

					0.000			A		A A A					00000	1000							SAL .	No.	AN
E.Coli Promoter Sequences																									
	1					/ 1.175			00	ne										٦					
					5	Ŭ	ĸ													I.					
						ŀ	٩UG		1	rans	crip	tior	۱												
(a)					5'\	~	\sim	N	\sim	\$															
			rom	oter	_		-	(odi	ng s	equ	ence	e of	gen	e										
	_																				-	-	-		
(b) Stro	ng E. d	oli p:	rom	oters	5	1	ATG																		
tyr tRNA	тстс	AACG	TAA		TTA	CAG	cGO	GCG	•••	GTO	ATT	TG	ATA	TG	TO	i۰	GC	сc	c G	стт	cc	C G	A T /	A	GG
rrn D1	GATC		AAA	T A C T	TGT	GCA	AAA	AA	• • T	TGG	GAT	cc	CTA	TAA	LT C	CG	сc	τс	c g	TTG	AG	A C	GAO	A	CG
rrn X1	ATGC	ATTT	TTC	GCT	TGT	CTT	CCI	GA	•••	CCG	ACT	cc	CTA	TAA	IT O	CG	cc	тс	C A	TCG	A C	A C	GG	G	i A T
rrn (DXE)2	CCTG	AAAT	TCA	GGT	TGA	стс	TG	AA	•••	AGG	AAA	GC	GTA	A T A	TA	c.	GC	CA	cc	TCG	C G	AC	AG	G/	GC
rrnEl	CTGC	AATT	TIT	TAT	TGC	GGC	CTO	CG	G	AGA	ACT	CC	CTA	1 A A		CG	cc	TC		ICG	AC.	AC	GGG	G	AT
rrn A2	GCAA	444 I			TGA	CTC	TGI	AG		666	ACI	in C	GTA	TT			AC	AC			GC	A C		Α (. Α Α : Δ Δ
	och A				, JA														+1				*		
Consensu for most <i>l</i>	is sequ E. <i>coli</i> p	ience: promo	s oters	Ľ	TTGA -3	CAT		1	5-1	7 b j)		TA	TAA - 10	T										
																					201	16 8	ami	Kh	iri

						40			HAD A				9		
	C	re	at	in	g	Lo	g.	0	d	ls	Т	ab	le	S	
Inste Supp The	ead o pose n the	of cr that pro	eatin the babi	g a ta geno lity c	able c me-w f an /	of fre vide a A is 0	quer ivera 0.56/	ncies nge (2 = (, we G an 0.28	crea d C (ite a conte	table nt is	of lo 44%	og-0 6.	dds.
log ₂ Note Simi	(0.1 e tha ilarl	568/ at the	0.28 bas) = lo e of t .7943	og ₂ (0 he log 6/0.28	.56) = garith	= - 0 1m h .5.	.84. iere i	is 2.						
log ₂ Note Simi Table M	(0.1 e tha ilarl M2.1 M	568/ it the y, log lucleotid	0.28 bas g ₂ (0 le frequ) = lo e of t .7943 encies in	og ₂ (0 he log 5/0.28 389 know	.56) = garith () = 1 n TATA b	= - 0 nm h .5. oxes.	0.84. iere i	is 2.						
log ₂ Note Simi Table Mi Position	(0.1 e tha ilarl <u>:</u> M2.1 N	568/ at the y, log lucleotid 2	0.28 bas g ₂ (0 le frequi 3) = loe of t.7943encies in4	og ₂ (0 he log 5/0.28 389 know	.56) = garith () = 1 m TATA b	= - 0 nm h .5. oxes. 7	0.84. iere i	is 2.	10	11	12	13	14	15
log ₂ Note Simi Table Mi Position	(0.1 e tha ilarl M2.1 M 1 61	568/ at the y, log lucleotid 2 16	0.28 basing basing b) = lot = lot = 1 .7943 .7943 .7943 .7943	bg ₂ (0 he log 6/0.28 389 know 5 354	.56) = garith () = 1 n TATA b 6 268	= - 0 nm h .5. oxes. 7 360	0.84. here i	is 2. 9 155	10 56	11 83	12 82	13	14	15 77
log ₂ Note Simi Table Mi Position A C	(0.1 e tha ilarl M2.1 M 1 61 145	$\frac{568}{46}$	0.28 basing $g_2(0)$ le frequina 3 1352 0	f(x) = loce of t.7943encies in4310	$\frac{\log_2 (0)}{\log_2 (0, 28)}$ $\frac{1}{389 \text{ know}}$ $\frac{5}{354}$ 0	(.56) = 1 garith (.5) = 1 n TATA b 6 268 0	= - 0 hm h .5. oxes. $\frac{7}{360}$ 3	8 8 222 2	9 155 44	10 56 135	11 83 147	12 82 127	13 82 118	14 68 107	15 77 101
log ₂ Note Simi Table M Position A C G	(0.1 e tha ilarl M2.1 N 1 1 145 152	568/ at the y, log lucleotid 2 16 46 18	0.28 basing $g_2 (0)$ le freque 3 352 0 2	$f(x) = \log x$	bg ₂ (0 he log 3/0.28 389 know 5 354 0 5	$\begin{array}{l} (.56) \\ \text{garith} \\ (.56) \\ (.5$	= - 0 1.5. 0xes. 7 360 3 10	8 8 222 2 44	9 155 44 157	10 56 135 150	11 83 147 128	12 82 127 128	13 82 118 128	14 68 107 139	15 77 101 140

