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•  We have three states: 
  Rainy (R)    Cloudy (C)       Sunny (S) 

•  The weather on any day t is characterized by a 
single state.  

•  State transition probability matrix: 

 0.4   0.3   0.3⎡ ⎤
⎢ ⎥= 0.2   0.6   0.2⎢ ⎥
⎢ ⎥0.1   0.1   0.8⎣ ⎦

A

Three-State  
Markov Weather Model  
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Markov Weather Model 
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Markov Weather Model 
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Compute the probability of observing SSRRSCS given  
that today it is sunny (i.e., we are in state S). 
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•  Observation sequence:
•  Using the chain rule we get:

33 33 31 11 13 32 23
2 4
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Solving the Weather Example 
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States and Transitions 
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The Distressed Student Model 
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Evaluating Observations 

•  The probability of observing a given 
sequence is equal to the product of all 
observed transition probabilities. 

•  Suppose that: 
– L: student is in state Library 
– C: student is in state Coffee Shop 
– B: student is in state Bar 
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Starting State of the Student 

The Model has a Start State with transition probabilities of 
going to L, C, or B of 1/3. 
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 Behavior of Three Students 
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CL  CCCLCCCBCC :3 Student
BL LCBLBBCBBB :2 Student
LL LLLCBCLLBB  :1 Student
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Computing Observed 
Sequences 

•  The probability of observing a given 
sequence is equal to the product of all 
observed transition probabilities. 

•  Example: 
•  P(LLLCBCLLBBLL) 

 = 1/3 * 0.1 * 0.1 * 0.1 * 0.75 * 0.1 * 0.05  
      * 0.1 * 0.8 * 0.7 * 0.2 * 0.1  
 = 1.4 * 10-9  
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Computing Observed 
Sequences 

•  P(LCBLBBCBBBBL) 
 = 1/3 * 0.1 * 0.75 * 0.2 * 0.8 * 0.7 * 0.1        
* 0.75 * 0.7 * 0.7 * 0.7 * 0.2  
 = 1.4406 * 10-5   

 
•  P(CCCLCCCBCCCL) 

 = 1/3 * 0.2 * 0.2 * 0.05 * 0.1 * 0.2 * 0.2        
* 0.75 * 0.1 * 0.2 * 0.2 * 0.05  
 = 4 * 10-10  
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The Random Model  
The Null Hypothesis 
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Start State with Random 
Model  
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 Students with Random 
Model  
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101.8817 x  CL CCCLCCCBCC :3 Student
101.8817 x  BL LCBLBBCBBB :2 Student
101.8817 x  LL LLLCBCLLBB  :1 Student

=

=

=
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Odds and Log Ratios 

•  To determine the significance of the results 
obtained with the 3 students, compare them 
to the null model (random model) 

•  Odds Ratio =  
 P( x | Distressed Model) / P( x | Null Model) 

•  Log Odds = 
Log [P( x | Distressed Model) / P( x | Null Model)] 
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Likelihood Ratios: Distressed 

•  Likelihood ratios: 

•  Log likelihood ratios: 
 Student 1 =  log x  = - 10.39 
 Student 2 =   log y  =    2.94 
 Student 3 =  log z  = - 12.20 

z  101.8817 x  / 10 x 4    :3 Student
 y  101.8817 x  / 10 x 1.4406   :2 Student

 x  101.8817 x  / 10 x 1.4   :1 Student

6-10

6-5

-69

==

==

==

−

−

−
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The Successful Student Model 
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Students with Successful 
Model 

Coffee 
Shop 

Bar Library 

0.6 

0.2 
0.25 

0.9 

0.05 

0.05 0.05 

0.75 

0.15 Start 

0.33 

0.33 

0.33 

CL CCCLCCCBCC :3 Student
BL LCBLBBCBBB :2 Student
LL LLLCBCLLBB  :1 Student

©2016 Sami Khuri ©2016 Sami Khuri 

Outcomes with Successful 
Model 

•  P(LLLCBCLLBBLL) 
 = 1/3 * 0.6 * 0.6 * 0.25 * 0.05 * 0.9 * 0.75 * 0.6 *        

 0.15 * 0.05 * 0.05 * 0.6 = 1.3669 * 10-7  
•  P(LCBLBBCBBBBL)  

 = 1/3 * 0.25 * 0.05 * 0.05 * 0.15 * 0.05 * 0.9 *      
0.05 * 0.05 * 0.05 * 0.05 * 0.05 = 4.3945 * 10-13 

