miRNAs have been identified, 
only a few targets are known and no experimental high-throughput method for target site 
identification has been published yet. The prediction of miRNA targets by computational 
approaches provides an alternative approach to assigning biological functions (Brown and 
Sanseau, 2005; Zhang et al., 2006). Currently, some computational approaches (Enright 
et al., 2003; Stark et al., 2003; Kiriakidou et al., 2004; Rajewsky and Socci, 2004; John et 
al., 2004; Rehmsmeier et al., 2004; Lewis et al., 2003, 2005; Krek et al., 2005; Rusinov 
et al., 2005; Burgler and MacDonald, 2005; Grun et al., 2005; Robins et al., 2005; Sae-
trom et al., 2005) have been successfully used to select potential targets for experimental 
validation. 

TargetScanS (Lewis et al., 2005), miRanda (John et al., 2004), PicTar (Krek et al., 
2005), and DIANA-microT (Kiriakidou et al., 2004) are the four well-known computa-
tional programs designed for predicting miRNA targets in humans. However, the numbers 
of the predicted targets by different programs are different, with only limited overlap in 
the top-ranking targets. Variation in the numbers of the predicted target comes from the 
selection criteria and the use of numerical cutoffs. For example, the complementarity 
criteria in TargetScanS (Lewis et al., 2005) are consecutive 6-nucleotide-length (positions 
2-7 from the 5’ end of the miRNA) complementary matches between miRNAs and their 
targets, whereas in PicTar (Krek et al., 2005), 7-nucleotide-length matches starting at 1 or 
2 of the 5’ end of the miRNA are required. Incidently, all known targets have no consecu-
tive matches at the 5’ end of miRNAs. Moreover, the targets predicted by miRanda and 
DIANA-microT have more combinational base-pairing complementary match patterns 
in the 5’ end of miRNAs. In order to improve the complementarity criteria, we present a 
Markov model, which can be learned from complementary patterns of the known miRNA 
targets. Using the model learned from the known targets (i.e., the training data set), 86% 
(110 of 128) of the training data were recovered, when the false positive was controlled 
within 5%. A target would be identified by our model when its scores were more than the 
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cutoff value. The results shows that although only 35% of the targets (5433 of 15433) 
predicted by miRanda were identified by the model, the identifying rate was increased to 
70% (471 of 671) when the common targets predicted by both miRanda and PicTar were 
assessed. The improved rate proved that the targets identified by the model had higher 
probabilities of being true targets.

First-order non-homogeneous Markov chain model

The accuracy of computational prediction of miRNA targets is improved by the 
thorough refinement of training sets, rules for defining complementarity and statistical 
approaches (Brown and Sanseau, 2005). In this paper, a novel statistical approach, first-
order non-homogeneous Markov chain, is presented to explore base-pairing complemen-
tarity patterns of miRNA targets using the known targets as the training data set.

Our Markov chain model is a generative model. The 0-1 sequences generated 
by the model represent miRNA-target complementarity base-pairing binding patterns. 
In order to highlight miRNA base-pairing binding patterns, rather than to highlight its 
target’s, a simplified 0-1 sequence was adopted to represent miRNA binding patters. 
Generally speaking, a base-pairing binding structure, such as a binding structure 
between an miRNA: 3’ UUGAUAUGUUGGAUGAUGGAGU 5’ and its gene target: 
5’...AAACUCAGAGGUCCUCCUACCUCU...3’ can be given as in Table 1a or 
1b. After being simplified, a 0-1 sequence miRNA 3’1111000000111011111110 5’ 
was adopted to represent the binding structure. Three kinds of information may be 
discarded in order to have the miRNA base-pairing binding patterns highlighted (see 
Table 2 for a further description).

