
American University of Armenia June 2016
Introduction to Bioinformatics

https://docs.python.org/release/2.6.8/tutorial/controlflow.html#intermezzo-coding-style
©2016 Sami Khuri
	

Python Coding Style

Most languages can be written (or more concise, formatted) in different
styles; some are more readable than others. Making it easy for others to
read your code is always a good idea, and adopting a nice coding style
helps tremendously for that.

For Python, “Python Enhancement Proposal 8”, also known as “PEP 8”,
[see https://www.python.org/dev/peps/pep-0008/] has emerged as the
style guide that most projects adhere to; it promotes a very readable and
eye-pleasing coding style. Every Python developer should read it at some
point; here are the most important points extracted for you:

• Use 4-space indentation, and no tabs.

4 spaces are a good compromise between small indentation (allows
greater nesting depth) and large indentation (easier to read). Tabs
introduce confusion, and are best left out.

• Wrap lines so that they don’t exceed 79 characters.

This helps users with small displays and makes it possible to have
several code files side-by-side on larger displays.

• Use blank lines to separate functions and classes, and larger blocks of
code inside functions.

• When possible, put comments on a line of their own.

• Use docstrings: string line(s) that occurs as the first statement in a
module, function, class, or method definition, enclosed between """.

• Use spaces around operators and after commas, but not directly inside
bracketing constructs. Example: a = f(1, 2) + g(3, 4).

• Name your classes and functions consistently; the convention is to use

o CamelCase for classes, and
o lower_case_with_underscores for functions and methods.

Always use “self” as the name for the first method argument.
For more on classes and methods, see “A First Look at Classes” at
https://docs.python.org/release/2.6.8/tutorial/classes.html#tut-firstclasses

• Don’t use fancy encodings if your code is meant to be used in
international environments. Plain ASCII works best in any case.