•  P(CCCLCCCBCCCL) 
 = 1/3 * 0.2 * 0.2 * 0.75 * 0.25 * 0.2 * 0.2 * 0.05 * 

 0.9 * 0.2 * 0.2 * 0.75 = 1.35 * 10-7   
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Likelihood Ratios: Successful 

•  Likelihood ratios: 

•  Log likelihood ratios: 
 Student 1 =  log x  = - 3.78 
 Student 2 =   log y  = - 22.03 
 Student 3 =  log z  = - 3.8 

z  101.8817 x  / 10 x 1.35    :3 Student
 y  101.8817 x  / 10 x 4.3945   :2 Student

 x  101.8817 x  / 10 x 1.3669   :1 Student

6-7

6-

-6

==

==

==

−

−

−
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HMM – Combined Model 
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HMM – Combined Model 
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Hidden Markov Model 

Start End 

S 

D 
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Evaluating Hidden States 

Start End 

S 

D 

Given an observation: LLLCBCLBBCL, find the 
sequence of states which is the most likely to have 
produced the observation.  
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Models of Sequences 

•  Consists of states (circles) and transitions (arcs) 
labelled with probabilities. 

•  States have probabilities of “emitting” an 
element of a sequence (or nothing). 

•  Arcs have transitional probabilities of moving 
from one state to another.   
–  Sum of probabilities of arcs out of a state must be 1 

–  Self-loops are allowed. 
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Markov Chain 
•  A sequence is said to be Markovian if the 

probability of the occurrence of an element in a 
particular position depends only on the previous 
elements in the sequence. 

•  Order of a Markov chain depends on how many 
previous elements influence the probability: 
–  0th order: uniform probability at every position 
–  1st order: probability depends only on the 

immediately previous position. 
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 Simple Markov Model 

•  Example: Each state emits (or, equivalently, 
recognizes) a particular number with probability 1, 
and each transition is equally likely. 

Possible sequences:  1234    234     14   
       121214   2123334    

Begin 
Emit 1 

Emit 2 

Emit 4 

Emit 3 

End 
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Probabilistic Markov Model 

Now, add probabilities to each transition    
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Probabilistic Markov Model 
 We can compute the probability of occurrence of 
any output sequence: 

 p (1234)  = 0.5 * 0.1 * 0.75 * 0.8  = 0.03 
p (14)   = 0.5 * 0.9       = 0.45 
p (2334)  = 0.5 * 0.75 * 0.2 * 0.8  = 0.06 
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Probabilistic Emission 

•  Define a set of emission probabilities for 
elements in the states. 

•  Given an output sequence, where does it come 
from? 
 
 
 
 
     BCCD  or  BCCD ? 
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Hidden Markov Models 

•  Emission uncertainty means the sequence does 
not identify a unique path.   

•  The states are “hidden”: 

BCCD  or  BCCD ? 
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Computing Probabilities 
 Probability of an output sequence is the sum of all 
the  paths that can produce it: 

 p(BCCD) = (0.5 * 0.2 * 0.1 * 0.3 * 0.75 * 0.6 * 0.8 * 0.9)  
               + (0.5 * 0.7 * 0.75 * 0.6 * 0.2 * 0.6 * 0.8 * 0.9) 
               =  0.000972 + 0.013608 = 0.01458 
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The Dishonest Casino (I) 
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Fair State Loaded State 

If we see a sequence of rolls (the sequence of 
observations) we do not know which rolls used a loaded 
die and which used a fair die. 
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The Dishonest Casino (II) 
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The Urn and Ball Model (I) 

•  N urns containing colored balls 
•  M distinct colors of balls 
•  Algorithm that generates Observed Sequence: 

1.  Pick initial urn according to some random process. 
2.  Randomly pick a ball from the chosen urn, record 

its color and then put it back. 
3.  Randomly pick an urn  
4.  Repeat steps 2 and 3 
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The Urn and Ball Model (II) 

An urn is selected and then a ball is selected from the urn, its color is 
recorded, and the ball is put back in the urn. 
Given the sequence of observed colors, can we guess from which 
urn each ball comes from? 
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Looking for CpG Islands 
 Example: 

•  A CpG island in humans refers to the 
dinucleotide CG and not the basepair CG.  