a.	 target	 5’	 A					     C	 A	 G	 A	 G	 G	 U				    C								        U	 3’
				    A	 A	 C	 U								        C	 C	 U		  C	 U	 A	 C	 C	 U	 C		
				    |	 |	 |	 |								        |	 |	 |		  |	 |	 |	 |	 |	 |	 |		
				    U	 U	 G	 A								        G	 G	 A		  G	 A	 U	 G	 G	 A	 G		
	 mRNA	 3’						      U	 A	 U	 G	 U	 U					     U								        U	 5’

b.	 target	 5’	 A	 A	 A	 C	 U	 C	 A	 G	 A	 G	 G	 U	 C	 C	 U	 C	 C	 U	 A	 C	 C	 U	 C	 U	 3’
				    |	 |	 |	 |								        |	 |	 |		  |	 |	 |	 |	 |	 |	 |		
	 mRNA	 3’		  U	 U	 G	 A	 U	 A	 U	 G	 U	 U		  G	 G	 A	 U	 G	 A	 U	 G	 G	 A	 G	 U	 5’

c.	 target	 5’	 A	 A	 A	 C	 U	 C	 A	 G	 A	 G	 G	 U	 C	 C	 U	 C	 C	 U	 A	 C	 C	 U	 C	 U	 3’
				    |	 |	 |	 |								        |	 |	 |		  |	 |	 |	 |	 |	 |	 |		
	 mRNA	 3’		  1	 1	 1	 1	 0	 0	 0	 0	 0	 0		  1	 1	 1	 0	 1	 1	 1	 1	 1	 1	 1	 0	

d.	 mRNA	 3’		  1	 1	 1	 1	 0	 0	 0	 0	 0	 0		  1	 1	 1	 0	 1	 1	 1	 1	 1	 1	 1	 0	

Table 1. The representation of miRNA-target binding structure.

a. and b. = general binding structures between miRNA: 3’ UUGAUAUGUUGGAUGAUGGAGU 5’ and its 
gene target: 5’...AAACUCAGAGGUCCUCCUACCUCU...3’; c. = binding structure with 1 or 0 substituted for 
nucleotide name at each site of miRNA corresponding to it pairing or not. d. = 0-1 sequence representation.

On the basis of the 0-1 sequence representation, a generative chain model was pre-
sented. Each 0-1 sequence can be viewed as being generated by the model with a certain 
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probability. Since the 0-1 sequence stemming from biological molecular sequence (i.e., 
the miRNA sequence), we assume that the 0-1 sequence has a first-order Markov property. 
Besides, since different sites have significantly different properties with respect to base-
pairing binding statistical characteristics, a non-homogeneous rather than homogeneous 
Markov model is adopted.

Specifically, we assign two states for the ith base site of 22-nucleotide-length miRNA 
from 5’ to 3’, state 1 and state 0. Either state can be viewed as a value of a variable si. State 

a.	 target	 5’	 A					     C	 A	 G	 A	 G	 G	 U				    C								        U	 3’
				    A	 A	 C	 U								        C	 C	 U		  C	 U	 A	 C	 C	 U	 C		
				    |	 |	 |	 |								        |	 |	 |		  |	 |	 |	 |	 |	 |	 |		
				    U	 U	 G	 A								        G	 G	 A		  G	 A	 U	 G	 G	 A	 G		
	 mRNA	 3’						      U	 A	 U	 G	 U	 U					     U								        U	 5’

b.	 target	 5’																								                        U	 3’
				    A	 A	 C	 U								        C	 C	 U		  C	 U	 A	 C	 C	 U	 C		
				    |	 |	 |	 |								        |	 |	 |		  |	 |	 |	 |	 |	 |	 |		
				    U	 U	 G	 A								        G	 G	 A		  G	 A	 U	 G	 G	 A	 G		
	 mRNA	 3’																								                        U	 5’

c.	 target	 5’																								                        U	 3’
				    U	 U	 G	 A								        G	 G	 A		  G	 A	 U	 G	 G	 A	 G		
				    |	 |	 |	 |								        |	 |	 |		  |	 |	 |	 |	 |	 |	 |		
				    A	 A	 C	 U								        C	 C	 U		  C	 U	 A	 C	 C	 U	 C		
	 mRNA	 3’						      U	 A	 U	 G	 U	 U					     U								        U	 5’

d.	 target	 5’	 A	 A	 A	 C	 U	 C	 A	 G	 A	 G	 G	 U	 C	 C	 U	 C	 C	 U	 A	 C	 C	 U	 C	 U	 3’
				    |	 |	 |	 |								        |	 |	 |		  |	 |	 |	 |	 |	 |	 |		
	 mRNA	 3’		  1	 1	 1	 1	 0	 0	 0	 0	 0	 0		  1	 1	 1	 0	 1	 1	 1	 1	 1	 1	 1	 0	

e.	 target	 5’	 A	 A	 A	 C	 U								        C	 C	 U	 C	 C	 U	 A	 C	 C	 U	 C	 U	 3’
				    |	 |	 |	 |								        |	 |	 |		  |	 |	 |	 |	 |	 |	 |		
	 mRNA	 3’		  1	 1	 1	 1	 0	 0	 0	 0	 0	 0		  1	 1	 1	 0	 1	 1	 1	 1	 1	 1	 1	 0	

