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Three-State

Markov Weather Model

*  We have three states:
Rainy (R) Cloudy (C)  Sunny (S)

*  The weather on any day t is characterized by a
single state.

»  State transition probability matrix:

04 03 0.3
A=(02 0.6 02
0.1 0.1 0.8
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Markov Weather Model

0.8
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Markov Weather Model

Compute the probability of observing SSRRSCS given
that today it is sunny (i.e., we are in state S).
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Solving the Weather Example

e Observation sequence: O =(S,S,S,R,R,S,C,S)
¢ Using the chain rule we get:
P(O | model)
=P(S,S,S,R,R,S,C,S | model)
=P(S)P(S|S)P(S|S)P(R|S)P(R|R)x
P(S|R)P(C|S)P(S|C)
= TTy305505,,10,305, 0
= (1)(0.8)*(0.1)(0.4)(0.3)(0.1)(0.2) = 1.536x10™*
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States and Transitions The Distressed Student Model
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Evaluating Observations Starting State of the Student

* The probability of observing a given i e N
sequence is equal to the product of all \ ' )

observed transition probabilities. o2 os

* Suppose that: @‘;ﬁ;ﬁ) (m
— L: student is in state Library 0.05 0.1
— C: student is in state Coffee Shop 0.2

— B: student is in state Bar

The Model has a Start State with transition probabilities of
goingto L, C, or B of 1/3.
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Behavior of Three Students Computing Observed
Sequences
 The probability of observing a given

sequence is equal to the product of all
observed transition probabilities.

* Example:
* P(LLLCBCLLBBLL)
=1/3*%0.1*0.1 ¥0.1*0.75*0.1 *0.05

Student 1: LLLCBCLLBBLL *01*08*07*02*0.1
Student 2 : LCBLBBCBBBBL

= * 109
Student 3: CCCLCCCBCCCL 1.4 *10

©2016 Sami Khuri
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Computing Observed
Sequences

« P(LCBLBBCBBBBL)

=1/3*%0.1*0.75*0.2*0.8*0.7*0.1
*0.75*0.7*0.7*0.7*0.2

= 1.4406 * 10

« P(CCCLCCCBCCCL)
=1/3%0.2%0.2%0.05*0.1 *0.2*0.2
*0.75%0.1 * 0.2 * 0.2 * 0.05

=4 * 10—10
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The Random Model
The Null Hypothesis
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Start State with Random
Model
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Students with Random
Model

Student1: LLLCBCLLBBLL =1.8817x10°
Student 2 : LCBLBBCBBBBL =1.8817x10°
Student 3: CCCLCCCBCCCL =1.8817x10°

©2016 Sami Khuri

Odds and Log Ratios

* To determine the significance of the results
obtained with the 3 students, compare them
to the null model (random model)

» Odds Ratio =

P( x | Distressed Model) / P( x | Null Model)
* Log Odds =
Log [P( x | Distressed Model) / P( x | Null Model)]

©2016 Sami Khuri

Likelihood Ratios: Distressed

¢ Likelihood ratios:

Student1: =1.4x107° /1.8817x10° =x
Student2: =1.4406x107° /1.8817x10° =y
Student 3: = 4x10™° /1.8817x10° =z

* Log likelihood ratios:

Student 1 = logx =-10.39
Student 2 = logy = 294
Student 3 = logz =-12.20

©2016 Sami Khuri
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The Successful Student Model
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Students with Successful
Model

Student1: LLLCBCLLBBLL
Student 2 : LCBLBBCBBBBL
Student 3: CCCLCCCBCCCL

©2016 Sami Khuri

Outcomes with Successful
Model

* P(LLLCBCLLBBLL)

=1/3*%0.6*0.6*0.25*0.05*0.9*0.75%0.6 *
0.15*0.05 * 0.05 * 0.6 = 1.3669 * 10”7

+ P(LCBLBBCBBBBL)

= 1/3 *0.25 * 0.05 * 0.05 * 0.15 * 0.05 * 0.9 *
0.05 * 0.05 * 0.05 * 0.05 * 0.05 = 4.3945 * 1013
« P(CCCLCCCBCCCL)
=1/3%0.2%02%0.75*0.25* 0.2 * 0.2 * 0.05 *
0.9%0.2%02*0.75 = 1.35 * 107

©2016 Sami Khuri

Likelihood Ratios: Successful

» Likelihood ratios:
Student1: =1.3669x107 /1.8817x107° =x
Student 2: =4.3945x107"° /1.8817x10° =y
Student 3: = 1.35x107 /1.8817x10° =z

* Log likelihood ratios:

Student 1 = logx =-3.78
Student 2 = logy =-22.03
Student 3 = logz =-38

©2016 Sami Khuri

HMM - Combined Model

Successful

=
CORRCGHOEECD,
R ST

Ba;

Distressed
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HMM - Combined Model

Successful

Distressed
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Hidden Markov Model

o[ e
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Evaluating Hidden States

Given an observation: LLLCBCLBBCL, find the
sequence of states which is the most likely to have
produced the observation.

©2016 Sami Khuri

Models of Sequences

» Consists of states (circles) and transitions (arcs)
labelled with probabilities.

+ States have probabilities of “emitting” an
element of a sequence (or nothing).