©2016 Sami Khuri

					-		_	÷ .		_					
		1	Γh	le	LC)g-	0	dc	ls	Ta	ab	le	S		
Table M	M2.1	Nucleo	otide free	quencies	in 389 k	nown TAT	A boxes.								
Position	1	2	3	4	5	6	7	8	9	10	11	12	18	3 14	
A	61	16	352	8 3	35	4 26	B 36) 222	155	56	83	8	2 8	32 6	8
С	145	46	6 () 10) (0 :	3 2	44	135	147	12	7 11	18 10	7
G	152	18	1 2	2 2		5	0 1) 44	157	150	128	12	3 12	28 13	9 .
T	31	309	35	374	3) 12	1 (6 121	33	48	31	5	2 6	61 7	5
Table M	M2.2	Positic	n weigh	t matrix.				ļ							
	84 -	2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.5
A -0.		n on	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
A -0. C 0.	76 -	0.00													
A -0. C 0. G 0.	76 - 83 -	2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.7

©2016 Sami Ki

		U	sir	ıg	Lc	og-	0	dd	s '	Га	bl	es	(1)	
a	le MM2	.2 Posit	ion weigh	t matrix.		<u> </u>							<u> </u>	<u> </u>	
ł	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.5
;	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
1	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.7
	-1.81	1.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.6
a															
0	A A	.3 PWM	score of	the 15 t	p sequen A	CE ACAT	ATATA A	AGCTG T	З. А	A	G	С	T	G	G
	A -0.84	C -2.77	A	the 15 b T -5.18	p sequen A 1.70	CE ACAT T 1.30	ATATA A 1.76	AGCTG T 1.03	3. A 0.51	A -0.96	G -0.39	C -0.41	T -0.41	G -0.68	G -0.50
	A -0.84 0.76	C -2.77 -0.90	A 1.69 -99.00	the 15 b T -5.18 -3.10	p sequen A 1.70 -99.00	T 1.30 -99.00	ATATA A 1.76 -4.80	AGCTG T 1.03 -5.42	3. A 0.51 -0.96	A -0.96 0.66	G -0.39 0.78	C -0.41 0.57	T -0.41 0.46	G -0.68 0.32	G -0.50 0.24
	A -0.84 0.76 0.83	C -2.77 -0.90 -2.25	A 1.69 -99.00 -5.42	the 15 b T -5.18 -3.10 -5.42	ρ sequen A 1.70 -99.00 -4.10	T 1.30 -99.00	ATATA A 1.76 -4.80 -3.06	AGCTG T 1.03 -5.42 -0.96	3. A 0.51 -0.96 0.88	A -0.96 0.66 0.81	G -0.39 0.78 0.58	C -0.41 0.57 0.58	T -0.41 0.46 0.58	G -0.68 0.32 0.70	G -0.50 0.24
	A -0.84 0.76 0.83 -1.81	C -2.77 -0.90 -2.25 1.50	A 1.69 -99.00 -5.42 -1.64	the 15 b T -5.18 -3.10 -5.42 1.78	A 1.70 -99.00 -4.10 -1.86	T 1.30 -99.00 -99.00 0.15	ATATA A 1.76 -4.80 -3.06 -4.14	AGCTG T 1.03 -5.42 -0.96 0.15	A 0.51 -0.96 0.88 -1.72	A -0.96 0.66 0.81 -1.18	G -0.39 0.78 0.58 -1.81	C -0.41 0.57 0.58 -1.07	T -0.41 0.46 0.58 -0.84	G -0.68 0.32 0.70 -0.54	G -0.50 0.24 0.71 -0.62

