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Genome-wide association studies (GWAS) have emerged as an
important tool for discovering regions of the genome that harbor
genetic variants that confer risk for different types of cancers.
The success of GWAS in the last 3 years is due to the convergence
of new technologies that can genotype hundreds of thousands of
single-nucleotide polymorphism markers together with compre-
hensive annotation of genetic variation. This approach has pro-
vided the opportunity to scan across the genome in a sufficiently
large set of cases and controls without a set of prior hypotheses in
search of susceptibility alleles with low effect sizes. Generally,
the susceptibility alleles discovered thus far are common,
namely, with a frequency in one or more population of >10%
and each allele confers a small contribution to the overall risk for
the disease. For nearly all regions conclusively identified by
GWAS, the per allele effect sizes estimated are <1.3. Conse-
quently, the findings of GWAS underscore the complex nature
of cancer and have focused attention on a subset of the genetic
variants that comprise the genomic architecture of each type of
cancer, which already can differ substantially by the number of
regions associated with specific types of cancer. For instance, in
prostate cancer, there could be >30 distinct regions harboring com-
mon susceptibility alleles identified by GWAS, whereas in lung
cancer, a disease strongly driven by exposure to tobacco products,
so far, only three regions have been conclusively established. To
date, >85 regions have been conclusively associated in over a dozen
different cancers, yet no more than five regions have been associ-
ated with more than one distinct cancer type. GWAS are an impor-
tant discovery tool that require extensive follow-up to map each
region, investigate the biological mechanism underpinning the
association and eventually test the optimal markers for assessing
risk for a disease or its outcome, such as in pharmacogenomics, the
study of the effect of genetic variation on pharmacological inter-
ventions. The success of GWAS has opened new horizons for
exploration and highlighted the complex genomic architecture of
disease susceptibility.

Introduction

The history of human genetics has focused on mapping regions of
the genome that can explain part or all of a disease or human trait.
With the generation of a draft of the human genome in 2001,
geneticists quickly set out to comprehensively annotate the genome
and apply the evolving knowledge of the pattern of genetic variation
to investigate both monogenic, Mendelian disorders and complex
diseases, the latter of which by nature are polygenic (1–4). Until
recently, the scope and breath of human variation was certainly
underappreciated until the advent of early maps of common variants,

such as the single-nucleotide polymorphism (SNP), the most common
variant in the genome (1,5–7). It is notable that a comprehensive set of
genetic variation has shifted the analysis paradigm to finding genetic
contributions to complex disease, whereas the capacity to capture
environmental exposures and lifestyle decisions is far more rudimen-
tary, even though these factors are essential for understanding complex
diseases and traits.

For many years, human genetics has successfully mapped uncom-
mon mutations with large effect sizes in studies conducted in fam-
ilies or special populations, such as the BRCA1/BRCA2 mutations in
Ashkenazi women with breast cancer and ovarian cancer (8). The
search for highly penetrant mutations in familial aggregation has
been based on genetic linkage analysis, an approach that has used
microsatellite markers across the genome to scan for markers that
segregate within a family (9,10). Based on the identification of link-
age peaks using rigorous statistical approaches, follow-up of regions
was pursued based on strong signals. Because of the wide spacing of
markers across the genome, signals often pointed to regions over
multiple megabases that in turn required sequencing large regions
of the genome in search of the causative mutations, a daunting task
in scope and until recently hampered by technical limitations. None-
theless, successes in families loaded with melanoma, breast cancer
and sets of cancers (Li-Fraumeni Syndrome) (8,11–14) are notable
and provided an important substantiation of the approach of using
markers indirectly. In retrospect, the use of markers to conclusively
identify regions for detailed analysis has been an important lesson
for mapping germ line genetic variants associated with risk for
cancer, but the approach yielded only mutations with very strong
effects.

Over the past 20 years, a parallel approach has been pursued to
discover common genetic variants that confer susceptibility to
different types of cancers. Initially, association studies were con-
ducted using a handful of annotated genetic variants for which
a strong hypothesis could be formulated. In a genetic association
study, the analysis consists of a comparison of the distribution of
a marker allele between cases and controls, in search of a statistical
difference that can be reflected in an estimated effect size—usually
quite small compared with mapped linkage signals due to highly
penetrant mutations. Naively, at first, investigators searched for
alleles with high estimated effect sizes (e.g. per allele odds ratios
. 2.0), but with time, it has become apparent that common alleles
confer small risk overall in sufficiently large case–control studies
of unrelated subjects, the primary study design for association
analyses (15).