* Arcs have transitional probabilities of moving
from one state to another.
— Sum of probabilities of arcs out of a state must be 1

— Self-loops are allowed.

©2016 Sami Khuri

Markov Chain

* A sequence is said to be Markovian if the
probability of the occurrence of an element in a
particular position depends only on the previous
elements in the sequence.

* Order of a Markov chain depends on how many
previous elements influence the probability:

— 0" order: uniform probability at every position

— 1%t order: probability depends only on the
immediately previous position.

©2016 Sami Khuri

Simple Markov Model

« Example: Each state emits (or, equivalently,
recognizes) a particular number with probability 1,
and each transition is equally likely.

. Emit1 [ Emit4
e
Emit2 [ Emit3 D

Possible sequences: 1234 234 14
121214 2123334

©2016 Sami Khuri

Probabilistic Markov Model

Now, add probabilities to each transition

0.9
Emit1 |—»] Emit4 ]| 1.0
0.25Tlo.1 o o.sT \

. - 0.2
[ Emit2 ][ Emit3 ID

©2016 Sami Khuri
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Probabilistic Markov Model

We can compute the probability of occurrence of
any output sequence:

0A5 Emit 1 ]—>| Emit4 | 1.0

Begm ostlo 1 oAsT \

Emit 2 —> Emit 3 ]:) 02

p(1234) =0.5%0.1*0.75*0.8 =0.03
p(14) =05%09 =0.45
p(2334) =05%0.75*0.2*0.8 =0.06

©2016 Sami Khuri
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Probabilistic Emission

* Define a set of emission probabilities for
elements in the states.

 Given an output sequence, where does it come
from?

0.5 A(0.8) B(0.2) }—>IC(0 1)D(09)]\

0.254V0.1 0.84
0.5 0.75
30103+ [Co6Aa04 ]Q 0.2

BCCD or BCCD ?

©2016 Sami Khuri

Hidden Markov Models

» Emission uncertainty means the sequence does
not identify a unique path.

* The states are “hidden’:
05 0.9 1
- A8 BO2) P [CcODD©9 I\ﬁ
025**01 075 0.84

0.5

5 (0.7) C(0.3) | [C0.6)A04) ID

BCCD or BCCD ?
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Computing Probabilities

Probability of an output sequence is the sum of all
the paths that can produce it:

0. 0.9

S A(08)B(02)}->[C(01)D(09)|\
0.254¥0.1 0.84 -
0.5 0.75

500 C03) > [Co6 A0 ]Q

p(BCCD) = (0.5* 0.2 * 0.1 * 0.3 * 0.75 * 0.6 * 0.8 * 0.9)
+(0.5%0.7%0.75*0.6%0.2%0.6 * 0.8 * 0.9)
= 0.000972 +0.013608 = 0.01458

©2016 Sami Khuri

The Dishonest Casino (I)
S N

i> @@ :1/10
:1/10
-l | i

Fair State Loaded State

2110
2110

oA wN o

If we see a sequence of rolls (the sequence of
observations) we do not know which rolls used a loaded
die and which used a fair die.

©2016 Sami Khuri
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The Dishonest Casino (II)
106 @

1
2:1/6 0.95

3:1/6 g 0.90@

4:1/6

5 :1/10

:1/6 :
6its | T =01 | G

1110
1110
:1/10

abwWN =

Fair State Loaded State
M- [O_SJ {0_95 005} [0.16 0.16 0.16 0.16 0.16 0.16
= = B=
0.2 0.1 0.9 0.10 0.10 0.10 0.10 0.10 0.50

Initial State State Transitions Emissions

©2016 Sami Khuri
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The Urn and Ball Model (I)

* N urns containing colored balls

The Urn and Ball Model (II)

URN 1 URN 2 URN N
. M distinct colors of balls P(RED) = by(1) P(RED) = by(1) P(RED) = by(1)
. P(BLUE) = by(2) P(BLUE) = by(2) P(BLUE) = byl2)
+  Algorithm that generates Observed Sequence: PGREEN) +by(3)  PIGREEN) « ba(3) PGREEN) = bt3)
P(YELLOW) = b|(4) PIYELLOW) = bz(4) P(YELLOW) = bn“)

1. Pick initial urn according to some random process.

2. Randomly pick a ball from the chosen urn, record
its color and then put it back.

3. Randomly pick an urn
4. Repeat steps 2 and 3

©2016 Sami Khuri

P(ORANGE) = by (M) P(ORANGE) = b(M) P(ORANGE) = by(M)

An urn is selected and then a ball is selected from the urn, its color is
recorded, and the ball is put back in the urn.

Given the sequence of observed colors, can we guess from which
urn each ball comes from?

©2016 Sami Khuri

Looking for CpG Islands

Example:

* A CpG island in humans refers to the
dinucleotide CG and not the basepair CG.

* The C of CpG is generally methylated to
inactivate genes hence CpG is found around
“start” regions of many genes more often than
elsewhere.

* Methylated C is easily mutated into T.

©2016 Sami Khuri

The Rarity CpG Islands

(ch.21,22)

Frequendies

APA  ApT ApC ApG TpA ToT TeC TeG CpA CpT CpC CpG GpA GpT GpC GpG

©2016 Sami Khuri

CpG Island Criteria

* According to Gardiner-Garden and Fromer,
CpG islands are commonly defined as regions
of DNA

— of at least 200 bp in length,

— that have a G+C content above 50%

— that have a ratio of observed vs. expected CpGs
close to or above 0.6.