E		ALC: NO						1 Martin	Bat		0000		3	Contraction of the	and a
1	Ales			(32)	:58:		A	100			135	:51	a , *	A	
		TT-		~	т –	~ (_ 1		L1.	~~	/T	T)	
Tał	ole MM2	2 Posit	ion weigh	S t matrix	LU	8-'		lu	5 1	la	DI	25	(L	IJ	
A	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.5
С	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
G	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.7
Т	-1.81	1.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.6
Təl	ole MM2 A	.3 PWM	l score of A	the 15 t	p sequer A	ice ACAT T	ATATA A	AGCTG T	G. A	A	G	C	T	G	G
Təl	Die MM2 A -0.84	.3 PWM C	I score of A 1.69	the 15 b T -5.18	p sequer A 11.70	ICE ACAT T 1.30	АТАТА А 1.76	AGCTG T 1.03	G. A 0.51	A -0.96	G -0.39	C -0.41	T -0.41	G -0.68	G -0.50
Təl	A A -0.84 0.76	C -2.77	A 1.69 -99.00	the 15 b T -5.18 -3.10	p sequer A 11.70 -99.00	T 1.30 -99.00	ATATA A 1.76 -4.80	AGCTG T 1.03 -5.42	G. A 0.51 -0.96	A -0.96 0.66	G -0.39 0.78	C -0.41 0.57	T -0.41 0.46	G -0.68 0.32	G -0.50 0.24
Tat A G	A -0.84 0.76 0.83	C -2.77 -0.90 -2.25	A 1.69 -99.00 -5.42	the 15 b T -5.18 -3.10 -5.42	A 1.70 -99.00 -4.10	T 1.30 -99.00 -99.00	ATATA A 1.76 -4.80 -3.06	AGCTG T 1.03 -5.42 -0.96	G. A 0.51 -0.96 0.88	A 0.96 0.66 0.81	G -0.39 0.78 0.58	C -0.41 0.57 0.58	T -0.41 0.46 0.58	G -0.68 0.32 0.70	G -0.50 0.24 0.71
Tat 3	A -0.84 0.76 0.83 -1.81	C -2.77 -0.90 -2.25 1.50	A 1.69 -99.00 -5.42 -1.64	the 15 b T -5.18 -3.10 -5.42 1.78	A 1.70 -99.00 -4.10 -1.86	T 1.30 -99.00 -99.00 0.15	ATATA A 1.76 -4.80 -3.06 -4.14	AGCTG T 1.03 -5.42 -0.96 0.15	G. A 0.51 -0.96 0.88 -1.72	A -0.96 0.66 0.81 -1.18	G -0.39 0.78 0.58 -1.81	C -0.41 0.57 0.58 -1.07	T -0.41 0.46 0.58 -0.84	G -0.68 0.32 0.70 -0.54	G -0.50 0.24 0.71 -0.62
Tat C G T	A =0.84 0.76 0.83 -1.81 To see value:	<u>c</u> -2.77 -0.90 -2.25 1.50 e if a s	A 11.69 -99.00 -5.42 -1.64 sequen 1 the P	the 15 b T -5.18 -3.10 -5.42 1.78 ce of WM a	A 1.70 -99.00 -4.10 -1.86 length ind see	T 1.30 -99.00 0.15 15 is a if we	ATATA A 11.76 -4.80 -3.06 -4.14 a TAT. get a	AGCTG T 1.03 -5.42 -0.96 0.15 A box value	G. A 0.51 -0.96 0.88 -1.72 , we s above	A -0.96 0.66 0.81 -1.18 imply e some	G -0.39 0.78 0.58 -1.81 r add t	C -0.41 0.57 0.58 -1.07 he cos	T -0.41 0.46 0.58 -0.84 rrespo	G -0.68 0.32 0.70 -0.54	G -0.50 0.24 0.71 -0.62
Tat C G T	A =0.84 0.76 0.83 -1.81 To see value: In the	C -2.77 -0.90 -2.25 1.50 e if a s s from exam	A 1.69 -99.00 -5.42 -1.64 sequen the P pple ab	the 15 b T -5.18 -3.10 -5.42 11.78 ce of WM a ove, v	A 1.70 -99.00 -4.10 -1.86 length ind see ve add	T 1.30 -99.00 -99.00 0.15 15 is a c if we the 15	ATATA A 1.76 -4.80 -3.06 -4.14 a TAT. get a b high	AGCTG T 1.03 -5.42 -0.96 0.15 A box value lighted	G. 0.51 -0.96 0.88 -1.72 , we s above	A -0.96 0.66 0.81 -1.18 imply e some	G -0.39 0.78 0.58 -1.81 r add t e three to get	c -0.41 0.57 0.58 -1.07 he con shholo 6.78.	T -0.41 0.46 0.58 -0.84 rrespc 1.	G -0.68 0.32 0.70 -0.54	G -0.50 0.24 0.71 -0.62

• **Information theory** quantifies the amount of information

• The entropy of a random variable is a measure

- of the uncertainty of the random variable. The entropy (uncertainty) in position *j* is
- defined as:

$$H_j = -\sum f_{x,j} \log_2 \left(f_{x,j} \right)$$

where

 $f_{x,j}$ is the frequency of character *x* in position *j*, the summation is over all the characters *x*, and the entropy units are bits of information.

Logos with Proteins: An Example

• Recall: $I_i = log_2(20) - H_i$

$$= \log_2(20) + \sum_{x,j} \log_2(f_{x,j})$$

- The information content is a number between θ and $log_2(2\theta)$ bits and measures the conservation of a position in a profile.
- Since conserved positions in sequence families are considered to be functionally or structurally important, they should stand out when the profile is visualized.

American University of Armenia

-Disease YES False True Positive Positive False Negative schmitzberger@stanford.edu ©2016 Sami K

Introduction to Bioinformatics