Nominally, investigators focused on SNPs that altered the coding
sequence and resulted in a non-synonymous change, namely a shift
in the amino acid sequence of the protein. The approach was pred-
icated on a more simplistic model: changes in the amino acid content
would lead to a pronounced (e.g. measurable) change in function and
thus influence the disease or trait of interest. Due to the inadequately
sized studies, issues of study design and the overestimation of effect
size, nearly all published candidate gene association studies, prob-
ably represent false positives. In this regard, the candidate gene
approach has yielded very few notable findings, namely those that
are conclusive and do not represent false positives. To date, perhaps
a handful have been adequately replicated and confirmed in follow-
up studies. For example, GSTM1 null and NAT2 slow acetylator
genotypes have been associated with increased overall risk of blad-
der cancer and could account for up to 31% of the disease because of
their high prevalence (16). Similarly, candidate genes have shown
robust findings for a promoter SNP in TNF in non-Hodgkin’s lym-
phoma and a coding variant in CASP8 in breast cancer (17,18). But
overall, very few candidate studies have yielded convincing results
worthy of the enormous investment of time to pursue the biological
basis of the association.

Abbreviations: CNV, copy number variation; GWAS, genome-wide associa-
tion studies; LD, linkage disequilibrium; MAF, minor allele frequency; PSA,
prostate serum antigen; SNP, single-nucleotide polymorphism.

� The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 111

 by on A
pril 27, 2010 

http://carcin.oxfordjournals.org
D

ow
nloaded from

 

http://carcin.oxfordjournals.org


In the early part of the new millennium, candidate gene studies
expanded in scope, looking at sets of genetic markers across a gene
of interest. This transition adopted the use of sets of markers defined
on the basis of genetic correlation, known as linkage disequilibrium
(LD) discussed below. Often, markers are located in introns or inter-
genic regions, raising the possibility that genetic variants could alter
expression or regulation of a gene, thus not only widening the
spectrum of variants to be examined but also increasing the scope
of underlying mechanisms. As this approach began to find variants
associated with cancer risk, the focus was on markers for risk. For
examples, Garcia-Closas et al. (19) identified a promising marker
near the VCAM1 gene in association with bladder cancer as part of
an exploration of genes in several pathways related to cancer bi-
ology. Again, the approach was hypothesis driven, in that specific
genes were chosen for the best markers but the scope was enlarging
and increasing the number and types of variants explored (20).

In 1996, Risch and Merikangas argued that for complex diseases,
such as most cancers, large scale linkage studies will be both dif-
ficult and not as well powered to detect susceptibility alleles with
low estimated effect sizes, of the type that are probably to contrib-
ute in a polygenic model (15,21,22). Instead, they suggested that
large-scale association testing could be more efficient and more
effective (15,21) in the discovery phase. Moreover, the practicality
of collecting large sets of family pedigrees was identified as a daunt-
ing, and perhaps overwhelming challenge. Indeed, the age of ge-
nome-wide association studies (GWAS) has established the
association study as an integral tool for discovering the contribu-
tion of common genetic susceptibility alleles to different types of
cancer.

The value of conducting statistically sound studies that are well
powered has become a central tenet of the GWAS era because of
the enormous risk for false-positive discovery. The threshold for dis-
covery has been established at a high level, known as genome-wide
significance, which serves two dual purposes (23,24). First, it neces-
sitates careful consideration of the power to detect the effect sizes
expected to be observed in the study. Second, the high bar of genome-
wide significance protects against the probability of a false-positive
finding (25,26). The latter is critical because GWAS are discovery
tools that point investigators toward long arduous follow-up studies
for unraveling the underlying biology and the pursuit of markers for
risk assessment (27).

Background

The scope of genetic variation

Based on the international annotation projects and the sequencing of
nearly a dozen full human genomes, the spectrum of human genetic
variation is enormous with respect to the types of genetic variation
and the magnitude of variants in any given genome (28–34). Although
two genomes are estimated to differ by ,0.5%, there are at least
several million differences, only a small subset of which contributes
to disease risk while the majority is probably vestigial. The most
common type of variation is a single-nucleotide base substitution,
known as the SNP. Next generation sequence analysis has begun to
identify the large set of small insertions or deletions in sequence
(30,35,36). Progressively, larger structural alterations and copy num-
ber variants are fewer in absolute number but impact more bases
across the genome (Figure 1).

Most common variants namely those with a minor allele frequency
(MAF) .5% are common to all populations, although the distribution
of allele frequencies can vary greatly across the globe (37). Ascer-
tainment estimates for lower frequency variants depend on both the
number of subjects as well as the population genetic history of those
examined. With next generation sequencing applied to high-profile
regions in large numbers, greater complexity in different human pop-
ulations is emerging, particularly with variants of lower frequency
(36,38,39). Interestingly, the scope of structural variants is much
greater than previously recognized, though the majority of large-scale
polymorphisms appear to be less common, namely ,1–5% in unre-
lated populations, unlike SNPs and insertions and deletions, of which
there are millions with frequencies .5%. Accordingly, the GWAS
approach in unrelated subjects has been most successfully applied
to SNPs and it has been far less successful applied to structural var-
iants, also known as copy number variations (CNVs).