•  The C of CpG is generally methylated to 
inactivate genes hence CpG is found around 
“start” regions of many genes more often than 
elsewhere. 

•  Methylated C is easily mutated into T. 
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The Rarity CpG Islands 
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CpG Island Criteria 

•  According to Gardiner-Garden and Fromer, 
CpG islands are commonly defined as regions 
of DNA  
–  of at least 200 bp in length, 
–  that have a G+C content above 50%  
–  that have a ratio of observed vs. expected CpGs 

close to or above 0.6.  
•  Sets of CG repeat elements, usually found 

upstream of transcribed regions of the genome. 
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Looking for CpG Islands 

•  CpG islands are therefore rare in other 
locations 

•  CpG islands are generally a few hundred 
base pairs long  
 Questions: 

1.  Given a short DNA fragment, does it come 
from a CpG island or not? 

2.  Given a long unannotaded sequence of DNA, 
how do we find the CpG islands? 
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Building an HMM for CpG 
Islands 

•  A set of human sequences were 
considered and 48 CpG islands were 
tabulated.  

•  Two Markov chain models were built: 
– One for the regions labeled as CpG islands 

(the ‘+’ model or Model 1) 
– One for the remainder of the sequences        

(the ‘-’ model or Model 2). 
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Transition Probabilities 

 The transition probabilities of each model 
were computed by: 

 
 
  

          is the number of times letter t followed 
letter s in the plus model. 

∑ +

+
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' 't st
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∑ −

−
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' 't st
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ca

+
stc
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The Two Transition Tables 
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Log Odds Ratio 

•  Given any sequence, we compute the  log-odds 
ratio to discriminate between the two models : 

 
 
•   S(x)>0 means x is likely to be a CpG island. 
•  The ratio is also called the log likelihood ratio   

of transition probabilities. 

∑
=

−

+

−

−=
−

+
=

L

i xx

xx

ii

ii

a
a

thexP
thexPxS

1 1

1 log 
)model |(
)model |(log)(

©2016 Sami Khuri 

Log Likelihood Ratios 

∑
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The table’s unit is the bit since base 2 is used for the  
computation of the individual entries of the table. 
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Looking for CpG Islands 
•  Given a long unannotaded sequence of DNA, 

how do we find the CpG islands? 

•  We can use a sliding window of size 100, for 
example, around each nucleotide in the 
sequence and use the previous table to score 
the log-odds. CpG islands would stand out 
with positive values. 
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Sliding Window Size 
 
 

•  How do we determine the window size? CpG 
islands are of variable lengths and might have 
sharp boundaries. 

•  A better approach is to build an HMM that 
combines both models. 
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The Island and the Sea 
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An HMM for CpG Islands (I) 

There are 8 states,  
one for each  
nucleotide in a  
CpG island (+), and 
one for each  
nucleotide not  
in a CpG island (-). 
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An HMM for CpG Islands (II) 

There two states for each 
output symbol. 
Example: “T” is 
recognized or generated by 
T+ or T-. 
Within each group of states, 
the group has the same 
behavior as the original 
Markov Model. 
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An HMM for CpG Islands (III) 

Assume the transitions from  
a (+) nucleotide to a (-)  
are small. And transitions from 
(-) nucleotides to (+) are also 
small. 
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The Two Paths with CGCG 
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Switching between ‘+’ & ‘-’ 
States  

•  The maximum scoring path receives a 
score of 0.0032. 

•  The most likely state path is found to be 
C+G+C+G+.  

•  Given a much longer sequence, the 
derived optimal path will switch between 
the CpG and non-CpG states. 
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Applications of HMMs  

•  Generating multiple sequence alignments 
•  Modeling Protein Family 

–  discriminate between sequences that belong to a 
particular family or contain a particular domain vs. 
the ones that do not. 

•  Study the model directly  
–  the model may reveal something about the common 

structure of proteins within a family. 
•  Gene prediction 
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Recognizing TAG 

                                                                                                                                                                                          

insert 
states 

delete 
states 

match 
states 
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Eddy’s Toy Model 
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HMM for Protein Family 

M0 M1 M2 M4 M3 

I0 I1 I2 I3 

D1 D4 D2 D3 

I4 

M5 

delete 
states 

insert 
states 

match 
states 
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HMM: Begin and End States 

The general model with Begin and End states 
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Family of Sequences 
•  If the emission probabilities for the match and 

insert states are uniform over the 20 amino 
acids, the model will produce random 
sequences. 