* Sets of CG repeat elements, usually found
upstream of transcribed regions of the genome.

©2016 Sami Khuri

Looking for CpG Islands

e CpG islands are therefore rare in other
locations

*  CpG islands are generally a few hundred
base pairs long

Questions:

1. Given a short DNA fragment, does it come
from a CpG island or not?

2. Given a long unannotaded sequence of DNA,
how do we find the CpG islands?

©2016 Sami Khuri
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Building an HMM for CpG
Islands
* A set of human sequences were
considered and 48 CpG islands were
tabulated.
* Two Markov chain models were built:

— One for the regions labeled as CpG islands
(the ‘+’ model or Model 1)

— One for the remainder of the sequences
(the ‘" model or Model 2).

©2016 Sami Khuri

Transition Probabilities

The transition probabilities of each model
were computed by:

+ -
a+ = cst - Cst

st + st -
: :t'c“'t' E ' Cyp

c:z is the number of times letter t followed
letter s in the plus model.

©2016 Sami Khuri

The Two Transition Tables

Markov chain Model 1

Transition Frequencies within 48 putative CpG islands in humans

A c G T
0.180 0274 . 0.120
0.171 0.368 & T 0.188
0.161 0.339 0.125
0.079 0.355 0.384 0.182

Markov chain Model 2
Transition frequencies in Non CpG island DNA

A C

0.300 0.205
0.322 0.298
0.248 0.246
0.177 0.239

©2016 Sami Khuri

Log Odds Ratio

+ Given any sequence, we compute the log-odds
ratio to discriminate between the two models :

S(x)=logP(x|the+model) 2 og _Iv

P(x|the —model)
« S(x)>0 means x is likely to be a CpG 1sland.

* The ratio is also called the log likelihood ratio
of transition probabilities.

©2016 Sami Khuri

Log Likelihood Ratios

S(x) = log P(x| the + model) 21

P(x|the model)
Logmodels A

A -0.740
0913

¢
G 0624
T -1.169

The table’ s unit is the bit since base 2 is used for the
computation of the individual entries of the table.

©2016 Sami Khuri

Looking for CpG Islands

* Given a long unannotaded sequence of DNA,
how do we find the CpG islands?

* We can use a sliding window of size 100, for
example, around each nucleotide in the
sequence and use the previous table to score
the log-odds. CpG islands would stand out
with positive values.

©2016 Sami Khuri
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Sliding Window Size

— A+ C+ G+ T+
* How do we determine the window size? CpG
islands are of variable lengths and might have
A- c- G- T

sharp boundaries.
* A better approach is to build an HMM that
combines both models.

©2016 Sami Khuri

The Island and the Sea

CpG island “sea’

©2016 Sami Khuri

An HMM for CpG Islands (I)

There are 8 states,
one for each
nucleotide in a

CpG island (+), and
one for each
nucleotide not

in a CpG island (-).

©2016 Sami Khuri

An HMM for CpG Islands (II)

There two states for each
output symbol.

Example: “T” is
recognized or generated by
T+or T-.

Within each group of states,
the group has the same
behavior as the original
Markov Model.

©2016 Sami Khuri

An HMM for CpG Islands (III)

The Two Paths with CGCG

Position i+1: % 1 g g g g
Position i C+ G+ C- G- a+ A\ o 0 0 0
Q C+ 0 0.13 0 0.012 0
(C+ ::’Z ::2; smaH 5'“‘":} ¢ Q ¢ Q) e+ 0\o  ®0.038%0 *0.0032
s+ .3 38 small  smal LR S T+ 0 \0O 0 0 0
C- small small 03 0.08 @ @ A g g . g 8 0025 g
. c- .1 L0026
G- small smll 025 03 LS G- 0 0 %0.01%0 ¥%0.00021
= T-0 0 0 0 0
Assume the transitions from :@:@:@ o | Pl b
. osition i: + 5+ - 5-
a (+) nucleotide to a (-) 0 %O % 0 % 6] cr 037 027 small _small
are small. And transitions from G 03 038 amallsmall
C- small small 03 0.08
G- small small  0.25 0.3

(-) nucleotides to (+) are also
small.

©2016 Sami Khuri
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Switching between ‘+ & -’
States

* The maximum scoring path receives a
score of 0.0032.

» The most likely state path is found to be
C+G+C+G+.

» Given a much longer sequence, the
derived optimal path will switch between
the CpG and non-CpG states.

©2016 Sami Khuri
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Applications of HMMs

* Generating multiple sequence alignments
* Modeling Protein Family
— discriminate between sequences that belong to a

particular family or contain a particular domain vs.
the ones that do not.

* Study the model directly

— the model may reveal something about the common
structure of proteins within a family.
* Gene prediction

©2016 Sami Khuri

Recognizing TAG

insert
states

match
states | Be9in

delete

states

©2016 Sami Khuri

0000
FQIIEN

Sequence: CTTCATGTGAAAGCAGACGTAAGTCA
statepat: EEEEEEEEEEEEEEEEEES 1 11 1 111 logP
C I 3 —41.22

C o
Parsing: E pjems 1 —43.45
: L

; T 1 —42.58
[:

46%
Posterior " 28%
decoding: - -____“:._ ——

©2016 Sami Khuri

HMM for Protein Family

delete
states

insert
states

©2016 Sami Khuri
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HMM: Begin and End States

The general model with Begin and End states

©2016 Sami Khuri
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Family of Sequences

The Goal
« If the emission probabilities for the match and
insert states are uniform over the 20 amino + Find a model, in other words, a model
acids, the model will produce random length, and parameters, that accurately

sequences. describ familv of .

