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Importance and Abundance 
of Motifs 

•  DNA motifs are nucleotide sequence patterns of 
functional significance. 

•  Examples: 
– The TATA box is a motif that helps RNA 

polymerase find the transcription start site 
(TSS) in many eukaryotic genes. 

– The CAT box is another highly conserved 
region used for the initiation of transcription.  
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From DNA to Protein 
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Ungapped sequence alignment of eleven E. coli sequences defining a start codon. 
www.clcbio.com ©2016 Sami Khuri 
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E.Coli Promoter Sequences 
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Anatomy of an Intron 

logo logo logo 
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Conserved Sequences  
in Introns 

The conserved nucleotides in the transcript are  
recognized by small nuclear ribonucleoprotein  
particles (snRNPs), which are complexes of protein and  
small nuclear RNA. A functional splicing unit is  
composed of a team of snRNPs called a spliceosome. 

©2016 Sami Khuri 

Sequence Motifs 
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Detecting Motifs 
A motif is a sequence pattern of functional significance. 
Example: The TATA box is a motif that helps the  
polymerase find the transcription start site. 
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Creating Tables of Frequencies 
The probability of having an A in the first position is: 61/389 = 0.1568 
The probability of a T in the second position is: 309/389 = 0.7943 
Similarly for all 4 bases at all 15 positions. 
We can thus create a table of frequencies.  
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Creating Log-Odds Tables 
Instead of creating a table of frequencies, we create a table of log-odds. 
Suppose that the genome-wide average G and C content is 44%. 
Then the probability of an A is 0.56/2 = 0.28.  
 
log2 (0.1568/0.28) = log2 (0.56) = - 0.84.    
Note that the base of the logarithm here is 2. 
Similarly, log2 (0.7943/0.28) = 1.5. 
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The Log-Odds Tables 
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Taking Log-Odds 
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What is the Significance  
of Log-Odds 

•  If the nucleotide is more likely to occur at a 
given position than it is to occur overall, the 
ratio will be bigger than 1.0 and the log odds 
is positive. 

•  If the nucleotide is less likely to occur at a 
certain position than it is to occur overall, then 
the ratio will be smaller than 1.0 and the log 
odds is negative.  
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Using Log-Odds Tables (I) 

Table MM2.2 was constructed as explained in the previous slides; in other words, 
by taking the log of the ratio of the observed frequency over the expected frequency. 
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Using Log-Odds Tables (II) 

To see if a sequence of length 15 is a TATA box, we simply add the corresponding  
values from the PWM and see if we get a value above some threshhold.  
In the example above, we add the 15 highlighted numbers to get 6.78. 

©2016 Sami Khuri 



6.4 

June 2016 

©2016 Sami Khuri 

American University of Armenia 
Introduction to Bioinformatics 

Designing Logos 
•  A logo is a visual representation of a set of aligned 

sequences that indicates the positional preferences as 
given by information theory. 

•  A logo gives a visual representation of the motif. 
•  The size of the character in the stack of characters is 

proportional to the character’s frequency in that position. 
•  The total height of each column is proportional to its 

information content. 
•  Information theory quantifies the amount of 

information 
©2016 Sami Khuri 

Entropy and Logos 
•  The entropy of a random variable is a measure 

of the uncertainty of the random variable. 
•  The entropy (uncertainty) in position j is 

defined as: 
            Hj = -∑ fx,j log2 (fx,j)   

    where  
 fx,j  is the frequency of character x in position j, 

   the summation is over all the characters x, and 
   the entropy units are bits of information. 
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Logos with Proteins 
•  Recall: entropy in position j is defined as: 

            Hj = -∑ fx,j log2 (fx,j)   
•  If only one residue is found at position j, all 
    terms are zero and  Hj = 0. 

– Note, by convention: (0)log2(0) = 0.  
–  In other words, there is no uncertainty at this position. 

•  The maximum value of Hj occurs if all residues are 
present with equal frequency.  
–  In this case: Hj = -∑ (1/20)log2 (1/20) = log2(20). [amino acids]  
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Logos with Proteins:  
An Example 

•  The information present in the pattern at position j is 
denoted by Ij and is given by: 

 

            Ij = log2(20) - Hj  

                                  = log2(20) + ∑ fx,j log2 (fx,j)   
 

•  In other words, the information content Ij at position  j 
is defined as the "opposite" of its uncertainty.  

•  Note that a position with a perfectly conserved residue 
will have the maximum amount of information. 
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Logos with Proteins:  
An Example 

•  Recall:          Ij = log2(20) - Hj  

                                       = log2(20) + ∑ fx,j log2 (fx,j)   
•  The information content is a number between 0 and 

log2(20) bits and measures the conservation of a 
position in a profile. 

•  Since conserved positions in sequence families are 
considered to be functionally or structurally 
important, they should stand out when the profile is 
visualized.  
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Logos with Proteins:  
An Example 

•  Recall: 
            Ij = log2(20) - Hj  

                                  = log2(20) + ∑ fx,j log2 (fx,j)   

•  At every position of the logo, the residues are 
represented by their one-character letter having a 
height proportional to their contribution which is 
equal to the product: (fx,j)(Ij). 
 
 

 

©2016 Sami Khuri 



6.5 

June 2016 

©2016 Sami Khuri 

American University of Armenia 
Introduction to Bioinformatics 

Logos with Bases 
•  Define: 

  Ij = log2(4) - Hj  = 2 + ∑ fx,j log2 (fx,j )   
   where fx.j is the frequency of character x at position j. 

11 sites 
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Consensus Sequence and PWM 
•  All current methods for representing DNA motifs 

involve either consensus sequences or probabilistic 
models (such as PWM) of the motif.  

•  Consensus sequences do not adequately represent the 
variability seen in promoters or transcription factor 
binding sites.  

•  Both consensus sequences and PWM models assume 
positional independence. Neither method can 
accommodate correlations between positions.  

•  Probabilities calculated from PWM models can be 
highly misleading.  
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Classification Based 
Statistics 

•  Quantitative method to evaluate:  
•  how well one can distinguish between 

cases and controls. 
•  how well a diagnostic test performs in 

testing for some disease. 
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With this test, how many  
people that are actually ill 
will I catch? 
                   OR 
The likelihood of spotting  
a positive case when  
presented with one. 
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With this test, will I tell 
too many people they  
might be ill? 
                 OR 
The likelihood of spotting  
a negative case when  
presented with one. 
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Medical Test Evaluation 

■  True Positives = Test states you have the disease 
when you do have the disease

■  True Negatives = Test states you do not have the 
disease when you do not have the disease

■  False Positives = Test states you have the disease 
when you do not have the disease

■  False Negatives = Test states you do not have the 
disease when you do
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Evaluating Medical Tests 
■ Sensitivity =The probability of having a positive test 

result among those with a positive diagnosis for the 
disease
– Sensitivity 
   = True Positives / True Positives + False Negatives

■ Specificity = The probability of having a negative test 
result among those with a negative diagnosis for the 
disease
– Specificity 
   = True Negatives / True Negatives + False Positives 
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