•  If each state emits one amino acid only, and 
transition probabilities from one match state to 
the next are one, then the model will produce 
the same sequence. 

•  Somewhere between the two extreme cases we 
can set the parameters to obtain a family of 
sequences (sequences that are similar). 
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The Goal 

•  Find a model, in other words, a model 
length, and parameters, that accurately 
describes a family of proteins. 
–  The model will assign high 

probabilities to proteins in the 
family of sequences that it is 
designed for.  
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Profile Hidden Markov 
Model 

•  Allowing gap penalties and substitutions 
probabilities to vary along the sequences 
reflects biological reality better. 

•  Alignments of related proteins have regions of 
higher conservation, called functional 
domains and regions of lower conservation. 

•  Functional domains have resisted to change 
indicating that they serve some critical 
function. 
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Estimating the Parameters 
•  In the HMM model of a protein family, the 

transition from: 
–  a match state to an insert state corresponds to a gap 

open penalty  
–  an insert state to itself corresponds to the gap 

extension penalty 
•  All applications of the HMM model start with 

training or estimating the parameters of the 
model using a set of training sequences chosen 
from a protein family. 
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Profile HMM From MSA 

start end 
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Regular Expressions for MSA 

The given DNA motif can be represented by a 
regular expression: 
 
[AT][CG][AC][ACTG]*A[TG][GC] 
 
 
 Is this a good representation? 

The expression does not distinguish between: 
TGCT - - AGG     →  highly implausible sequence 

ACAC- - ATC  →   highly plausible sequence   
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Example: HMM for MSA (I) 

A Hidden Markov 
Model derived from 
the given alignment. 
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Example: HMM for MSA (II) 

  Sequences 2, 3 and 5 have  
“insertions” of varying  
lengths.  
So 3 out of 5 sequences  
have “insertions”. 
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Example: HMM for MSA (III) 

  In the insertion state 
we have: 
A:1, C:2, G:1, T:1.    
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Example: HMM for MSA (IV) 

  After sequences 2,3,5  
have made one insertion, we 
still need 2 more insertions 
for sequence 2.  The total 
number of transitions back 
to the match states is 3.  
So there are 5 transitions out 
of the insertion state.  
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Computing Probability of Path 

  

P(ACACATC) 
 = 0.8 * 1.0 * 0.8 * 1.0 * 0.8 * 0.6 * 0.4 * 0.6 * 1.0 *  
    1.0 * 0.8 * 1.0 * 0.8  
 = 0.04718592 
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Computing Probability  
of Path (II) 

  

P(TCAACTATC) 
 = 0.2 * 1.0 * 0.8 * 1.0 * 0.8 * 0.6 * 0.2 * 0.4 *             
    0.4 * 0.4 *  0.2 * 0.6 * 1.0 * 1.0 * 0.8 * 1.0 * 0.8  
 = 0.000075497472 
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HMM: Computing Log Odds 

  

Using Log Odds of sequence S of length L 
 = log [P( S ) / (0.25)L ] 
 = log P(S) – L log (0.25) 

Example: Log Odds of ACACATC 
  = log (P(ACACATC)) – 7 * log (0.25) 
  ≅ 6.7           [natural logarithm]  

©2016 Sami Khuri 

Log Odd Scores of Sequences 

  

©2016 Sami Khuri 

Log Odd Scores of Sequences 

A sequence that fits the motif very well has a high     
log-odds score. 
A sequence that fits the null hypothesis better has a 
negative log-odds score. 
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HMM with Log Odds  
of Each Base 

  

Emission of each base: 
log(p(base)) - log(0.25) 

Transition probabilities are 
converted to simple logs 
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Log Odds Score  
of a Sequence 

  

Log Odds score of ACACATC 
 = 1.16 + 0 + 1.16 + 0 + 1.16 – 0.51 + 0.47 – 0.51 + 1.39 +  
     0 + 1.16 + 0 + 1.16  
 = 6.64 
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SH3 Domain Example (I) 

An alignment of 30 short amino acids chopped out of an 
alignment of an SH3 domain. The shaded areas are the most 
conserved and were chosen to be represented by the main (match) 
states and the unshaded area with lower-case letters was chosen to 
be represented by an insert state. [Kro98] 
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SH3 Domain Example (II) 
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SH3 Domain Example (III) 