Table 2. Structure example indicating the advantage of the 0-1 sequence representation.

To highlight the miRNA base-pairing, three kinds of information can be discarded. 1) Target base alphabets. 
Although the target base alphabets are a necessary component in the miRNA-target binding structure, 
eliminating them would be helpful to highlight the miRNA binding pattern characteristics. For example, 
(a) and (b) have different target base alphabets, but they shared common miRNA-binding pattern: miRNA 
3’ 1111000000111011111110 5’; 2) base alphabets of miRNA. We substitute 1 or 0 for nucleotide names 
(A, U, G, C) along with miRNA sites corresponding to their pairing or not. The base-pairing status can be 
highlighted disregarding the detailed nucleotide. For example, (a) and (c) have different miRNA nucleotides, 
but they shared a common miRNA-binding pattern: miRNA 3’ 1111000000111011111110 5’; 3) internal 
loop and bulge loop in miRNA-target secondary structure. Given a 0-1 sequence, such as miRNA 3’ 
1111000000111011111110 5’, it is uncertain whether the subsequence 000000 comes from an internal loop of 
(d) or a bulge loop of (e) or other structures. That is to say, we cannot discriminate the internal loop and bulge 
loop corresponding to subsequences of consecutive 0’s. Actually, the discrimination of the internal loop 
and bulge loop just helps in the calculation of miRNA-target free energy. With respect to the base-pairing 
binding patterns, the internal loop and bulge loop basically show little difference. Therefore, the simplified 
representation we adopted (i.e., 0-1 sequences) keeps the focus on the base-pairing complementary pattern 
of miRNA along with its sites.
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1 stands for forming Watson-Crick pairing, while the state 0 stands for unforming pairing. 
From the state si, either the next state 1 or 0 can be transferred with probability pi

si,0
 or pi

si,1, respectively, as shown in Figure 1. The 0-1 sequence s1 s2 s3 …s22 is the input of the model.  
pi

si, si + 1
 (i = 1…21) is the model parameter, standing for probability of the ith base site with 

the state si transferring to the i + 1th base site with the state si + 1. Therefore, the probability 
of the 0-1 sequence s1 s2 s3 …s22, such as, 0111111101110000001111 (from 5’ to 3’ end of 
miRNA), being generated by the above model is

(Equation 1)P0
1* P0,1

1* P1,1
2 * …* P1,1

7* P1,0
8 * P0,1

9 *…* P1,1
21

where P0
1 is the probability of the state 0 occurring at the 1st base site and is one of the other 

kind of model parameter Psi
i (I = 1…22). It stands for the probability of the ith base site being 

with the state si.

Figure 1. First-order non-homogeneous Markov chain model.

The model parameters are not only used for calculation of the probability of the input 
being generated by the model, but also contribute to reflecting characteristics of base-pairing 
binding patterns. Specifically, the higher the pi - 1

si - 1, si = 1
 (i.e., pi - 1

1,1 and pi - 1
0,1) and pi

1 are, 
the more probable it is that the ith base site forms Watson-Crick pairing. Moreover, pi

1,1 and 
pi

0,0 reflect consecutive formed or unformed base-pairing transfers whereas pi
1,0 and pi

0,1 reflect 
non-consecutive ones.

All of the model parameters can be estimated by maximum likelihood estimation 
method.

pi
0,0 = ni

0,0 / n
i
0 , pi

0,1 = ni
0,1 / n

i
0,

pi
1,0 = ni

1,0 / n
i
1 ,  pi

1,1 = ni
1,1 / n

i
1

pi
0 = ni

0 / n, pi
1 = ni

1 / n

(Equation 2)
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Given training data sets, ni
si,

 si+1
 is the total number of the 0-1 sequences with the ith 

state being si and the i+1th state being si+1 (i = 1…21, si = 0,1); ni
si
 is the total number of the 

0-1 sequences with the ith state being si (i = 1…21) and n is the number of all 0-1 sequences.