The most common sequence variation in the germ line genome is
SNP, which, by definition, is observed in at least 1% of a population.
By definition, the MAF is a relative term and applies to the allele with
the lower frequency at a locus in a reference population. In many
instances, there can be major differences in MAFs between popula-
tions with distinct histories. For the common SNPs (MAF .5%),
,10% of SNPs are specific to a given population (28,37). This
observation suggests the common ancestry of common SNPs. The
literature suggests that there are at least 10 million SNPs with

Fig. 1. Types of genetic variations in the human genome. Common types of genetic variations can be categorized into two major groups—those that involve single
base changes (e.g. SNPs) and those that alter more than one base (e.g. microsatellites or structural variants).
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a MAF .1% (40–42) and 5 million SNPs with a MAF .10% (3,4,40)
but recent large-scale sequencing efforts, such as the 1000 Genome
project, indicate that these estimates are low (www.1000genomes.org/
) (43). In fact, there could be double or triple the earlier estimates.
Lastly, there is a small subset of SNPs that are tri-allelic; at a given
base on the reference genome, there can be three different bases,
though these are rare, they can be formidable technical challenges
for quality control metrics.

It is estimated that between 50 000 and 250 000 common SNPs
could be biologically active, as non-synonymous coding variants or
regulators of gene expression or splicing (7,15). For candidate gene
studies, there was a premium assigned to SNPs in coding regions,
usually based on in silico predictions. These coding SNPs, known
as cSNPs, can be divided into non-synonymous variety (which alters
the predicted amino acid codon) and synonymous SNPs (which do not
alter the codon sequence). The latter are far more common and less
probably alter function. Though intense interest has been directed at
non-synonymous SNPs, few have been conclusively associated with
human diseases and even fewer have corroborative biological data to
provide plausibility for the association (7,15). There has been consid-
erable effort to predict the effect of a non-synonymous cSNP and
putative conformational protein changes, but the biological signifi-
cance is based on laboratory evidence only. Recently, it has emerged
that there are subset of SNPs that alter regulation or expression of
a gene. These regulatory SNPs are difficult to identify using infor-
matic tools and thus have to be defined on the basis of laboratory
data (44).

More than 5 million human SNPs of the international public re-
pository for SNPs, known as dbSNP (www.ncbi.nih.gov/SNP/), have
been validated to date with genotyping assays by the SNP Consortium
and the International HapMap Project (1,28). Until recently, sequence
validation was applied to a small subset but this is about to shift with
the completion of the 1000 Genome Project, so that the majority of
entries will be sequence based (45,46). Historically, many variants in
dbSNP are monoallelic, due to either genotyping error or, more prob-
ably, sequencing errors (47,48). It is notable that the reported SNPs
have been biased toward high-frequency variants in populations of
European ancestry. The catalog of uncommon variation, namely SNPs
with MAF under 1%, is incomplete but the 1000 Genome Project
is expected to generate a catalog of variants between 0.5 and 5%
frequency, which will complement the International HapMap of com-
mon variants above 5–10%. Already, the latest build of dbSNP has
.20 million variants, mainly less common ones. In addition, dbSNP
contains downloads from many disease-specific mutation databases,
which will make the curation and utility of less common variants even
more daunting for analytical approaches toward prioritization of var-
iants for study. Still, the contribution of uncommon variants represents
an untapped portion of the genomic architecture and will necessitate
new approaches toward mining these variants for cancer susceptibil-
ity. Highly penetrant disease mutations are cataloged in a public da-
tabase, the Online Mendelian Inheritance in Man or OMIM
(www.ncbi.nlm.nih.gov/sites/entrez?db5OMIM/).

The spectrum of genetic variation in the genome can range from
single base substitutions to small insertions/deletions to structural
variations that can be cytologically observed. The short tandem re-
peat, also known as the microsatellite, represents a class of polymor-
phisms used in linkage analysis that are defined by repeats of two or
more nucleotides but display notable differences in the frequencies of
the repeat units. Typically, they are located in non-coding regions.
However, most large-scale structural variation is submicroscopic and
ranges in size from a few base pairs to thousands of base pairs (49,50).
Collectively, the submicroscopic variants are known as CNVs, a focus
of intense interest in large-scale association studies. Estimates of
segmental duplications in the genome have been suggested to ap-
proach 10% of the genome, but most are not common enough to be
effectively analyzed using current GWAS (51–53). Current surveys
suggest that CNVs are less common than previously reported (54,55)
and in fact, perhaps, three-quarters of common CNVs are in LD with
common SNPs (55).

Correlation of common genetic variants

It has been observed that the majority of SNPs are not inherited in-
dependently but segments on a chromosome, inherited from genera-
tion to generation (41,56,57). A central concept in germ line genetics
is the inheritance of correlated markers on the same chromosome,
known as LD. It is defined as the non-random association between
allelic markers on a chromosome and is classically measured using
one of two estimators, D# or r2 (58). Individual SNPs that are strongly
correlated with each other are said to be in LD, but with time and
geographic distribution, LD can erode by recombination events (e.g.
exchange of genetic material) during meiosis (59).