« If each state emits one amino acid only, and escribes a family of proteins.
transition probabilities from one match state to — The model will assign high
the next are one, then the model will produce probabllltles to protelns ln the

the same sequence.

* Somewhere between the two extreme cases we
can set the parameters to obtain a family of
sequences (sequences that are similar).

family of sequences that it is
designed for.

©2016 Sami Khuri ©2016 Sami Khuri

Profile Hidden Markov
Model

Allowing gap penalties and substitutions
probabilities to vary along the sequences
reflects biological reality better.

Estimating the Parameters

¢ In the HMM model of a protein family, the
transition from:

— a match state to an insert state corresponds to a gap
open penalty

. Ahgnments of re.lated proteins ha‘Ve regions of _ an insert state to itself corresponds to the gap
higher conservation, called functional extension penalty

domains and regions of lower conservation. « All applications of the HMM model start with

* Functional domains have resistefl to change training or estimating the parameters of the
indicating that they serve some critical model using a set of training sequences chosen
function. from a protein family.

Profile HMM From MSA Regular Expressions for MSA

ACA---ATG The given DNA motif can be represented by a
TCAACTATC regular expression:

ACAC--AGC

AGA---ATC [AT][CG][AC][ACTG]*A[TG][GC]
ACCG--ATC

Is this a good representation?

The expression does not distinguish between:
TGCT--AGG  — highly implausible sequence )
ACAC--ATC — highly plausible sequence

OO0 =
A<L<OO> N
<TM<=T7 w

©2016 Sami Khuri ©2016 Sami Khuri
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Example: HMM for MSA (I) Example: HMM for MSA (II)
ACA=---ATG (\' A Hidden Markov ACA|---lATG (\' §f§‘§f£§?f’o3fizfy fn*;‘ve
TCAACTATC : TCAJACTATC
MCAC--AGo [Am Modc?l derl\{ed from voule-lhee me Jengths.
LGA---ATC 8:24 the given alignment. soal---liTe 8-24 So 3 out of 5 sequences
ACCG--ATC |Tm Accle--ATC  |Tme have “insertions”.
f, S b 6
(A:-s w0 é 0 é-,a . é_mwo ,é 0 é (A:-s w0 é 0 é-a@é—mw ,é 0 é
2 |Cmmms 12 |CH2 . - 2 |Cmmms 12 |Cn2 . -
¢ [P e 6 Gz [Pn2 ¢ [P PG 6 Gz [Pn2
Tu2 T T T Tomms| [T Tu2 T T T Tomms| [T
Example: HMM for MSA (III) Example: HMM for MSA (IV)
ACA|I---|ATG p In the insertion state ACA|--=-]ATG After sequences 2,3,5
TCA[ACTATC m we have: TCAACTIATC have made one insertion, we
ACA|IC--|AGC Am2 . . . X AcAlc--lAgc still need 2 more insertions
AGAl---laTc JOmm A1, C2, G, T, AGAl---lATC for sequence 2. The total
acclg--laTC %:2 acclg--laTC number of transitions back
5 to the match states is 3.
f" ARz So there are 5 transitions out
A w3 w0 A " A s . A—10 " A 0 A ‘%H of the insertion state.
o lomms 1202 |4 ]C 20c 2 [C s = -
G nal Tl mgl G Cuz  [™PCnz fé
T2 T T T T m—2 T Ammms] 1o [Ammms] A—"J o A o
N e
Twe T T T Temms| [T
Computing Probability
Computing Probability of Path of Path (II)
Cy Cy
Cmms Cmms
Gmz2 Gmz2
T"f . T"f .
A m— 2 o A o A — 5 N A—Hﬂ0 A o A A m— 2 o A o A — N A—Hﬂ0 A o A
N S R o N = N RS R o R S
Tm2 T T T T —_5 T Tm2 T T T T —_5 T
P(ACACATC) P(TCAACTATC)
=0.8*1.0%0.8%1.0%08%0.6%04*0.6*1.0* =0.2%1.0%0.8%1.0%0.8%0.6%0.2%0.4*
1.0*0.8*1.0*0.8 0.4%04% 02*%06*1.0*%1.0*0.8%1.0%*0.8
=0.04718592 =0.000075497472

©2016 Sami Khuri 7.12
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HMM: Computing Log Odds Log Odd Scores of Sequences

Sequence
Using Log Odds of sequence S of length L Consensus. A CAC--ATC 4.7 6.7
= 10g [p( S )/(0.25)L] Original ACA---ATG 33 4.9
_ log P(S) Llog (0 25) sequences T CAACTATC 0.0075 3.0
- - : ACAC--4AGC 1.2 53
Example: Log Odds of ACACATC AGA---ATC 33 49
=log (P(ACACATC)) -7 * log (0.25) ACCG--ATC 0.59 4.6
. Exceptional TGCT - - AGG 0.0023 -0.97
=6.7 [natural logarithm]