RESULTS

Estimation of model parameters based on known miRNA targets
 
Using 128 0-1 sequences, corresponding to 128 known human miRNA-target 

base-pairing bindings structures downloaded from TarBase (Sethupathy et al., 2006; 
Supplementary Table 1), the model parameters pi

si, si + 1 and pi
si 

were estimated. Their 
values are shown in Figures 2 and 3.

Figure 2. The learned model parameters of transition probability pi
si,si + 1 from i = 1 to i = 21.

Figure 3. The learned model parameters of probability pi
si

 from i = 1 to i = 22.

The characteristics of base-pairing binding patterns reflected by these parameters are 
also illustrated. See Figure 4 for a further description.
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Figure 4. The average values of the model parameters. The upper graph shows the average (AVG) values of transition 
probabilities AVG (pi

si,si + 1
) and the lower graph shows the average values of probabilities AVG (pi

si
). The figure shows 

that the probabilities of forming Watson-Crick pairing in the 5’ end of miRNA sites are higher than those in the rest of 
miRNA sites. These kinds of higher probabilties are obvious since the probabilities pi

si = 1
, pi

si = 1, si + 1 = 1 and pi
si = 0, si + 1 = 1 

are higher when i = 1 to 7 than those when i = 8 to 21. In other words, the average values of these probabilities in the 5’ 
end of miRNA sites, AVG (pi

si = 1
) = 0.93, AVG (pi

si = 1, si + 1 = 1
) = 0.94 and AVG (pi

si = 0, si + 1 = 1
) = 0.75 (sites from i = 1 to 

i = 7) are significantly higher than AVG (pi
si = 1

) = 0.53, AVG (pi
si = 1, si + 1 = 1

) = 0.56 and AVG (pi
si = 0, si + 1 = 1

) = 0.41 (sites 
from i = 8 to 21), respectively. On the other hand, the tendency toward consecutiveness can be shown by comparing pi

1,1 
and pi

0,0 with pi
1,0 and pi

0,1. AVG (pi
si = 0, si + 1 = 0

) = 0.53 and AVG (pi
si = 1, si + 1 = 1

) = 0.60 are both significantly higher than the 
average ones of which sites have the different states with the next sites, that is to say, AVG (pi

si = 0, si + 1 = 1
) = 0.44 and AVG 

(pi
si = 1, si + 1 = 0

) = 0.36 in the whole range. It shows that the consecutive Watson-Crick pairing in the whole range is more 
probable than the non-consecutive one.

Owing to the asymmetry of the 5’ end and the 3’ end, the probability parameters of the 
different ends have different significance. Figure 5 indicates that the probability parameters 
of base sites at the 5’ ends of miRNAs are more efficient for recognizing the known miRNA 
targets. See Figure 5 for a further description.

Figure 5. The recognition rates with the same 5% false-positive rate at different miRNA site region. The 10-length 0-1 
subsequences have 210 = 1024 different permutations. Each one of them has 1/1024 odds to be selected under entirely 
random condition. On the other hand, each 0-1 subsequence has a probability of being generated by the Markov model. 
Therefore, when we select the top 5% of all the permutations ordered by the probability values, the false-positive 
rate is 5%. Each 0-1 subsequence in the top 5% of all the permutations was a pattern identified by the Markov model 
and all the identified patterns made up an identified pattern set. A 0-1 subsequence of the known miRNA target was 
recognized by the Markov model when it was in the identified pattern set. The recognition curve shows that when the 
0-1 subsequences of base sites from 2 to 11 were adopted, the recognition rate achieved a maximum value of 87%.
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Recognizing 86% of the known targets with only 5% false positive

As mentioned above, considering the asymmetry of 5’ end and 3’ end of miRNA, we 
do not have to use all transition probabilities from site 1 to 21. As shown in Figure 5, using 
the probability parameters from site 2 to 11 (simply denoted as 2..11) achieved the maximal 
recognition rates of 87%.