Haplotypes are defined as sets of SNPs or polymorphisms (e.g.
insertions, deletions or large copy events) in strong LD, in which
one or more can serve as surrogates for the other markers on the
haplotype. A haplotype can be determined in most cases with family
trios but in GWAS or large association studies, family structure is
usually not available. Still, the offspring haplotype phase can be de-
termined if the parental genotypes are known or established by bio-
chemical methods and then applied to study to best estimate the
common haplotypes (58). However, the phasing of haplotypes is more
challenging in unrelated subjects but accurate estimates based by
well-developed statistical methods that can account for the ambiguity
of unobserved haplotypes can provide haplotypes with assigned proba-
bilities (58). Some have argued that haplotypes are preferable for can-
didate gene studies but for GWAS, the approach is laborious and less
nimble in analyzing the thousands of markers genotyped. The methods
are not as robust for conducting analysis across thousands of variants.

The appreciation of applying LD to the millions of SNPs observed
in human populations that has given rise to the fundamental principle
of GWAS, testing across the genome with well-chosen markers that
serve as surrogates for untested markers (60–62). The ‘indirect ap-
proach’ represents the first step in identifying regions with strong
association with cancer or a human trait and relegates the investiga-
tion of the optimal variants to study for understanding the biological
basis of the association signal (59). The commonly used approach to
select optimal SNPs is the ‘greedy algorithm’, which estimates highly
correlated SNPs, on the basis of MAFs and creates heuristic bins of
‘tagged’ SNPs. It is the set of tags that function as proxies for the
highly correlated untested variants (60).

Practical issues in GWAS

GWAS have emerged as a powerful tool to identify susceptibility loci
with low effect sizes in unrelated subjects with specific cancers and
related outcomes. Though epidemiologic design is important, in the
discovery phase, there has been a relaxation of epidemiologic rigor in
order to discover novel regions, mainly because of the need to gather
a sufficiently large enough data set to detect low effect sizes. Often,
groups have used convenient or publicly available controls for the dis-
covery analysis in GWAS (23), of which the Wellcome Trust Case
Control Consortium has been a notable example. These steps could come
at a cost, such as a slightly higher rate of false positives, or in related
manner, the apparent contradiction of regions or loci that do not robustly
replicate in separate scans, suggesting subtle, but real differences related
to selection and exposure criteria. Consequently, the estimates are
slightly unstable and maybe refined as better studies if analyzed with
high quality epidemiologic and environmental exposure data. In order to
meet the requirements of a sufficiently large enough data set to observe
significant differences between cases and controls, many scans, particu-
larly for rarer cancers, have had to amalgamate data sets.

Replication of results is critical in a separate comparable set of
studies (63). The value of replication is to guard against the blizzard
of false positives observed with common alleles with low effect sizes.
By scaling the studies, GWAS can effectively shed the majority of
false positives. The industry standard that has emerged has targeted
genome-wide statistical significance for a GWAS with a P value less
than between 5 � 10�7 and 1 � 10�8 using either a trend or genotype
test, adjusted for minimal cofactors/covariates (23,64–66).
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Because GWAS are conducted in unrelated subjects, there has been
intense interest in the background population substructure of cases
and controls. The capacity to examine thousands of markers with
minimal or no LD can be used to effectively discriminate differences
in population substructure (67–69). Population stratification is present
when there is a measurable difference in the distribution of alleles
between subgroups that have different population histories, which can
certainly alter association analyses, providing false-positive findings,
such as in early case–control studies, in which the cases and controls
were drawn from individuals of different populations. Stratification
between cases and controls based on differences in exposures can also
be problematic, but less so in GWAS. The ability to detect stratifica-
tion with sets of markers depends on the allele frequencies in each
subgroup (70). Subjects with admixture coefficients .15–20% can be
removed from association analyses (71) based on attempt to separate
subjects into groups and determining the distribution of shared alleles.
Further, detection of population stratification is conducted on the
GWAS data set to adjust simultaneously for a fixed number of top-
ranked principal components resulting from a principal component
analysis (67). The search for underlying subgroups in stratified sam-
ples can be investigated with genetic markers not linked to the phe-
notype, using a principal component analysis that yields eigenvectors,
used to adjust for possible inflation of test statistics due to stratifica-
tion (67,72,73).

One of the fundamental reasons for the success of GWAS has been
the foresight to collect biospecimens in case–control and cohort stud-
ies over the past decades, each of which affords advantages for study-
ing exposures or avoiding survivorship bias. Since the high
throughput genotype platforms that analyze thousands of commer-
cially determined SNPs and now CNVs demand high performance

DNA, most investigators have used native DNA—either from blood or
buccal cells. The latter works quite well when optimally collected and
extracted (74). Neither whole genome amplified DNA can be effec-
tively used in GWAS or can materials from tumor tissue (or its adja-
cent region) due to problems with allelic imbalance. High-quality
genotypes are generated using widely accepted quality control metrics
for SNP completion, sample completion, heterozygosity scores, test-
ing for fitness for proportion of Hardy–Weinberg equilibrium (70) and
assay verification with a second technology (75).