L]
HMM with Log Odds
Log Odd Scores of Sequences of Each Base
Sequence Probability x100 Log odds
Consensus A CAC--ATC 4.7 6.7 Sms
Original ACA---ATG 33 4.9 © N\
sequences T CAACTATC 0.0075 3.0 é_‘l_;|§_z— e |_‘,‘c |;°,|§_£ |_°,|§r
ACAC--4AGC 12 53 Tme T T T Tomme| T
AGA---ATC 33 49 L —~
ACCG--ATC 0.59 4.6 Emission of each base: Transition probabilities are
Exceptional TGCT - - AGG [0.0023 -0.97 | log(p(base)) - log(0.25) [A:-022 converted to simple logs
G:-0.22
. . T. -0.22
A sequence that fits the motif very well has a high 3.- 051
log-odds score. N e . ™ . e . e
. :1.16 2 1.16 :1.16 | 03 . :-0.22 1.16
A sequence that fits the null hypothesis better has a T -0:22 [™P G:-0:22 [™P| Ci-0l22 [P A 1.39 =B T3 76 = G022
negative log-odds score.
©2016 Sami Khuri ©2016 Sami Khuri

g .
of a Sequence SH3 Domain Example (I)
s wwes a o o 3= 3 o P
FSWEES ZEEBSRE:TY
TSR EEE: SEEEESET
0.92 == HER Ed EYBELNEY
EREEREE = ¢ 2 ZEEZEEY
A:-0.22 SBRUwER Es = ¥ =2
G047 EEBGELEE i 2 [
G:-0.22 SERZEZER - = < N ¥ X
T: -0.22 £ B W W e X * £ = N < X
0.51 = i3 woE L = = I 5 =
fog, EERRE Y - < E ¥
SEBEUREY EYEBEEEXE
ESREES CE EEFTYT
A ttelos e taelo Ja e ]oge] o 1o fa022 o ]c: 116 EEREE TEEEZET
T -0.22 [™¥ G:-0.22 [=¥[ c:-0.22 [P =T 176 [P Gi-022 SE8EEEE HREEERET
SEBEES sa2ETNTL
BER RS SY¥EBEEREY
Log Odds score of ACACATC An alignment of 30 short amino acids chopped out of an
=116+0+1.16+0+1.16-0.51+047-0.51+ 139+ alignment of an SH3 domain. The shaded areas are the most
0+1.16+0+1.16 conserved and were chosen to be represented by the main (match)
=6.64 states and the unshaded area with lower-case letters was chosen to
be represented by an insert state. [Kro98]
©2016 Sami Khuri ©2016 Sami Khuri
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SH3 Domain Example (III)

PP IPPAPPRRPHPHPRAPPRPPRR DDA
A DA B AN AN MDA
PHEN PR ZHEAAZZE0ANAHIED AR EZZR
NONNENNNNNNNRENNNNLULLRINUENG
00 AN AN AENN AN LA AL
2 HH P HH H HH M R By H
RAHHEMM MMM RN IOD HHMR RHENH
1ccccccccccccccccccccccccCcccc

QUM HH DY
TR H D% TR DA
YUPnAN A

TP ULHLHT
CoAAAA

GGGAAAAAAAAAAVAFVVVGGGGGGGAGAG
ZEOMARRMN AN N AR Z RN O
BAZRRRRRRRRRUZZRRRRBREARRERHIR
UUZREAAAARARKAMATHAUAZRUTDLTAA
DHAAUOU | BU000NALEHAEETADT0E

| The insert state reprcsents highly variable regions of the alignment |

©2016 Sami Khuri
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from left to right. Transitions with probability zero are not shown. Those with very
small probability are shown as dashed lines. Transition from an insert state to
itself are not shown; instead the probability multiplied by 100 is shown in the

A profile HMM made from the alignment. Transition lines with no arrow head are
diamond. The numbers in the circular delete states are just position numbers.
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After all 30 sequences have made one insertion each, there are 176

more insertions (number of amino acids in columns 2,3,4,5,6,7,8

of the insert state) and there are 30 transitions back to the match
states. So there are a total of 176 + 30 transitions out the insert

state. P(self-loop) = 176/206 and P(back to match)
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Markov Model
Assumptions (II)
* An initial probability distribution:

mw,=P(q =i) l=sisN
N
where 2:@. =1
« Stationary condition:

P(qt =j|qt—1 =i)=P(Qt+l =j|qt+l—1 =l)

©2016 Sami Khuri

State Transition Probabilities

State transition probability matrix:

ll“ al a]/ al'v

Ay Ay e Gy e Oy
A= F

a, a, .. a a,

a, a, .. a a

where: a4, =P(q,=jlg.,=i) 1sijsN
a, =0, Vi, j

N
Sa,=1, Vi

J

©2016 Sami Khuri

Hidden Markov Model

e N: the number of hidden states
A set of states: 0={1,2,.,N}

e M: the number of symbols
A setof symbols: V={1,2,..,M}

* A the state-transition probability matrix
aIJ=P(qM=j\qt=i) 1=i,j<N

* B (or b): Emission probability distribution; & is a symbol from V:
B(k)=P(o,=klq,=j) 1=sj=sM

