
Reverse Engineering, DRM, &
Operating Systems Security

Prof. Tom Austin
San José State University

Spring 2014

Software Reverse Engineering
(SRE)

SRE
•  Software Reverse Engineering
–  Also known as Reverse Code Engineering (RCE)
–  Or simply “reversing”

•  Can be used for good...
–  Understand malware
–  Understand legacy code

•  …or not-so-good
–  Remove usage restrictions from software
–  Find and exploit flaws in software
–  Cheat at games, etc.

SRE
•  We assume…
–  Reverse engineer is an attacker
–  Attacker only has exe (no source code)
–  Not bytecode (i.e., no Java, .Net)

•  Attacker might want to
–  Understand the software
–  Modify (“patch”) the software

•  SRE usually focused on Windows
–  So we focus on Windows

SRE Tools
•  Disassembler
–  Converts exe to assembly (as best it can)
–  Cannot always disassemble 100% correctly
–  In general, it is not possible to re-assemble disassembly

into working exe
•  Debugger
–  Must step thru code to completely understand it
–  Labor intensive ⎯ lack of useful tools

•  Hex Editor
–  To patch (modify) exe file

•  Process Monitor, VMware, etc.

SRE Tools
•  IDA Pro ⎯ the top-rated disassembler
–  Cost is a few hundred dollars
–  Converts binary to assembly (as best it can)

•  OllyDbg ⎯ high-quality shareware debugger
–  Includes a good disassembler

•  Hex editor ⎯ to view/modify bits of exe
–  UltraEdit is good ⎯ freeware
–  HIEW ⎯ useful for patching exe

•  Process Monitor ⎯ freeware

Why is Debugger Needed?
•  Disassembler gives static results
–  Good overview of program logic
–  User must “mentally execute” program
–  Difficult to jump to specific place in the code

•  Debugger is dynamic
–  Can set break points
–  Can treat complex code as “black box”
–  And code not always disassembled correctly

•  Disassembler and debugger both required for any
serious SRE task

SRE Necessary Skills
•  Working knowledge of target assembly code
•  Experience with the tools
–  IDA Pro ⎯ sophisticated and complex
–  OllyDbg ⎯ best choice for this class

•  Knowledge of Windows Portable Executable (PE)
file format

•  Boundless patience and optimism
•  SRE is a tedious, labor-intensive process!

SRE Example

•  We consider a simple example
•  This example only requires disassembler (IDA Pro)

and hex editor
–  Trudy disassembles to understand code

–  Trudy also wants to patch the code

•  For most real-world code, would also need a
debugger (OllyDbg)

SRE Example
•  Program requires serial number

•  But Trudy doesn’t know the serial number…

q  Can Trudy get serial number from exe?

SRE Example

•  IDA Pro disassembly

q Looks like serial number is S123N456

SRE Example

•  Try the serial number S123N456

q It works!
q Can Trudy do “better”?

SRE Example
•  Again, IDA Pro disassembly

q And hex view…

SRE Example

q  “test eax,eax” is AND of eax with itself
o  Flag bit set to 0 only if eax is 0

o  If test yields 0, then jz is true

q  Trudy wants jz to always be true
q  Can Trudy patch exe so jz always holds?

SRE Example

 Assembly Hex
 test eax,eax 85 C0 …
 xor eax,eax 33 C0 …

q  Can Trudy patch exe so that jz always true?

xor ← jz always true!!!

SRE Example

•  Edit serial.exe with hex editor

serial.exe

serialPatch.exe

q Save as serialPatch.exe

SRE Example

•  Any “serial number” now works!
•  Very convenient for Trudy!

SRE Example
•  Back to IDA Pro disassembly…

serial.exe

serialPatch.exe

SRE Attack Mitigation
•  Impossible to prevent SRE on open system
•  But can make such attacks more difficult
•  Anti-disassembly techniques
–  To confuse static view of code

•  Anti-debugging techniques
–  To confuse dynamic view of code

•  Tamper-resistance
–  Code checks itself to detect tampering

•  Code obfuscation
–  Make code more difficult to understand

Anti-disassembly
•  Anti-disassembly methods include
–  Encrypted or “packed” object code
–  False disassembly
–  Self-modifying code
–  Many other techniques

•  Encryption prevents disassembly
–  But still need plaintext code to decrypt code!
–  Same problem as with polymorphic viruses

Anti-disassembly Example
•  Suppose actual code instructions are

q What a “dumb” disassembler sees

inst 1	
 inst 3	
jmp	
 junk	
 inst 4	
 …	

inst 1	
 inst 5	
inst 2	
 inst 3	
 inst 4	
 inst 6	
 …	

q This is example of “false disassembly”
q But, clever attacker will figure it out

Anti-debugging
•  IsDebuggerPresent()
•  Can also monitor for
–  Use of debug registers
–  Inserted breakpoints

•  Debuggers don’t handle threads well
–  Interacting threads may confuse debugger
–  And therefore, confuse attacker