The insert state represents highly variable regions of the alignment 
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SH3 Domain Example (IV) 

A profile HMM made from the alignment. Transition lines with no arrow head are  
from left to right. Transitions with probability zero are not shown. Those with very 
small probability are shown as dashed lines. Transition from an insert state to  
itself are not shown; instead the probability multiplied by 100 is shown in the  
diamond. The numbers in the circular delete states are just position numbers. 
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SH3 Domain Example (V) 
176/206 
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SH3 Domain Example (VI) 

After all 30 sequences have made one insertion each, there are 176 
more insertions (number of amino acids in columns 2,3,4,5,6,7,8 
of the insert state) and there are 30 transitions back to the match 
states. So there are a total of 176 + 30 transitions out the insert 
state. P(self-loop) = 176/206 and P(back to match) = 30/206.   

©2016 Sami Khuri ©2016 Sami Khuri 

•  A set Q of N states, denoted by  1,2,…,N 
•  An observable sequence, O: 
                              o1 ,o2 ,…,ot ,…,oT 

•  An unobservable sequence, q: 
                              q1 ,q2 ,…,qt ,…,qT 
•  First order Markov model: 

1 2 1( | , ,...) ( | )t t t t tP q j q i q k P q j q i− − −= = = = = =

Markov Model Assumptions (I) 
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•  An initial probability distribution:               
 
              

     where 
  
•  Stationary condition: 

1 1( | ) ( | )t t t l t lP q j q i P q j q i− + + −= = = = =

Markov Model  
Assumptions (II) 

1( ) 1i P q i i Nπ = =        ≤ ≤

1
1

=∑
=

N

i
iπ
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State transition probability matrix: 
 

where: 

A =

a11 a12 ... a1 j ... a1N
a21 a22 ... a2 j ... a2N
! ! ! ! ! !
ai1 ai2 ... aij ... aiN
! ! ! ! ! !
aN1 aN 2 ... aNj ... aNN

!

"

#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&

1( | ) 1 ,ij t ta P q j q i i j N−= = =          ≤ ≤

aij ≥ 0,      ∀i, j

aij
j=1

N

∑ =1,      ∀i

State Transition Probabilities 
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•  N: the number of hidden states 
   A set of states:     Q = {1, 2 ,…, N}

•  M: the number of symbols 
A set of symbols:    V = {1, 2, …, M}

•  A: the state-transition probability matrix 

•  B (or b): Emission probability distribution; k is a symbol from V: 

•  The initial state distribution π:

 The entire model λ, is given by:

ai , j = P(qt+1 = j | qt = i)        1≤ i, j ≤ N

Bj (k) = P(ot = k | qt = j)      1≤ j ≤M

1( ) 1i P q i i Nπ = =        ≤ ≤

( , , )A Bλ π=

Hidden Markov Model 
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1.  EVALUATION – given observation O=(o1 , o2 ,…,oT ) and 
model                        , efficiently compute:               

•  Given two models λ and λ’, this can be used to choose the better one.
 Use: Forward Algorithm or Backward Algorithm

2.  DECODING - given observation O=(o1 , o2 ,…,oT ) and 
model λ find the optimal state sequence q=(q1 , q2 ,…,qT ) .

•  Optimality criterion has to be decided (e.g. maximum likelihood)
 Use: Viterbi Algorithm

3.  LEARNING – given O=(o1 , o2 ,…,oT ), estimate model 
parameters                          that maximize  
Use: EM and Baum-Welch Algorithms 

( , , )A Bλ π= ( | ).P O λ

( , , )A Bλ π= ( | ).P O λ

Three Basic Questions 
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Doubly Stochastic Process 

According to Rabiner and Juang: 
 A Hidden Markov Model is a doubly 
stochastic process with an underlying 
stochastic process which is not observable 
(it is hidden), but can be only observed 
through another set of stochastic processes 
that produce the sequence of observed 
symbols.  

   (IEEE ASSP, January 1986)  
©2016 Sami Khuri ©2016 Sami Khuri 

HMM and Logarithms 

•  In a Hidden Markov Model there is not a 
one to one correspondence between the 
states and the symbols as is the case with 
Markov Chains. 

•  Extensive multiplication operations with 
probabilities often result in underflows. 
– Use logarithms: products become sums. 
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Scoring a Sequence 

•  All sequences will have a path through the HMM.    
•  For most sequences (except very short ones) there 

are a huge number of paths through the model, 
most of which will have very low probability 
values. 