There are troubling 10-nucleotide-length 0-1 subsequences, such as A and B in Table 
3, which are in the identified pattern set, but are not consistent with any of the known miRNA 
target’s 0-1 subsequence. In other words, if a candidate potential miRNA target has the 0-1 
subsequence of A or B, it would be identified by the Markov model although it is not consis-
tence with any of the known miRNA targets. This kind of false identifying was eliminated 
when the 0-1 subsequences were restricted within base sites from 2 to 8, with almost the same 
recognition rate as within sites from 2 to 11. Table 4 shows that when the 0-1 subsequences 
was restricted from 2 to 8, the identified pattern set contained altogether six patterns and all six 
patterns were included in the known miRNA targets’ pattern set.

	 5’	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 3’

A		  *	 1	 1	 1	 1	 1	 0	 0	 1	 0	 1	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	
B		  *	 1	 1	 1	 1	 1	 0	 1	 0	 0	 1	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	
C		  *	 1	 1	 1	 1	 1	 1	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	
D		  1	 1	 1	 1	 1	 1	 1	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	

Table 3. Some special 0-1 subsequence patterns.

	 Number of distinct known	 Number of all	 Number of distinct high scored	 Recognition rate
	 target patterns with score	 permutation patterns with	 patterns not included in the known	 with 5% false
	 higher than cutoff	 score higher than cutoff	 target pairing patterns	 positive

2..11	 20	 51	   51-20 = 31	 87%
2..10	 13	 26	   26-13 = 13	 86%
2..9	 10	 12	 12-10 = 2	 84%
2..8	   6	   6	     6-6 = 0	 86%

Table 4. Numbers of distinct high-scored patterns not included in the known target pairing pattern of the 5’ 
end of miRNA.

At last, we adopt probability parameters from site 2 to 8 of miRNAs. The probability of 
the 0-1 subsequence 5’ s2s3s4s5s6s7s8 3’ produced by our generative Markov chain model is

(Equation 3)P(s2s3s4s5s6s7s8) = p2
s2

*p2
s2,s3

*p3
s3,s4

*p4
s4,s5

*p5
s5,s6

*p6
s6,s7

*p7
s7,s8

Next, we defined the score of the 0-1 subsequence as the log value of the probability. 
Thus, the cutoff score was -1.68 when we restricted the false-positive rate at 5%. With a false rate 
of 5, 86% of the known miRNA targets were recognized. The six 0-1 subsequences altogether in 
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the identified pattern set are listed in Table 5. Among the 128 known miRNA targets, 110 targets 
of them (86% targets of 128 targets) were identified by our model, such as let-7b and its target 
Lin28 (Kiriakidou et al., 2004) and miR-375 and its target Mtpn (Poy et al., 2004). These two 
targets have consecutive base-pairing from site 2 to 8 of the miRNAs. Whereas binding between 
miR-23 and its target HES1 (Kawasaki and Taira, 2005) has nonconsecutive base-paring from 
site 2 to 8 of the miRNA, but their base-pairing binding pattern is identical to one of the six pat-
terns listed in Table 5 and was identified by our model. Binding between miR-181 and its target 
Tcl1(Pekarsky et al., 2006) has unpaired base at site 2 and 6 of the miRNA and is one of the 18 
targets, which were not identified by our model since the score of its base-pairing binding pattern 
in our model was -3.23, which was lower than the cutoff score -1.68. See Supplementary Table 1 
for the detailed information of all known miRNA targets identified by our model.

	 5’	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 3’	 Score

A		  *	 1	 1	 1	 1	 1	 1	 1	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *		  -0.19
B		  *	 1	 1	 1	 1	 1	 1	 0	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *		  -1.02
C		  *	 1	 1	 1	 1	 0	 0	 1	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *		  -1.40
D		  *	 1	 1	 1	 1	 0	 0	 0	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *		  -1.40
E		  *	 1	 1	 1	 1	 0	 1	 1	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *		  -1.63
F		  *	 1	 1	 1	 1	 1	 0	 1	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *	 *		  -1.68

Table 5. The six kinds of patterns learned from the training data sets.