¢ The initial state distribution 7t

m,=P(g =i) l=isN
The entire model A, is given by: A = (4, B,7)

©2016 Sami Khuri

Three Basic Questions

1. EVALUATION - given observation O=(0,, 0,,...,0;) and
model A = (A, B,x), efficiently compute: P(O| A).
« Given two models A and A" , this can be used to choose the better one.
Use: Forward Algorithm or Backward Algorithm
2. DECODING - given observation O=(0,, 0,,...,0;) and
model A find the optimal state sequence ¢g=(q,, ¢, ,...qy) -
* Optimality criterion has to be decided (e.g. maximum likelihood)
Use: Viterbi Algorithm
3. LEARNING - given O=(0,, 0, ,...,07), estimate model
parameters A = (A4, B,7r) that maximize P(O|A).
Use: EM and Baum-Welch Algorithms

©2016 Sami Khuri

Doubly Stochastic Process

According to Rabiner and Juang:
A Hidden Markov Model is a doubly
stochastic process with an underlying
stochastic process which is not observable
(it is hidden), but can be only observed
through another set of stochastic processes
that produce the sequence of observed
symbols.

(IEEE ASSP, January 1986)

©2016 Sami Khuri
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HMM and Logarithms

* In a Hidden Markov Model there is not a
one to one correspondence between the
states and the symbols as is the case with
Markov Chains.

 Extensive multiplication operations with
probabilities often result in underflows.
— Use logarithms: products become sums.

©2016 Sami Khuri
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Scoring a Sequence

 All sequences will have a path through the HMM.

* For most sequences (except very short ones) there
are a huge number of paths through the model,
most of which will have very low probability
values.

+ For a given observed sequence, we can
approximate the total probability by the
probability of the most likely path.

— Viterbi: method for finding the most likely
path.

©2016 Sami Khuri

Viterbi: A Summary

Similar to Dynamic Programming already studied.
Make a matrix with rows for sequence elements and
columns for states in the model.

Work row by row, calculating the probability for each
state to have emitted that element and putting that
probability in a cell.

— When there are multiple paths, select the highest probability
and store the selected path.

Current row uses results of previous row.

Highest entry in the last row gives best total path through
back tracking.

©2016 Sami Khuri

Three Basic Questions (I)

1. EVALUATION - given observation O=(0,, 0, ,...,0;) and
model A =(4,B,7), efficiently compute P(O|A).
¢ Hidden states complicate the evaluation.
« Given two models A and A, this can be used to choose the better
one.
2. DECODING - given observation O=(0,, 0,,...,0;) and
model A find the optimal state sequence ¢g=(q,, ¢, ,...qy) -
¢ Optimality criterion has to be decided (e.g. maximum likelihood)
o “Explanation” of the data.
3. LEARNING - given O=(0,, 0, ,...,07), estimate model
parameters A = (A4, B,7r) that maximize P(O|A).

©2016 Sami Khuri

Three Basic Questions (II)

¢ The Evaluation Problem
— Given the observation sequence O and the model A,
how do we efficiently compute P(O| M), the probability
of the observation sequence, given the model?
¢ The Decoding Problem
— Given the observation sequence O and the model A, find
the optimal state sequence associated O.
Viterbi Algorithm finds the single best sequence q for the
given observation sequence O.
¢ The Learning Problem
— How can we adjust the model parameters to maximize
the joint probability (likelihood)?

©2016 Sami Khuri

Three Basic Questions (III)

* The Evaluation Problem
— Given the observation sequence O and the model A, how do
we efficiently compute P?Ol M), the probability of the
observation sequence, given the model?
Use: Forward Algorithm or Backward Algorithm.
* The Decoding Problem
— Given the observation sequence O and the model A, find the
optimal state sequence associated with O. Viterbi Algorithm
finds the single best sequence q for the given observation
sequence O.
Use: Viterbi Algorithm.
* The Learning Problem
— How can we adjust the model parameter to maximize the joint
probability (likelihood)?
Use: EM and Baum-Welch Algorithms.

©2016 Sami Khuri

Solution to Problem One (I)

Problem: Compute P(0,, 0,,...,0714)

PO|A) = E P(O,q| A) the summation is over all paths
E q=(q;, 45,-.q7) that give O.
But: P(0,q|A) =P(Olq,)P(q|A)

T
g A) =[P, 1q,,2) We assume that the
observations are independent

P(O

1=

= bq,(ol)b(,z(oz) bq‘ (0,)

©2016 Sami Khuri
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Solution to Problem One (II)

We also have: P(q|A) = m,a
By replacingin: (O A) = > P(O.q | )
we have: !
P(O]2) = Eﬂq. b,©)a,,b, (0)a,,b,(0,)..a, ,b, (o)
q

z/lqzaquh aclmfir

We have: 2T — 1 multiplications and a maximum of
N T state sequences and O(T) calculations.
Complexity: O(TN 7).

June 2016

©2016 Sami Khuri

Solution to Problem One (III)

Since the complexity is O(T N 7), the brute
force evaluation of:

PO = P(O.q|A)

by enumerating all paths q that generate O
is not practical.

To efficiently compute P(o,, 0,,...,07|A),
use the Forward Algorithm.