Scanning the genome with SNPs can be performed with commer-
cially available fixed products that provide hundreds of thousands of
SNPs, chosen either on the basis of the tag strategy, spacing across the
genome or inclusion of obligate SNPs either known or predicted to be
functionally important. Great importance has been attached to the
extent of ‘coverage’ afforded by the fixed content chips, which for
each commercial product has translated into higher cost for greater
coverage (24). The bias of the chips has been to select SNPs that most
efficiently tag common SNPs in individuals of European background
based on the successive builds of the International HapMap Project
(Figure 2). Specifically, the level of coverage is generally measured by
determining the percentage of ‘bins’ tagged by SNPs (with MAF . 5
or 10%) for each of the three HapMap II populations, individuals of
European background (known as CEU), Yoruban of West Africa (YRI)
and East Asians (CHN and JPN) (24,59,60). Over 500 regions of the
genome have now been conclusively associated (e.g. report signals with
P value ,5 � 10�7) in .100 human diseases or traits (76–78).

The analysis of dense genotyping data can be carried out with
publicly available tools in either Genotype Library and Utilities
(GLU) or PLINK (79), each of which permits archiving, manipulation
and basic analyses of data sets, including assessment of population

Fig. 2. Coverage of various genotyping platforms on HapMap II SNPs. The coverage of commercially available genotyping platforms in HapMap populations are
plotted based on estimates of linkage disequilibrium using r2, the correlation coefficient. A vertical bar depicts the cut off of an r2 5 0.8, which is commonly
used as a threshold to effectively tag monitored SNPs. The three HapMap populations of Phase II are labeled and the percentage estimated at the threshold is
provided. (A): Coverage plot in Yoruban population (Ibadan, Nigeria), (B): coverage plot in Japanese (Tokyo, Japan) and Han Chinese (Bejing, China) and (C):
coverage plot of US residents with northern and western European ancestry by the Centre d’Etude du Polymorphisme Humain (CEPH).
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substructure and association testing for SNPs. CNVs are more chal-
lenging because the primary image files have to be analyzed and qual-
ity control metrics applied to predict CNVs with varying degrees of
probability. It is this latter issue, together with the evolving annotation
of CNVs, which has hampered the widespread application of this type
of analysis to yield association results comparable to those from com-
mon SNPs. Consequently, only a handful of common CNVs have been
conclusively associated with complex diseases. In cancer GWAS, only
one conclusive finding has been reported, the association of a region
on chromosome 1 with the rare pediatric cancer neuroblastoma (80).

The first look at GWAS findings in cancer

Theme and variations

The age of GWAS and cancer have quickly ushered in a new era of
discovery of regions that harbor germ line genetic variants (common
and uncommon) associated with susceptibility to specific cancers.
Currently, .75 regions of the genome (some harboring multiple in-
dependent signals) have been conclusively associated with suscepti-
bility to specific cancers. Notably, in a handful of few circumstances,
more than one type of cancer maps to the same set of genetic variants
but overall, it appears that the contribution of common germ line
variation has a strong component of tissue specificity. It is also notable
that no single locus identified by the current crop of etiologically
driven GWAS has also been shown to influence outcome, as measured
by progression, disease stage, metastases or survivorship. This latter
observation suggests that the germ line factors responsible for devel-
opment of a cancer could differ from those genetic factors that sustain
carcinogenesis or lead to progression. It is interesting to note that for
the 29 independent loci identified in prostate cancer GWAS, so far, not
a single locus exclusively associates with the more aggressive form of
the disease (65,66,81–84). In the Cancer Genetic Markers of Suscep-
tibility Initiative of a GWAS in prostate cancer, the analysis plan
specifically addressed the early and advanced forms of prostate can-
cer, yet did not identify a locus specific to disease state (65,66,84).
Consequently, it will be necessary to conduct distinct GWAS in stud-
ies designed to address these important outcomes, but it will most
probably require new collections and collaborative networks to
achieve the required numbers to discover the low to moderate effect
alleles influencing cancer outcomes.

It was unanticipated that GWAS studies in certain cancers would
yield many novel regions (e.g. prostate cancer with perhaps 29, breast

cancer with 13 and colon with 10) (64,66,75,81–93), whereas other
cancers strongly associated with environmental exposures have
yielded so few regions: three for lung cancer in primarily smokers
and three in bladder cancer despite analysis of sufficiently large data
sets. Thus, it is plausible that the effect of tobacco use is substantially
stronger than any single region with low estimated effect sizes (below
1.3 in GWAS). The lung cancer findings are also notable in that the
strongest signal on chromosome 15q25 maps to a region that has also
been identified in GWAS of smoking phenotypes (94–97). Prior to
GWAS, it was also considered on the list of candidate genes because it
contains nicotine receptors (e.g. CHNRA3 and CHRNA5) (98,99).
Further studies are urgently needed in non-smoking cases and controls
to discriminate between signals that could be driven by tobacco ex-
posure versus primary carcinogenesis (94). Fine-mapping studies in
different populations may accelerate the pinpointing of the set of
variants in this region requiring further study to understand the bi-
ology underlying the association study.