The oldest miRNA target prediction program TargetScan uses sites from 2 to 8 in the 
5’ end as seed. That is to say, all predicted targets have perfect base pairing from 2 to 8 sites 
and its corresponding 0-1 sequence is shown in Table 5, A. With our model, the pattern rep-
resented by this 0-1 subsequence is scored the highest. Furthermore, the relaxed seed in the 
upgraded version TargetScanS requires perfect base pairing from 2 to 7 sites in the 5’ end and 
its corresponding 0-1 subsequences is shown in Table 3, C. Note that its corresponding 0-1 
subsequences from 2 to 8 sites are as shown in Table 5, A and B. With our model, these two 
patterns score the top two in all six patterns.

Both seeds of TargetScan and the upgraded version TargetScanS are identified by 
our model. This fact verified the ability of our model. Moreover, our model does not require 
perfect consecutive base-pairing sites any more. As we have shown, there are altogether six 
different combinational patterns that the binding between the miRNAs and their targets may 
follow. The diversity reflected by our model is more consistent with base-pairing binding 
characteristics of the known miRNA targets.

Assessing potential targets predicted by computational programs

TargetScanS, miRanda, PicTar, and DIANA-microT are the four well-known com-
putional programs designed for predicting miRNA targets. As mentioned above, TargetScanS 
predicted targets with perfect base-pairing binding from 2 to 7 sites, corresponding to two 0-1 
subsequence as shown in Table 5, A and B. That means, 100% of the potential targets predicted 
by TargetScanS can be identified by our model with the highest score. Furthermore, almost all 
potential targets predicted by PicTar have “perfect nuclei” 7-nucleotide-length perfect base-
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pairing sites as shown in Table 3, D. Corresponding to sites from 2 to 8, the patterns are also 
those listed in Table 5, A and B. “Perfect nuclei” also refer to 7-nucleotide-length perfect 
base-pairing sites as shown in Table 5, A. Apparently, all these patterns were identified by our 
model. In fact, not only “perfect nuclei” but also “imperfect nuclei” can be identified by our 
model with scoring higher than the cutoff value.

Although the targets predicted by DIANA-microT and miRanda passed through our 
model with 92 and 35% recognition rate, respectively, rather than 100%, these data just show 
that all targets predicted by these two programs are not consistent with the currently known 
target binding patterns. The recognition rates of the four computational programs identified by 
our model are listed in Table 6.

	 Number of predicted targets	 Number of predicted targets	 Percentage of predicted targets
		  identified by our model	 identified by our model

TargetScanS	 15,000	 15,000	 100%
PicTar	 66,484	 66,484	 100%
DIANA-microT	 94	 87	   92%
miRanda	 15,433	   5,433	   35%

Table 6. Percentages of predicted miRNA targets identified by our model in the four computational programs.

As we all know, the common potential targets predicted by two different computa-
tional programs will have higher probabilities of being true targets than by only one program. 
Our model highlighted this kind of higher probabilities by the fact that 70% (473 of 671) 
of common potential targets predicted by both MiRanda and PicTar were identified by the 
model, while 35% (5,433 of 15,433) of targets were predicted by only one program, miRanda 
(as shown in Table 7). This shows that our model was an efficient method in evaluating the 
extent to which a potential target was accurately predicted. The common 473 identified targets 
predicted by both MiRanda and PicTar are listed in Supplementary Table 2.

	 Total number	 Targets identified by our model	 Identification rate

Predicted by miRanda	 15,433	 5,433	 5,433/15,433 = 35%
Predicted by both miRanda and PicTar	 671	 4731	 473/671 = 70%

Table 7. Identification rate of common targets predicted by two computational programs.

1Note: each of the common 671 targets predicted by two computational programs might have different predicted 
binding patterns due to different programs. Therefore, 473 of 671 binding sites predicted by miRanda are identified 
by our model while 100% of 671 binding patterns predicted by PicTar are identified by our model.

Known miRNA target library

TarBase (Sethupathy et al., 2006) is a database of experimental supported miRNA tar-
gets in 8 species. We queried the database on all miRNA targets that satisfied such conditions: 
1) belonging to human species; 2) being true miRNA targets as determined by experimental 
testing, and 3) inhibition by translational repression mechanism. All targets are listed in the 
Supplementary Table 1.
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Predicted miRNA targets using DIANA-microT include targets for 10 human 
miRNAs and we downloaded the “Supplementary Table 1” from the paper by Kiriakidou 
et al. (2004), which contains these predicted targets from http://www.genesdev.org/cgi/
content/full/1184704/DC1.