•  For a given observed sequence, we can 
approximate the total probability by the 
probability of the most likely path. 
– Viterbi: method for finding the most likely 

path. 
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Viterbi: A Summary 

•  Similar to Dynamic Programming already studied. 
•  Make a matrix with rows for sequence elements and 

columns for states in the model. 
•  Work row by row, calculating the probability for each 

state to have emitted that element and putting that 
probability in a cell.   
–  When there are multiple paths, select the highest probability 

and store the selected path. 
•  Current row uses results of previous row. 
•  Highest entry in the last row gives best total path through 

back tracking. 
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1.  EVALUATION – given observation O=(o1 , o2 ,…,oT ) and 
model                        ,  efficiently compute               

•  Hidden states complicate the evaluation.
•  Given two models λ and λ’, this can be used to choose the better 

one.
2.  DECODING - given observation O=(o1 , o2 ,…,oT ) and 

model λ find the optimal state sequence q=(q1 , q2 ,…,qT ) .
•  Optimality criterion has to be decided (e.g. maximum likelihood)
•  “Explanation” of the data.

3.  LEARNING – given O=(o1 , o2 ,…,oT ), estimate model 
parameters                          that maximize  

λ = (A,B,π ) ( | ).P O λ

( , , )A Bλ π= ( | ).P O λ

Three Basic Questions (I) 
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Three Basic Questions (II) 
•  The Evaluation Problem 

–  Given the observation sequence O and the model λ,            
how do we efficiently compute P(O| λ), the probability          
of the observation sequence, given the model?  

•  The Decoding Problem 
–  Given the observation sequence O and the model λ, find 

the optimal state sequence associated O.  
    Viterbi Algorithm finds the single best sequence q for the 

given observation sequence O. 
•  The Learning Problem 

–  How can we adjust the model parameters to maximize            
the joint probability (likelihood)?   
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Three Basic Questions (III) 
•   The Evaluation Problem 

–  Given the observation sequence O and the model λ, how do 
we efficiently compute P(O| λ), the probability of the 
observation sequence, given the model?  

    Use: Forward Algorithm or Backward Algorithm. 
•  The Decoding Problem 

–  Given the observation sequence O and the model λ, find the 
optimal state sequence associated with O. Viterbi Algorithm 
finds the single best sequence q for the given observation 
sequence O.  

    Use: Viterbi Algorithm. 
•  The Learning Problem 

–  How can we adjust the model parameter to maximize the joint 
probability (likelihood)?             

    Use: EM and Baum-Welch Algorithms.  
©2016 Sami Khuri 

Solution to Problem One (I) 

Problem: Compute P(o1 , o2 ,…,oT |λ) 
                      

     

  the summation is over all paths   
       q = (q1 , q2 ,…,qT ) that give O. 

 
But: 

 
 

( , | ) ( | , ) ( | )P O q P O q P qλ λ λ=

∑=
q

qOPOP  )|,( ) |( λλ

                     

 ) |

)(o) ... b(o)b(ob
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=

λλ We assume that the  
observations are independent 
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Solution to Problem One (II) 

We also have: 
By replacing in: 
we have:  

 
We have: 2T – 1 multiplications and a maximum of  
N T state sequences and O(T) calculations. 
Complexity: O(T N T).  

)( ... )()()( ) |(
133222111 321

q
Tqqqqqqqqqqq obaobaobaobOP

TTT−∑= πλ

∑=
q

qOPOP  )|,( ) |( λλ
TT qqqqqq aaaqP

132211
  ...   ) |( q −

= πλ
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Solution to Problem One (III) 

Since the complexity is O(T N T), the brute 
force evaluation of:                                              
 
 
by enumerating all paths q that generate O 
is not practical.   
 
To efficiently compute P(o1 , o2 ,…,oT |λ), 
use the Forward Algorithm. 

∑=
q

qOPOP   ) | )|,(( λλ
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Forward Algorithm 

•  Define forward variable              as: 

            
•          is the probability of observing the partial sequence                         

     and landing in state i at stage t (state qt is i).   
                       