There are few notable exceptions to the observation that the per
allele estimated effect is ,1.5 for alleles discovered in cancer GWAS
(100). In fact, most are ,1.3, and it is anticipated that more will be
discovered in the vicinity of 1.1–1.2 as consortial activities permit
meta-analyses with larger sets of scanned subjects (Figure 3). Still, it
was notable that two recent testicular cancer scans each identified two
regions with effect sizes considerably greater than what had been
observed previously in cancer GWAS. The loci mapped to regions
on chromosomes 5 and 12 that harbored candidate genes previously
implicated in testicular development, the ligand for the receptor tyro-
sine kinase (KITLG) and sprouty 4 (SPRY4). Moreover, the studies
were notable for the high effect sizes detected for chromosome 5,
namely .2.5, as well as the biological plausibility of the candidate
genes (101,102). This was not surprising in light of the marked in-
crease risk for family members (103,104). Another cancer with a fa-
milial aggregation, thyroid cancer, also yielded alleles with relatively
high estimated effect sizes, and interestingly, they were detected in
a small primary scan (105).

In select GWAS, the findings have pointed to genes previously
investigated in that cancer. Pancreatic cancer is a highly lethal disease
with a 5-year relative survival of ,5% (106), with known risk factors
of family history of pancreatic cancer, type 2 diabetes mellitus and
cigarette smoking. Interestingly, the first reported GWAS in pancre-
atic cancer identified a variant in an intron of the ABO blood group
antigen, which confirmed a finding suggested 50 years ago (107,108).

Fig. 3. The relationship between the estimated effect size and the allele frequency of disease susceptibility locus. The majority of disease susceptibility loci
identified by GWAS in different cancers have low effect size (per allele estimated effect size of 1.1–1.3).
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This is a striking example of how a GWAS hit points to a finding
previously described in the epidemiology literature and has been con-
firmed with a recent study, in which comparable effect sizes have been
observed by known blood type (109).

In prostate cancer, the signal on chromosome 10q13 points to a var-
iant in the promoter of the MSMB gene, which encodes a protein,
PSP94, under intense investigation as a biomarker for prostate cancer
(65,89). The T allele of rs10993994, 57 bp centromeric to the first
exon of the MSMB gene, showed significant association with prostate
cancer in two independent studies (65,89), and it is known to have
influence in the MSMB gene expression (prostate secretory protein 94,
PSP94) in tumor (110,111). Now that the region has been extensively
resequenced, further investigation of additional variants in strong LD
with rs10993994 is warranted and it is possible that a neighboring
gene, NCOA4, could also be a candidate gene for analysis because it is
an androgen receptor coactivator.

A GWAS of neuroblastoma, a rare pediatric cancer, has implicated
three different chromosomal regions, one of which is a copy number
variation at chromosome 1q21.1 (80,112,113). The first region is at
6p22 and it is plausible that the risk alleles have dosage effect on the
severity of disease by subgrouping patients into patients of metastatic
stage 4, patients with somatic MYCN amplification and patients with
relapse. The second region is at 2q35 within the BARD1 gene (112).

Despite the enormous effort focused on choosing candidate genes
or pathways, based on current models, so far, the results of cancer
GWAS have pointed to primarily new or unknown regions and genes.
However, there are a few notable exceptions, such as two GWAS of
pediatric lymphoblastic leukemia, which have uncovered three sets of
markers pointing to genes involved in B-cell development (114,115),
but the clustering of related genes has not been observed. Moreover,
for a disease such as breast cancer, which has been epidemiologically
linked to hormones, surprisingly, none of the major signals map to
regions harboring estrogen/progesterone genes in women of European
background. However, in a scan of Asian women, a GWAS convinc-
ingly discovered markers near the estrogen receptor alpha (known as
ESR1) (93).

Discovering more complexity

GWAS have uncovered a series of possible interesting and unexpected
relationships between different diseases. For example, three of the
regions identified in prostate cancer GWAS also map to type two
diabetes susceptibility regions. For some time, there has been a con-
troversial literature reporting an inverse relationship between type two
diabetes and prostate cancer; it is further speculated that the protec-
tion against prostate cancer is more apparent several years after the
diagnosis of diabetes. For two of regions, the markers appear to be
inversely related, namely the apparent risk allele for prostate cancer is
protective for diabetes for HNF1B on chromosome 17q24 and for
THADA on chromosome 2p21. The signal on chromosome 7p15 lo-
calizes to intron 2 of JAZF1, a very large gene, whereas the diabetes
signal, as well SNPs for height, body stature and systemic lupus
erythematosus are localized to a distinct region .200 kb away in
intron 1 with no residual LD, suggesting different variants.

