Reverse Engineering, DRM, &

Operating Systems Security

Prof. Tom Austin

San Jos¢ State University
Spring 2014

SAN JOSE STATE]

~ R SR ERRE RS S fA A e R

Software Reverse Engineering
(SRE)

SRE

* Software Reverse Engineering
— Also known as Reverse Code Engineering (RCE)
— Or simply “reversing”
* Can be used for good...
— Understand malware
— Understand legacy code

* ...0r not-so-good
— Remove usage restrictions from software
— Find and exploit flaws 1n software
— Cheat at games, etc.

SRE

* We assume...
— Reverse engineer 1s an attacker
— Attacker only has exe (no source code)
— Not bytecode (1.e., no Java, .Net)

* Attacker might want to
— Understand the software
— Modify (“patch”) the software

* SRE usually focused on Windows

— So we focus on Windows

SRE Tools

Disassembler
— Converts exe to assembly (as best it can)
— Cannot always disassemble 100% correctly

— In general, it 1s not possible to re-assemble disassembly
into working exe

Debugger
— Must step thru code to completely understand it
— Labor intensive — lack of useful tools

Hex Editor
— To patch (modify) exe file

Process Monitor, VMware, etc.

SRE Tools

IDA Pro—the top-rated disassembler
— Cost 1s a few hundred dollars
— Converts binary to assembly (as best it can)
OllyDbg — high-quality shareware debugger
— Includes a good disassembler
Hex editor — to view/modify bits of exe
— UltraEdit 1s good — freeware

— HIEW —useful for patching exe
Process Monitor — freeware

Why 1s Debugger Needed?

* Disassembler gives static results
— Good overview of program logic
— User must “mentally execute” program
— Dafficult to jump to specific place in the code

* Debugger is dynamic
— Can set break points

— Can treat complex code as “black box”
— And code not always disassembled correctly

* Disassembler and debugger both required for any
serious SRE task

SRE Necessary Skills

Working knowledge of target assembly code

Experience with the tools

— IDA Pro — sophisticated and complex
— OllyDbg —best choice for this class

Knowledge of Windows Portable Executable (PE)
file format

Boundless patience and optimism

SRE 1is a tedious, labor-intensive process!

SRE Example

We consider a simple example

This example only requires disassembler (IDA Pro)
and hex editor

— Trudy disassembles to understand code

— Trudy also wants to patch the code

For most real-world code, would also need a
debugger (OllyDbg)

SRE Example

* Program requires serial number

* But Trudy doesn’t know the serial number...

[]command Prompt - 10| x|

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>serial

Enter Serial Number
5494959459
Error? Incorrect serial number. Try again.

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>

a Can Trudy get serial number from exe?

SRE Example

* IDA Pro disassembly

-text:00401003 push offset aEnterSerialNum ; "‘nEnter Serial Numberin®
-text:00401008 call sub_4618AF

-text:004061006D lea eax, [esp+i18h+var_14]

-text:00401011 push eax

-text:004010812 push offset as ; %S

-text:00401017 call sub_461098

-text:0040101C push 8

-text:0040101E lea ecx, [esp+24h+var_14]

-text:00401022 push offset aS123n456 ; ""S123H456"

-text:00401027 push ecx

-text:00401028 call sub_461860

-text:00401082D add esp, 18h

.text:00401030 test eax, eax

-text:00401832 jz short loc_461645

-text:004061034 push offset aErrorIncorrect ; "Error?! Incorrect serial number.
-text:004010839 call sub_4618AF

2 Looks like serial number 1s S123N456

SRE Example

* Try the serial number S123N456

5%]command Prompt =10 x|

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release >serial

Enter Serial Number
S123N456
Serial number is correct.

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>

2 It works!
3 Can Trudy do “better”?

SRE Example

* Again, IDA Pro disassembly

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

00461003
004061008
008461066D
0084061611
0084610612
084610617
08461061C
00461061E
004610622
008461027
004610628
008461062D
00401630
0084610632
00401034
0084610639

push offset aEnterSerialNum ; “‘\nEnter Serial Humberin®
call sub_4816AF

lea eax, [esp+i8h+var_14]

push eax

push offset as 3 "%s

call sub_481098

push 8

lea ecx, [esp+24h+var_14]

push offset as$123n456 ; ""S123Nu56"

push ecx

call sub_4618606

add esp, 18h

test eax, eax

jz short loc_401045

push offset aErrorIncorrect ; "Error?! Incorrect serial number.

