HOMEWORK PROBLEMS ABOUT THE CATENOID

A catenoid is a surface of revolution obtained by rotating a catenary about the Z-axis:

$$\sqrt{X^2 + Y^2} = a \cosh \frac{Z}{a}$$

We must have $a > 0$. This surface can be parametrized by

$$u = \begin{bmatrix}
 a \cosh(Z/a) \cos \theta \\
 a \cosh(Z/a) \sin \theta \\
 Z
\end{bmatrix}$$

The catenoid has a “hole” through which the Z-axis passes. The narrowest part is called the “mouth” of the catenoid. It occurs when $Z = 0$ and the radius of the mouth is a.

Consider two circles of the same radius R, one in the plane $Z = h$ and one in the plane $Z = -h$, with centers on the Z-axis. Rescaling, we might as well assume $R = 1$. Think of the two circles as made of wire. Dip them in soap film. If the circles are dipped with the Z-axis horizontal, you will get two disks. But if the surfaces are dipped with the Z-axis vertical, you may, under certain conditions, get a portion of a catenoid bounded by those two circles.

Here are the homework problems.

1. Calculate the first and second fundamental forms g_{ij} and b_{ij} of a catenoid.
2. Calculate directly that the mean curvature of a catenoid is zero (it is a minimal surface).

3. If you have two wire circles bounding part of a catenoid, and you pull the circles apart (i.e. increase h), eventually the soap film “pops” and you get two disks (or some soap film on the floor). Explain this by showing that there is a maximum $h = h_{\text{max}}$ for which a catenoid can be bounded by those two circles. Does the mouth reach zero diameter when the film pops, or does it pop while the mouth still has a positive diameter? Can you find the numerical value of the h_{max}?

 Hint: We have $a \cosh(h/a) = 1$. Solve this equation for h in terms of a.

4. For h smaller than h_{max}, show that there are TWO catenoids bounded by the two circles. The one with smaller a is called the “inner” catenoid and the other is the “outer” catenoid.

5. Calculate the Gauss curvature of a catenoid. This can be used to reason about the stability of these catenoids, but this homework assignment is long enough already, so we will stop with the computation of the curvature.