©2016 Sami Khuri

Forward Algorithm

» Define forward variable «, (i) as:
a,(i)= P(0,,0,,..,0,,q, =i| A)
« a,(i)is the probability of observing the partial sequence
(0,,0,,...,0,) and landing in state 1 at stage t (state g, is i).

* Recurrence Relation:
1. Initialization:
2. Induction:

& (i) =1b,(0)
a,,(j) = [2“ (i)a, ] b,(0,.)

P(O|2) = 2 a (i)
+ Complexity:  O(N’T) -

3. Termination:

©2016 Sami Khuri

Forward Procedure:
Induction

N
N aNj at+l(j) = |:2at(i)aijj|bj(oz+])
m 3 j T
o J
-
s Already known
»n 2 from previous

steps

t t+1
Time

©2016 Sami Khuri

Forward Procedure:
Termination

N ani
w 3 i
(]
i N
) 2 P(O|A) = 20{,(1‘)

i=

T-1 T |Use cither Forward
or Backward
Time Algorithm to solve
Problem One.

©2016 Sami Khuri

Backward Algorithm

* Define backward variable A.(i) as:

ﬂt(l) = P(0t+1701+27"'70T ‘ qt =i7}’)

B.(i) is the probability of observing the
partial sequence (o,,,,0,,,,...,0;) knowing

that we land in state i at stage t (in other
words, state g, is i).

©2016 Sami Khuri
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Backward: Recurrence Relation

¢ Recurrence Relation of /J)t (l)
— Initialization: B, (i) =1
— Induction:

N
B.3)= Eaﬁbj(om)/sm( j), lsisN, t(=T-l,..1
j=1
- jTermination: v
P(OM'): Eﬂjbj(ol)ﬁ](j)
7=

« Complexity: O(N°T)

©2016 Sami Khuri

Backward Algorithm

N
2 . V/
E=)
S 4
7]
’ N\
2
L 2 .t1 t ot =2 . T1 T
Time
0 0y =« Oy O Oy Ouz . Oprp  Or
Observation

©2016 Sami Khuri

Backward Algorithm:
Remark

* Backward variable (i) is given by:
ﬂt(l) = P(0t+150t+2,"'70T | q,= l,},)

* We note that, unlike the forward variable, here
we know in which state the process is at time t
(state g, = i).

¢ The distinction is made to be able to combine
the forward and backward variables to
produce a useful result.

©2016 Sami Khuri

Using Forward
and Backward (I)

Compute the probability of producing the entire observed
sequence, O, with the t" symbol produced by state i.

P(O,q, =)
P(0)
P(0,q, =i) = P(0,,0,,..0,,0,,,,..0;_,,0;,q, =1)

P(q, =i]0) = We drop A for convenience

=P(0,,,--07_1,0;,0,,0,,..0,,q, =)
= P(0,,0,,..0,,q, =i)P(0,,,,...07_,0; | 0,,0,,..0,,q, = i)
= P(0,,05,...0,,4, =)P(0,,,...07_1,01 | g, =1)

=a, ()P, @)

©2016 Sami Khuri

Using Forward
and Backward (II)

P(g, =i10)= 022D
P (O) P(0O) can be computed
; i by using either the
= M forward or backward
P (O) algorithm.
Or: )
P(g, =110,3) = 042 12)
P(O,2)
_a,MB0)
P(O,4)

©2016 Sami Khuri

Solution to Problem 2 (I)

We have to find a state sequence:
q9=1(4;,4,---.97), such the probability of
occurrence of the observed sequence:

0O=(0,, 0,,...,07) from the state sequence ¢, is
greater than or equal to any other state
sequence.

Find a path ¢* = (q,*, q, *,....q; *) that
maximizes the likelihood:

P(4,:455--597 | O, 1)

©2016 Sami Khuri
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solve this problem.

best path.

* Instead of taking the sum of all
possible paths that end up in a
destination state, the Viterbi
algorithm picks and remembers the

Solution to Problem 2 (II)

* The Viterbi algorithm can be used to

* It is a modified forward algorithm.

©2016 Sami Khuri
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Solution to Problem 2 (III)

Use Dynamic Programming
* Define
6t(l) = max P(ql’qb'"qt = i701502"'0t | A’)
9429y

0, (i) is the highest probability path ending in state i
at step ¢ (time 7).

* By induction we have:
§t+1 ()= m;_a'X[ét (l)ay] ) bj (0t+1)

©2016 Sami Khuri

* Initialization:

Z)Ul(i) =0

* Recursion:

51 (l) =”ibi(01)7

Viterbi Algorithm (I)

1<i

<N

9,(j) = max[4,_,(a,;1b,(o,)
¥, (j) = argmax[o,_,(Da,]
2=t=<T, 1=j=N

©2016 Sami Khuri

Viterbi Algorithm (II)

+ Termination: P’ = max[35,(i)]
1=i=sN

qr = argmax[6, ()]

where

P; = P(qIDQZa"-QQT |OJA')

* A maximum likelihood path is given by:
q*=(q,* 9:* . qr*), where

qz* =1/jt+1(qz*+1): t=T—1,T—2,...,1

©2016 Sami Khuri

Observation

" |
]. 0,(J)
g /N
& . N0y7/4
2 /4
1
1 2 . k-1 k T1
Time
0, 0, . Oy O Or4

or

Viterbi Algorithm (III)

Tracing
back the
optimal
state
sequence

max o (i)

©2016 Sami Khuri

Solution to Problem 3

+ Estimate 4=(4,B,7)to maximize P(O|4)
* No analytic methods exist because of
complexity — Use an iterative solution.
* Expectation Maximization:
the EM algorithm
1. Let initial model be A,
2. Compute new A based on A, and observation O.
3. If logP(O|A)-logP(O|A)<DELTA stop
4. Else set A,—A and go to step 2

©2016 Sami Khuri
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EM Special Case:
Baum-Welch

* The Expectation Maximization
Algorithm is a very powerful
general algorithm for probabilistic
parameter estimation.