call sub_4818AF

2 And hex view...

.text:004061010

64 50 68 84 80 40 00 E8-7C 00 00 060 6A 068 8D 4C

.text:00401020 24 10 68 78 80 40 60 51-E8 33 60 0606 66 83 C4 18

.text:004010380
.text:004061040

74 11 68 4C 80 40-00 ES 71 00 60 60 83 C4
64 83 C4 14 C3 68 30 80-40 00 E8 60 66 60 60 83

.text:
text:
text:
06401011

-text

.text:
text:
.text:
.text:
80401022

-text

.text:
.text:
text:
90401030
80401032

-text
-text

.text:
text:

00401003
0084010068
0684061066D

08401612
084010617
084061061C
06840161E

008401027
00401028
0084061062D

00401034
004010639

SRE Example

push
call
lea
push
push
call
push
lea
push
push
call
add
test
jz
push
call

offset aEnterSerialNum ; “"‘“nEnter Serial Numberin'
sub_40616AF

eax, [esp+18h+var_14]

eax

offset as 3 %S
sub_4610898

8

ecx, [esp+24h+var_14]

offset aS123n456 ; "S123Hu56"
ecx

sub_4618686

esp, 18h

eax, eax

short loc_481045

offset aErrorIncorrect ; “"Error?! Incorrect serial number.

sub_4618AF

0 “test eax.eax’ 1S AND of eax with itself
o Flag bit set to 0 only if eax is 0

o Iftest yields 0, then jz is true

a Trudy wants jz to always be true

a Can Trudy patch exe so jz always holds?

SRE Example

0 Can Trudy patch exe so that jz always true?

.text:00461003 push offset atEnterSerialNum ; “‘\nEnter Serial Humberin™
.text:00401008 call sub_4818AF

.text:00401006D lea eax, [esp+18h+var_14]

.text:004010611 push eax

.text:00401612 push offset as 3 V%S

-text:004610617 call sub_4610898

.text:0040101C push 8

.text:0040181E lea ecx, [esp+24h+var_14]

.text:00401022 push offset aS123n456 ; "S123H456™

.text:00401027 push ecx

.text:00401028 call sub_4810860

.text:0040182D add esp, 18h

.text:00401036 XOr eax, eax .

.text:08401032 jz short loc_seieys < JZ always true!!!
-text:00401034 push offset akErrorlIncorrect ; “"Error?! Incorrect serial number.
.text:00401039 call sub_4818AF

Assembly Hex
test eax, eax 85 CO ..
XOTr eax, eax 33 CO ..

SRE Example

e Edit serial.exe with hex editor

00001010h: 04 50 68 84 80 40 00
00001020h: 24 10 68 78 80 40 00
lafluplakla)Ell=5 CO 74 11 63 4C [
00001040h: 04 83 C4 14 C3 68 30
00001050h: C4 04 83 C4 14 C3 90

serial.exe

00001010h: 04 S0 68 84 80 40 00
00001020h: 24 10 68 78 80 40 00
00001030h: 80
00001040h: 04 83 C4 14 C3 68 30
00001050h: C4 04 83 C4 14 C3 90

serialPatch.exe

2 Save as serialPatch.exe

ES
51
40
80
20

ES
51
40
a0
a0

7C
ES
00
40
a0

7C
ES
00
40
20

00 00
33 00
Eg 71
00 ES
90 90

00 00
33 00
Eg 71
00 ES
90 90

00
00
00
60
20

00
00
00
60
20

6A
0o
00
00
20

64
0o
0o
0o
20

038
83
0o
00
20

83
00
00
90

8D
C4
83
0o
20

8D
C4
83
00
20

4qC
158
C4
83
[0

qC
138
C4
83
20

SRE Example

¢ |Command Prompt
C:\Documents and Settings\Administrator\Des

ktop\programs\sre\Re1ease>seria1PatchI’

Enter Serial Number
fjdjfdlf jsd
Serial number is correct.

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>

* Any “serial number” now works!

* Very convenient for Trudy!

SRE Example
* Back to IDA Pro disassembly...

.text:00461003 push offset akEnterSerialNum ; “‘nEnter Serial Humberin”
.text:00401008 call sub_4818AF
.text:00401006D lea eax, [esp+18h+var_14]
.text:004010611 push eax
.text:00401612 push offset as 3 V%S
.text:00461017 call sub_461098
.text:0040101C push 8

. .text:0040181E lea ecx, [esp+24h+var_14]

Sf:flfll.f:)(f: -text:004081022 push offset aS123n456 ; "S123H456™

.text:00401027 push ecx
-text:00401028 call sub_4616868
.text:0040182D add esp, 18h
.text:00401030 test eax, eax
.text:004010832 jz short loc_4810845
-text:00401034 push offset akErrorlIncorrect ; "Error?! Incorrect serial number.
.text:00401039 call sub_4818AF