Differences in study design can lead to important observations re-
lated to both the genetic and environmental contributions to cancer
etiology. In one notable instance, two distinct GWAS efforts in pros-
tate cancer have yielded different results for a region of chromosome,
19q13.33, that harbors the gene responsible for the prostate serum
antigen (PSA), used by many, but not all for screening for prostate
cancer (116,117). In one study, that used clinically advanced cases
with controls that had low PSA levels, a strong signal for a SNP in
KLK3 was observed, replicating with a substantially lower degree of
statistical significance in the follow-up studies, whereas in Cancer
Genetic Markers of Susceptibility Initiative, comprised of mainly co-
hort studies, there was little effect for prostate cancer risk
(39,89,118,119). In fact, the Cancer Genetic Markers of Susceptibility
Initiative analysis reported that the SNP in the region of KLK3 was

associated with PSA levels, raising the possibility that the locus could
be related to PSA levels instead of prostate carcinogenesis, though it is
possible it could be a both but further studies are needed. Indeed, now
that the KLK3 region has been resequenced, it will be possible to
investigate this issue with the optimal markers (36).

Most studies have relied on combining data from different designs
and often combining histologic or molecular subtypes of a classically
defined cancer. The result has been to identify regions that appear to
be associated with biological processes common to the development
of a tissue-specific type of cancer. For example, the follow-up analysis
of the initial set of signals identified in breast cancer GWAS suggests
that there could be a differential effect for some regions based on
estrogen receptor status for some regions (120). The preponderance
of estrogen receptor-positive cases in the discovery studies certainly
could have contributed to this observation, but additional reports have
identified regions with stronger effects in estrogen receptor-positive
subjects (92). In other GWAS, subtype GWAS have yielded convinc-
ing findings for a histologic subtype, such as the chromosome 5p15.33
locus in lung cancer (in predominately smokers), which is signifi-
cantly associated in the adenocarcinoma subtype but not in squamous
cell carcinoma (121,122). Similarly, in non-Hodgkin’s lymphoma,
distinct regions have been identified in the chronic lymphocytic leu-
kemia (114) and follicular subtypes (123). On the other hand, for the
associations with high effect sizes in testicular cancer, there was no
appreciable difference by subtype analysis for seminoma and non-
seminoma cancers, suggesting the common contribution of the two
regions to testicular carcinogenesis (101,102,124).

Based on follow-up fine mapping of the regions, often using Hap-
Map chosen SNPs or those defined by comprehensive resequence
analysis (36,38,39), intense effort has focused on the investigation
of the genomic architecture of each GWAS region. It is plausible that
more than one common variant, each with small effect sizes, could
contribute to cancer susceptibility and in fact, this has been demon-
strated in three regions identified in prostate cancer susceptibility. For
8q24, there are at least four distinct prostate cancer susceptibility loci
in men of European background (66,82,84,85,90,125). In men of
other backgrounds (e.g. African, East Asian or Latino/admixed), it
is possible that even more population-specific loci could be important
and perhaps partially explain some of the disease disparity among
different ethnic groups (85,90). For the HNF1B locus on chromosome
17q24, further mapping identified a second independent signal (126).
Similarly, the gene desert of 11q13 harbors at least two independent
signals and perhaps more (127).

Cancer GWAS Nexus regions

8q24, a cancer susceptibility region for many unrelated cancers

A region of �600 kb, centromeric to the well studied, MYC oncogene,
is a region that has been repeatedly discovered to harbor distinct in-
dependent markers associated with cancer risk (Figure 4). MYC enc-
odes for nuclear phosphoprotein that involves in growth regulation,
cell differentiation and apoptosis, and its amplification/overexpres-
sion is a frequent event in bladder tumors (128,129). The findings
have unexpectedly found that prostate, breast, colorectal, bladder
and perhaps ovarian cancers are associated with common genetic
variants in this region (66,75,82,88,90,130–134). The region is also
notable because it is frequently amplified in epithelial cancers and
does not harbor candidate genes, but instead several pseudogenes,
whose function and presence are not well established. In this regard,
the findings of 8q24 attest to the complexity of the region and the
likelihood that regulatory elements of both MYC and other regions
could underlie the cancer susceptibility.

The 8q24 region was first implicated as a prostate cancer risk locus
by a genome-wide linkage scan in Icelandic men, followed by iden-
tification of an allele of the microsatellite marker, DG8S737, and
A allele of rs1447295 from replication association studies in three
case–control samples of European ancestry from Iceland, Sweden and
USA (125). The region was also discovered by an admixture mapping
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in African-Americans (135). The SNP, rs1447295, was reconfirmed
by a large nested case–control study using 6637 cases and 7361
matched controls (91). Independent of the rs1447295, which marked
as ‘region 1’, two independent loci, rs16901979 and rs6983267,
marked as region 2 and region 3, respectively, centromeric to the
region 1 were identified by three independent studies (66,82,90). No-
tably, the rs16901979 showed clear association in African-Americans
with higher risk allele frequency than Europeans. In two recent stud-
ies, another independent prostate cancer susceptibility locus rs620861
was identified, located in between region 2 and region 3 and over-
lapping with a region previously identified in a breast cancer GWAS
(81,84,136).