•  Recurrence Relation: 

1.  Initialization: 
2.  Induction: 

3.  Termination: 

•  Complexity:  

( )t iα

1 1( , ,..., )to o o

1 1( ) ( )i ii b oα π=

1 1
1

( ) ( ) ( )
N

t t ij j t
i

j i a b oα α+ +
=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
∑

1
( | ) ( )

N

T
i

P O iλ α
=

=∑
2( )O N T

( )t iα
)|,,...,,(  )( 21 λα iqoooPi ttt ==
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Forward Procedure: 
Induction 

S
ta

te
s 

N             
… 

3 
 

2 
 

1 

v 

aNj 

         t                            t+1 

               Time 

a3j 

a1j 

j 

a2j 

1 1
1

( ) ( ) ( )
N

t t ij j t
i

j i a b oα α+ +
=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
∑

Already known 
from previous 
steps 
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Forward Procedure: 
Termination 

S
ta

te
s 

N             
… 

3 
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1 

v 

aNi 

       T-1                          T 
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a3i 

a1i 

i 
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1
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T
i

P O iλ α
=

=∑

Use either Forward  
or Backward 
Algorithm to solve 
Problem One. 
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•  Define backward variable           as: 

               is  the probability of observing the 
partial sequence                            knowing 
that we land in state i at stage t (in other 
words, state qt is i).  

 

( )t iβ

( )t iβ

1 2( ) ( , ,..., | , )t t t T ti P o o o q iβ λ+ += =

1 2( , ,..., )t t To o o+ +

Backward Algorithm 
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Backward: Recurrence Relation 

•  Recurrence Relation of  
–  Initialization: 
–  Induction: 

–  Termination: 

•  Complexity:   

( )t iβ
( ) 1T iβ =

1 1
1

( ) ( ) ( ), 1 , 1,...,1
N

t ij j t t
j

i a b o j i N t Tβ β+ +
=

=        ≤ ≤        = −∑

)()(( 11
1

jobOP j
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j βπλ ∑

=

=  ) |
2( )O N T
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Observation 

1          2   ..  t-1       t        t+1       t+2  ..  T-1     T 

o1        o2  ..  ot-1        ot          ot+1          ot+2   ..    oT-1        oT 

 

Time 

Backward Algorithm 
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•  Backward variable          is given by: 

•  We note that, unlike the forward variable, here 
we know in which state the process is at time t 
(state qt = i). 

•  The distinction is made to be able to combine 
the forward and backward variables to 
produce a useful result.

( )t iβ

1 2( ) ( , ,..., | , )t t t T ti P o o o q iβ λ+ += =

Backward Algorithm: 
Remark 
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Using Forward  
and Backward (I) 
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Compute the probability of producing the entire observed  
sequence, O, with the tth  symbol produced by state i.   

We drop λ for convenience 
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Using Forward  
and Backward (II) 
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Or: 

P(O) can be computed 
by using either the  
forward or backward  
algorithm. 
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•  We have to find a state sequence:                     
q = (q1 , q2 ,…,qT),  such the probability of 
occurrence of the observed sequence:        
O=(o1 , o2 ,…,oT ) from the state sequence q, is 
greater than or equal to any other state 
sequence.    

•  Find a path q* = (q1* , q2 * ,…,qT * ) that 
maximizes the likelihood: 

1 2( , ,..., | , )TP q q q O λ

Solution to Problem 2 (I) 
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Solution to Problem 2 (II) 

•  The Viterbi algorithm can be used to 
solve this problem. 

•  It is a modified forward algorithm. 
•  Instead of taking the sum of all 

possible paths that end up in a 
destination state, the Viterbi 
algorithm picks and remembers the 
best path.  
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Use Dynamic Programming 
•  Define  

      is the highest probability path ending in state i 
at step t (time t). 

•  By induction we have: 

( )t iδ

1 1( ) max[ ( ) ] ( )t t ij j ti
j i a b oδ δ+ += ⋅

Solution to Problem 2 (III) 
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•  Initialization: 

• Recursion: 

1 1

1
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Viterbi Algorithm (I) 
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Viterbi Algorithm (II) 

•  Termination: 
 

where 

•  A maximum likelihood path is given by:                  
q* = (q1* , q2 * ,…,qT * ), where  

*

1

*

1

max[ ( )]

argmax[ ( )]

T Ti N
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Viterbi Algorithm (III) 
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•  Estimate                       to maximize  
•  No analytic methods exist because of 

complexity – Use an iterative solution. 
•  Expectation Maximization:                      

the EM algorithm 
1.  Let initial model be λ0 

2.  Compute new λ based on λ0  and observation O. 
3.  If                                                                               
4.  Else set λ0          λ and go to step 2       

( , , )A Bλ π= ( | )P O λ

0log ( | ) log ( | ) stopP O P O DELTAλ λ− <   

Solution to Problem 3 
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EM Special Case:  
Baum-Welch 

•  The Expectation Maximization 
Algorithm is a very powerful 
general algorithm for probabilistic 
parameter estimation. 