.text:004010083 push offset aEnterSerialNum ; “‘\nEnter Serial HNumberin®
.text:00401008 call sub_4618AF
.text:00408100D lea eax, [esp+18h+var_14]
.text:004010611 push eax
.text:00401012 push offset as ; %S
.text:00401017 call sub_4610898
< .text:0648101C push 8

serialPatch.exe .text:0040101E lea ecx, [esp+24h+var 14]
.text:0040810822 push offset asS123n456 ; ""S123H456"
.text:00401027 push ecx
.text:00401028 call sub_461860
.text:0040102D add esp, 18h
.text:00401030 Xor eax, eax
.text:00461032 jz short loc_u481845
.text:0040610834 push offset aErrorIncorrect ; “Error?! Incorrect serial number.

.text:00401039 call sub_4618AF

SRE Attack Mitigation

Impossible to prevent SRE on open system
But can make such attacks more difficult
Anti-disassembly techniques

— To confuse static view of code
Anti-debugging techniques

— To confuse dynamic view of code

Tamper-resistance
— Code checks itself to detect tampering

Code obfuscation
— Make code more difficult to understand

Anti-disassembly

* Anti-disassembly methods include
— Encrypted or “packed” object code
— False disassembly
— Self-modifying code
— Many other techniques
* Encryption prevents disassembly
— But still need plaintext code to decrypt code!

— Same problem as with polymorphic viruses

Anti-disassembly Example

* Suppose actual code instructions are

inst 1 | jmp junk inst 3 | inst 4

2 What a “dumb” disassembler sees

inst 1 | inst 2 |[inst 3 |inst 4 |inst 5 |inst 6

2 This 1s example of “false disassembly”
2 But, clever attacker will figure 1t out

Anti-debugging

IsDebuggerPresent()

Can also monitor for
— Use of debug registers
— Inserted breakpoints

Debuggers don’t handle threads well
— Interacting threads may confuse debugger
— And therefore, confuse attacker

Many other debugger-unfriendly tricks

— See next slide for one example

Anti-debugger Example

mstl |inst2 |inst3 | inst4 | inst5 | inst 6

* Suppose when program gets inst 1, 1t pre-fetches
inst 2, inst 3 and inst 4

— This 1s done to increase efficiency

* Suppose when debugger executes inst 1, 1t does
not pre-fetch instructions

 (Can we use this difference to confuse the
debugger?

Anti-debugger Example

inst 1 |inst 2 |inst 3 | jjpshl | inst 5 | inst 6

Suppose inst 1 overwrites inst 4 1n memory

Then Erogram (without debugger) will be OK since
it fetched inst 4 at same time as inst 1

Debugger will be confused when it reaches junk
where 1nst 4 1s supposed to be

Problem 1f this segment of code executed more than
once!

— Also, code 1s very platform-dependent
Again, clever attacker can figure this out

Tamper-resistance

Goal 1s to make patching more difficult
Code can hash parts of itself
If tampering occurs, hash check fails

Research has shown, can get good coverage of code
with small performance penalty

But don’t want all checks to look similar

— Or else easy for attacker to remove checks

This approach sometimes called “guards”

Code Obfuscation

e (Goal 1s to make code hard to understand
— Opposite of good software engineering!
— Simple example: spaghetti code

 Much research into more robust obfuscation
— Example: opaque predicate

int X,y

H((x-y)*(x-y) > (x*x-2*x*y+y*y)){...}
— The if() conditional is always false

* Attacker wastes time analyzing dead code

Code Obfuscation

Code obfuscation sometimes promoted as a powerful
security technique

Diffie and Hellman’s original ideas for public key
crypto were based on obfuscation

— But 1t didn’t work

Recently it has been shown that obfuscation probably
cannot provide “strong” security

— On the (im)possibility of obfuscating programs

Obfuscation might still have practical uses!

— Even 1f 1t can never be as strong as crypto

Authentication Example

Software used to determine authentication

Ultimately, authentication 1s 1-bit decision
— Regardless of method used (pwd, biometric, ...)

— Somewhere in authentication software, a single bit
determines success/failure

If Trudy can find this bit, she can force
authentication to always succeed

Obfuscation makes it more difficult for attacker to
find this all-important bit

Obfuscation

Obfuscation forces attacker to analyze larger
amounts of code

Method could be combined with

— Anti-disassembly techniques
— Anti-debugging techniques

— Code tamper-checking
All of these increase work (and pain) for attacker

But a persistent attacker can ultimately win

Digital Rights Management

Digital Rights Management

* DRM i1s a good example of limitations of
doing security in software

* We’ll discuss
— What 1s DRM?
— A PDF document protection system
— DRM for streaming media
— DRM in P2P application
— DRM within an enterprise

What 1s DRM?