For colorectal cancer, four different studies reported the same var-
iant, rs6983267 (in region 3 of prostate cancer), as the strongest signal
by GWAS (88,90,132,137). Recently, published work has begun to
generate insights in the functional nature of the rs6983267 variant,
which has only two other variants in strong LD compared with
rsw1447295 with 49 variants in strong LD (36,138,139). The two
studies suggest that in colorectal cancer, rs6983267 shows long-range
interaction with MYC as well as possible enhancement of the Wnt-
signaling pathway. Interestingly, the prostate specific effect is more
complex and as of now, not well explained except for the presence of
multiple regions across the 600 kb of 8q24.

Kiemeney et al. (130) reported that the T allele of rs9642880 lo-
cated �30 kb upstream of MYC oncogene showed significant associ-
ation with bladder cancer (odds ratio 5 1.22, P5 9.34 � 10�12). Wu
et al. (140) reported that rs2294008 located in exon 1 of PSCA on the
other side of MYC is significantly associated with bladder cancer risk.
Since the SNP, rs2294008, is located in the exon 1 of PSCA and yields
a missense variant that alters the start codon, Wu et al. further
performed an in vitro reporter assay using the four most frequent
haplotypes of the PSCA 5# upstream region including rs2294008
and showed significantly lower promoter activity of the T allele-
containing haplotypes.

5p15.33

Common variants in the TERT-CLPTM1L locus on 5p15.33 have been
identified by GWAS to harbor susceptibility alleles for cancer of the
brain and lung (96,97,122,141,142). For lung cancer, it appears that
the signal is strongly associated with the adenocarcinoma subtype and
not squamous or other subtypes (122). In the region, there is an
attractive candidate gene, TERT, the reverse transcriptase component
of the telomerase a gene that is critical for telomere replication and
stabilization by controlling telomere length. TERT promotes epithe-
lial proliferation and telomere maintenance has been implicated in the
progression from KRAS-activated adenoma to adenocarcinoma in
a murine model (143,144). There is additional evidence for associa-
tions with cancer of the bladder, prostate, uterine cervix and skin

including basal cell carcinoma and melanoma based on candidate
studies in follow-up of GWAS hits (145).

This region is particularly interesting because of the scope and
spectrum of allele frequencies associated with diseases. Mutations
in the TERT gene have been described in acute myelogenous leuke-
mia and in the inherited bone marrow failure family pedigrees
with dyskeratosis congenita, a cancer predisposition syndromes
(146,147). Mutations in the TERT gene have also been described in
patients with idiopathic pulmonary fibrosis (148,149) and in families
with hematologic disorders and serious liver fibrosis (150). Mutations
in TERT have also been shown to result in shorter telomeres
and explain a subset of those with familial idiopathic pulmonary
fibrosis (151).

Conclusions

The age of genome-wide association studies in cancer have ushered in
a new era of discovery of regions of the genome harboring common
genetic susceptibility alleles that require extensive effort to map the
signal to define the optimal variants for investigating the biological
basis of the association. For nearly all signals identified, the markers
have not immediately uncovered variants that can easily explain the
signal and in most cases, appear to be variants not in coding regions
that instead of shifting the amino acid sequence, probably alter the
regulation of one or more complex genetic processes. In this regard,
GWAS are the first step toward identifying novel regions and path-
ways associated with both primary carcinogenesis and probably
gene–environment interactions.

To make sense of the known GWAS signals and to find more
signals, some that could explain major disparities in incidence and
outcomes by ethnic backgrounds, it will be critical to conduct
GWAS in populations with distinct population genetic histories
(and different underlying LD structures) as well as to map known
hits in other populations. The age of GWAS has not only uncovered
new regions but perhaps provided insights in a subset of the regions
that require refined analyses, such as the effect of tobaccos usage and
lung cancer risk to unravel the complex nature of these types of
cancer.

The recent genomic revolution has produced a comprehensive map
of genetic variation that has enabled research to scan the genome in
search of statistically sound signals worthy of follow-up. However,
the ability to survey environmental and lifestyle exposures is not
nearly as advanced, thus hampering the opportunity to explore the
dynamic relationship between genomic variants and the environment.
Lastly, the age of GWAS is actually the beginning of a new age, one
characterized by many new regions of the genome worthy of pursuit
as candidate genes to explore the common as well as uncommon
variants that contribute to the risk of different cancers.

Fig. 4. Linkage disequilibrium pattern and cancer susceptibility loci indentified in 8q24 region. The 8q24 region harbors multiple cancer susceptibility loci
identified by GWAS. The linkage disequilibrium heat map was drawn using HapMap I þ II release 22 CEU data from 127 948 to 128 950 kb genomic region
(reference build 36.3). The arrowheads indicate probable recombination hotspots according to the HapMap I þ II. Five distinct regions have been associated with
prostate cancer risk (regions 1–5). Region 3 is also conclusively associated with colorectal cancer and precancerous colorectal adenomas. Region B harbors
a breast cancer susceptibility locus rs13281615, and BL indicate a bladder cancer susceptibility locus rs9642880, which is telomeric to the region 1, and �30 kb
centromeric to the MYC oncogene.
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