•  The Baum-Welch Algorithm is a 
special case of the Expectation 
Maximization Algorithm. 
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Parameter Estimation  
for HMMs 

There are two parts for specifying a Hidden 
Markov Model: 

1.  Design of the structure (more of an art) 
•  Determining the states 
•  Determining the connections of the states 

2.  Assignment of parameter values                 
(a well-developed theory exists) 

•  Determining the transition and emission 
probabilities. 
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Assignment of  
Parameter Values 

•  There are two cases to consider when 
assigning parameter values to HMMs: 
– Estimation when the state sequence is 

known 
• Example: Location of CpG islands are 

already known 
– Estimation when the state sequences are 

unknown. 
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Estimation with Known 
State Paths 

Estimation of the parameters is straightforward 
when sequence paths are known. 
– Count the number of times a particular transition 

(denoted by A) or emission (denoted by B) is used 
in the training set 

– The maximum likelihood estimations are: 

∑
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kl
kl A

Aa
∑
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k
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The Dangers of Overfitting 

When estimating parameters, especially from a 
limited amount of data, there is a danger of 
overfitting: the model becomes very well 
adapted to the training data and does not 
generalize well to testing data (new data). 
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Pseudocounts to the Rescue 

 To avoid overfitting, add predetermined 
pseudocounts                   to the numerators of 
the transition estimators: 

            is the number of transitions k to l  in the 
training data +  

                is the number of emissions of d from state k in 
the training data +  
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Estimation if Paths are 
Unknown 

•  When paths are unknown for training 
sequences, we have no direct closed-form 
equation for the estimated parameter 
values. 

•  Iterative procedures are used. 
•  The Baum-Welch algorithm (special case 

of the EM algorithm) has become the 
standard method when paths are unknown. 
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The Two Steps of Baum-Welch 

•  The Baum-Welch Algorithm is based on 
the following observation: 
– If we knew the paths, we could compute 

transition and emission probabilities 
– If we knew the transition and emission 

probabilities, we could compute the 
paths   (for example: the most probable 
path) 

•  The algorithm alternates between the two. 
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Baum-Welch Iterative 
Process 

•  The Baum-Welch Algorithm is basically an iterative 
process that alternates between the following two   
steps: 
–  Estimate        and           by considering probable paths for    

the training sequence using the current values of                  
and           . [Expectation] 

–  Derive new values by using above values in: [Maximization] 

•  Iterate until some stopping criterion is reached. 
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Baum-Welch at Work (I) 

•  The probability that       is used at position t in the 
observed sequence O=(o1 , o2 ,…,oT ) is given by: 

 
 
•  Then the expected number of times that       is used 

is obtained by summing over all positions and over 
all training sequences: 
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Baum-Welch at Work (II) 

 
        is the forward variable for training sequence j 
        is the backward variable for training sequence j. 
•  Similarly, the expected number of times that symbol d is 

emitted from state k in all the sequences is given by: 

 The inner sum is only over positions t for which the 
emitted symbol is d. 
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Baum-Welch Iteration 
•  Use the newly computed expectation values:              
           and              to calculate the new model transition  

and emission parameters :  
 
          

•  We then compute again        and            based on 
   the new parameters and iterate once more.    
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Baum-Welch Algorithm 

•  Initialization: 
–  Pick arbitrary model parameters 

•  Recurrence: 
–  Set all the A and B variables to their pseudocount 

values r (or zero) 
–  For each sequence j = 1,…,n 

•  Use forward algorithm to compute  
•  Use backward algorithm to compute 
•  Add the contribution of sequence j to A and B  

–  Compute the new model parameters 
–  Compute the new log likelihood of the model  

)(kjtα
)(kjtβ
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Termination Step 

•  Termination: 
 Stop when the change in the log likelihood is 
less than some predefined threshold or the 
maximum number of iterations is reached 

•  It can be shown that the overall log likelihood 
is increased by the iteration and that the 
process converges to a local maximum.  
– One of the challenges of designing HMMs: 

• How good is that local maximum? 