* The Baum-Welch Algorithm is a
special case of the Expectation
Maximization Algorithm.

©2016 Sami Khuri
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Parameter Estimation
for HMMs

There are two parts for specifying a Hidden
Markov Model:
1. Design of the structure (more of an art)
* Determining the states
* Determining the connections of the states
2. Assignment of parameter values
(a well-developed theory exists)

¢ Determining the transition and emission
probabilities.

©2016 Sami Khuri

Assignment of
Parameter Values

 There are two cases to consider when
assigning parameter values to HMMs:

— Estimation when the state sequence is
known

* Example: Location of CpG islands are
already known

— Estimation when the state sequences are
unknown.

©2016 Sami Khuri

Estimation with Known
State Paths

Estimation of the parameters is straightforward
when sequence paths are known.

— Count the number of times a particular transition
(denoted by A) or emission (denoted by B) is used
in the training set

— The maximum likelihood estimations are:
Ay B, (d)

S A > Bid)

©2016 Sami Khuri

bk(d) =

The Dangers of Overfitting

When estimating parameters, especially from a
limited amount of data, there is a danger of
overfitting: the model becomes very well
adapted to the training data and does not
generalize well to testing data (new data).

B,(d)
3, Bi(d")

©2016 Sami Khuri

bk(d) =

©2016 Sami Khuri

Pseudocounts to the Rescue

To avoid overfitting, add predetermined
pseudocounts 7, &7, (d) to the numerators of
the transition estimators:

Ay, is the number of transitions & to / in the
training data + 7,
B, (d) is the number of emissions of d from state k in
the training data + 7, (d)

S b

ay = 4
2

B.(d)
S, Bu(d)

©2016 Sami Khuri
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Estimation if Paths are The Two Steps of Baum-Welch
Unknown
» When paths are unknown for training
sequences, we have no direct closed-form
equation for the estimated parameter

* The Baum-Welch Algorithm is based on
the following observation:

— If we knew the paths, we could compute
transition and emission probabilities

values. —If we knew the transition and emission
* Iterative procedures are used. probabilities, we could compute the
* The Baum-Welch algorithm (special case paths (for example: the most probable
of the EM algorithm) has become the path)
standard method when paths are unknown. * The algorithm alternates between the two.
Baum-Welch Iterative
Baum-Welch at Work (I)
Process
 The Baum-Welch Algorithm is basically an iterative * The probability that @, is used at position # in the
process that alternates between the following two observed sequence O=(0,, 0,,...,07) is given by:
steps:
— Estimate A,,and B,(d)by considering probable paths for P(q, =k,q,,, =1|0,A) = k)b (0,.)f (D
the training sequence using the current values of a,, P(0,4)
and b, (d) [Expectation] + Then the expected number of times that a,, is used
— Derive new values by using above values in: [Maximization] is obtained by summing over all positions and over
Ay b (d) = B, (d) all training sequences:
WIS 4 HOS @) I
rew o 4, = 272 al (kayub,(0].) B ()
. . . . . J
* Iterate until some stopping criterion is reached. 7 P(o’)4

Baum-Welch at Work (II) Baum-Welch Iteration

A, = E P(Lf) E a’ (Kya,b, (0! ) B, (1) » Use the newly computed expectation values: N
7 7 Ay, and B, (d) to calculate the new model transition
(k) is the forward variable for training sequence j and emission parameters :
BI(k) is the backward variable for training sequence j.
t
* Similarly, the expected number of times that symbol d is Ak/ B, (d)
: , that a, =—H_  p(d)=
emitted from state k in all the sequences is given by: K E 2 B, (d")
1 1k a "k
B(d)=3 5 Yo/ (B (k)
7 P(o”) &2, » We then compute again A4,, and B, (d) based on

The inner sum is only over positions t for which the

- > the new parameters and iterate once more.
emitted symbol is d.

©2016 Sami Khuri ©2016 Sami Khuri
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Baum-Welch Algorithm

« Initialization:
— Pick arbitrary model parameters
* Recurrence:
— Set all the A and B variables to their pseudocount
values r (or zero)
— For each sequence j=1,...,n
« Use forward algorithm to compute &/ (k)
« Use backward algorithm to compute /3 (k)
* Add the contribution of sequence j to A and B
— Compute the new model parameters
— Compute the new log likelihood of the model

©2016 Sami Khuri
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Termination Step

¢ Termination:

Stop when the change in the log likelihood is
less than some predefined threshold or the
maximum number of iterations is reached

« It can be shown that the overall log likelihood
is increased by the iteration and that the
process converges to a local maximum.
— One of the challenges of designing HMMs:

* How good is that local maximum?

©2016 Sami Khuri
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