* “Remote control” problem
— Distribute digital content
— Retain some control on its use, after delivery

+ Digital book example
— Digital book sold online could have huge market
— But might only sell 1 copy!
— Trivial to make perfect digital copies
— A fundamental change from pre-digital era

e Similar comments for digital music, video, etc.

Persistent Protection

* “Persistent protection” 1s the fundamental problem
in DRM

— How to enforce restrictions on use of content after
delivery?
* Examples of such restrictions
— No copying
— Limited number of reads/plays
— Time limits
— No forwarding, etc.

What Can be Done?

The honor system?

— Example: Stephen King’s, The Plant
Give up?

— Internet sales? Regulatory compliance? etc.

Lame software-based DRM?
— The standard DRM system today

Better software-based DRM?
— MediaSnap’s goal
Tamper-resistant hardware?

— Closed systems: Game Cube, etc.
— Open systems: TCG/NGSCB for PCs

Is Crypto the Answer?

key

plaintext — encrypt J\/\/\/\/\/—» decrypt ——— plaintext

' ciphertext

L et e == J

Attacker’s goal 1s to recover the key

In standard crypto scenario, attacker has

— Ciphertext, some plaintext, side-channel info, etc.
In DRM scenario, attacker has

— Everything in the box (at least)

Crypto was not designed for this problem!

Is Crypto the Answer?

* But crypto 1s necessary
— To securely deliver the bits
— To prevent trivial attacks

* Then attacker will not try to directly attack crypto

* Attacker will try to find keys in software
— DRM 1s “hide and seek” with keys 1n software!

Current State of DRM

* At best, security by obscurity
— A derogatory term 1n security

* Secret designs
— In violation of Kerckhoffs Principle

* Over-reliance on crypto

— “Whoever thinks his problem can be solved using
cryptography, doesn’t understand his problem and

doesn’t understand cryptography.” — Attributed by Roger
Needham and Butler Lampson to each other

DRM Limitations

* The analog hole

— When content 1s rendered, it can be captured in analog
form

— DRM cannot prevent such an attack

* Human nature matters
— Absolute DRM security 1s impossible
— Want something that “works” in practice
— What works depends on context

 DRM is not strictly a technical problem!

Software-based DRM

* Strong software-based DRM 1s impossible
* Why?
— We can’t really hide a secret in software
— We cannot prevent SRE
— User with full admin privilege can eventually break any
ant1-SRE protection

 Bottom line: The killer attack on software-based
DRM 1s SRE

DRM for a P2P Application

Today, much digital content 1s delivered via peer-
to-peer (P2P) networks

— P2P networks contain lots of pirated music

Is 1t possible to get people to pay for digital content
on such P2P networks?

How can this possibly work?

A peer offering service (POS) 1s one 1dea

P2P File Sharing: Query

* Suppose Alice requests “Hey Jude”
* Black arrows: query flooding
* Red arrows: positive responses

3 Alice can select from: Carol, Pat

P2P File Sharing with POS

* Suppose Alice requests “Hey Jude”
* Black arrow: query
* Red arrow: positive response

2 Alice selects from: Bill, Ben, Carol, Joe, Pat
2 Bill, Ben, & Joe have DRM protected content

POS

* Bill, Ben and Joe must appear normal to Alice

o If “victim” (Alice) clicks POS response
— DRM protected content downloaded
— Then small payment required to play

* Alice can choose not to pay
— But then she must download again

— Is 1t worth the hassle to avoid paying small fee?
— POS content can also offer extras

POS Conclusions

A very clever 1dea!
Piggybacking on existing P2P networks
Weak DRM works very well here

— Pirated content already exists

— DRM only needs to be more hassle to break than the
hassle of clicking and waiting

Current state of POS?

— Very little interest from the music industry
— Considerable interest from the “adult” industry

DRM Failures

* Many examples of DRM failures
— One system defeated by a felt-tip pen
— One defeated my holding down shift key

— Secure Digital Music Initiative (SDMI)
completely broken before 1t was finished

— Adobe eBooks
— Microsoft MS-DRM (version 2)

— Many, many others!

PyMusique

1Tunes was not available on Linux.
DRM was applied on the client.

PyMusique (later SharpMusique) purchased
and downloaded songs, but did not apply the
DRM.

Apple very quickly released a new version &
forced 1ts users to upgrade.

DRM Conclusions

DRM nicely illustrates limitations of doing
security in software

Software 1n a hostile environment 1s extremely
vulnerable to attack

Protection options are very limited
Attacker has enormous advantage

Tamper-resistant hardware and a trusted OS can
make a difference

— We’ll discuss this more later: TCG/NGSCB