Predicted human miRNA targets using miRanda include genome-wide targets 
conserved cross mammals and we downloaded “Table S3” from the paper by John et al. 
(2004), which contains genes targeted by miRNA from http://biology.plosjournals.org/
perlserv/?request=get-document&doi=10.1371/journal.pbio.0020363#JOURNAL-PBIO-
0020363-ST002.

Predicted miRNA targets using PicTar include genome-wide targets up to eight verte-
brate species and we downloaded the “Supplementary Table 3” from the paper by Krek et al. 
(2005), which contains targets conserved in human, chimpanzee, mouse, rat, and dog for a set 
of 168 microRNAs from http://www.nature.com/ng/journal/v37/n5/abs/ng1536.html.

Predicted miRNA targets using TargetScanS include genome-wide targets conserved 
cross five vertebrate species and we downloaded the “Supplementary Table S2” from the pa-
per by Lewis et al. (2005), which contains targets conserved in human, mouse, rat, dog, and 
chicken from http://www.cell.com/cgi/content/full/120/1/15/DC1/.

DISCUSSION

When there are already so many miRNA target prediction computational programs and 
a large number of potential targets to be verified by experiments, a model that can limit the set of 
predicted targets to a small one, which is more consistent with known targets, is a valuable tool.

The known miRNA targets provided valuable information on miRNA-target interaction 
patterns. In this paper, a first-order non-homogeneous Markov chain was devised for represent-
ing the characteristics of the  base-pairing complementarity binding patterns between miRNAs 
and their targets and the model parameters were estimated based on the known miRNA targets.

In order to identify microRNA target sites, Rajewsky and Socci (2004) proposed a 
computational method with which GC and AU relative weights were learned from known 
miRNA targets. MicroRNA GC content was further studied by Davis et al. (2008). Compared 
to GC content, miRNAs and their targets base-pairing binding pattern characteristics represent 
more critical rules to be followed in the process of identifying miRNA targets.

We developed the idea of learning from known miRNA targets to construct base-
pairing binding patterns and learned the patterns based on the first-order non-homogeneous 
Markov chain model. The more known miRNA targets are validated, the more accurately the 
patterns learned from our model represent the true characteristics of miRNA-target binding.

The fact that our model identified a greater percentage of common targets predicted 
by two computational programs than by only one program shows that our model is efficient in 
identifying targets consistent with known miRNA targets.

Extracting a large amount of statistical data, such as structural features, thermody-
namic features and position-based features, miTarget (Kim et al., 2006) showed a support vec-
tor machine-learning classifier method to predict miRNA targets. Compared to this method, 
we strongly emphasized on the miRNA-targets base-pairing binding pattern characteristics, 
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which are the most critical feature among all kinds of features in the process of miRNA targets 
prediction. Using the only one feature, we successfully identified potential targets that are con-
sistent with the training data sets with respect to miRNA-targets base-pairing binding pattern. 
In the future research, we will develop our model to add more features to be considered as well 
as definitely discriminating contributions of different features in the model.

Among the several rules for identifying miRNA targets, the critical one is the rule of 
limiting base-pairing binding pattern. Most of the previous computational prediction programs 
first searched in the whole genome for the targets satisfying certain base-pairing binding pat-
tern rules between miRNA and its targets and then applied other rules in this relative small 
searched target set than the whole genome. This shows that well-designed base-pairing bind-
ing rules are strongly necessary for miRNA target computational programs. However, the 
base-pairing binding pattern rules in all of the present computational programs require fixed 
patterns, rather than flexible ones determined by known miRNA target patterns. Our method 
constructed these flexible base-pairing rules using the Markov chain model.

Our method can be used to perform a second search after having a candidate miRNA 
target set predicted by any available computational program. The second search results con-
tained targets, which were more consistent with the known miRNA target base-pairing pat-
terns. For those researchers who are accustomed to certain miRNA target prediction com-
putational programs, our method is a convenient and efficient tool to obtain a more refined 
candidate target set.
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