•  Many other debugger-unfriendly tricks
–  See next slide for one example

Anti-debugger Example

•  Suppose when program gets inst 1, it pre-fetches
inst 2, inst 3 and inst 4
–  This is done to increase efficiency

•  Suppose when debugger executes inst 1, it does
not pre-fetch instructions

•  Can we use this difference to confuse the
debugger?

inst 1	
 inst 5	
inst 2	
 inst 3	
 inst 4	
 inst 6	
 …	

Anti-debugger Example

•  Suppose inst 1 overwrites inst 4 in memory
•  Then program (without debugger) will be OK since

it fetched inst 4 at same time as inst 1
•  Debugger will be confused when it reaches junk

where inst 4 is supposed to be
•  Problem if this segment of code executed more than

once!
–  Also, code is very platform-dependent

•  Again, clever attacker can figure this out

inst 1	
 inst 5	
inst 2	
 inst 3	
 inst 4	
 inst 6	
 …	
junk	

Tamper-resistance
•  Goal is to make patching more difficult
•  Code can hash parts of itself
•  If tampering occurs, hash check fails
•  Research has shown, can get good coverage of code

with small performance penalty
•  But don’t want all checks to look similar
–  Or else easy for attacker to remove checks

•  This approach sometimes called “guards”

Code Obfuscation
•  Goal is to make code hard to understand
–  Opposite of good software engineering!
–  Simple example: spaghetti code

•  Much research into more robust obfuscation
–  Example: opaque predicate
	
int x,y	

	
 	
:	

	
if((x-y)*(x-y) > (x*x-2*x*y+y*y)){…}
–  The if() conditional is always false

•  Attacker wastes time analyzing dead code

Code Obfuscation
•  Code obfuscation sometimes promoted as a powerful

security technique
•  Diffie and Hellman’s original ideas for public key

crypto were based on obfuscation
–  But it didn’t work

•  Recently it has been shown that obfuscation probably
cannot provide “strong” security
–  On the (im)possibility of obfuscating programs

•  Obfuscation might still have practical uses!
–  Even if it can never be as strong as crypto

Authentication Example
•  Software used to determine authentication
•  Ultimately, authentication is 1-bit decision
–  Regardless of method used (pwd, biometric, …)
–  Somewhere in authentication software, a single bit

determines success/failure

•  If Trudy can find this bit, she can force
authentication to always succeed

•  Obfuscation makes it more difficult for attacker to
find this all-important bit

Obfuscation
•  Obfuscation forces attacker to analyze larger

amounts of code
•  Method could be combined with
–  Anti-disassembly techniques
–  Anti-debugging techniques
–  Code tamper-checking

•  All of these increase work (and pain) for attacker
•  But a persistent attacker can ultimately win

Digital Rights Management

Digital Rights Management
•  DRM is a good example of limitations of

doing security in software
•  We’ll discuss
– What is DRM?
– A PDF document protection system
– DRM for streaming media
– DRM in P2P application
– DRM within an enterprise

What is DRM?
•  “Remote control” problem
–  Distribute digital content
–  Retain some control on its use, after delivery

•  Digital book example
–  Digital book sold online could have huge market
–  But might only sell 1 copy!
–  Trivial to make perfect digital copies
–  A fundamental change from pre-digital era

•  Similar comments for digital music, video, etc.

Persistent Protection
•  “Persistent protection” is the fundamental problem

in DRM
–  How to enforce restrictions on use of content after

delivery?
•  Examples of such restrictions
–  No copying
–  Limited number of reads/plays
–  Time limits
–  No forwarding, etc.

What Can be Done?
•  The honor system?
–  Example: Stephen King’s, The Plant

•  Give up?
–  Internet sales? Regulatory compliance? etc.

•  Lame software-based DRM?
–  The standard DRM system today

•  Better software-based DRM?
–  MediaSnap’s goal

•  Tamper-resistant hardware?
–  Closed systems: Game Cube, etc.
–  Open systems: TCG/NGSCB for PCs

Is Crypto the Answer?

•  Attacker’s goal is to recover the key
•  In standard crypto scenario, attacker has

–  Ciphertext, some plaintext, side-channel info, etc.
•  In DRM scenario, attacker has

–  Everything in the box (at least)
•  Crypto was not designed for this problem!

Is Crypto the Answer?

•  But crypto is necessary
–  To securely deliver the bits
–  To prevent trivial attacks

•  Then attacker will not try to directly attack crypto
•  Attacker will try to find keys in software
–  DRM is “hide and seek” with keys in software!

Current State of DRM

•  At best, security by obscurity
–  A derogatory term in security

•  Secret designs
–  In violation of Kerckhoffs Principle

•  Over-reliance on crypto
–  “Whoever thinks his problem can be solved using

cryptography, doesn’t understand his problem and
doesn’t understand cryptography.” ⎯ Attributed by Roger
Needham and Butler Lampson to each other

DRM Limitations
•  The analog hole
–  When content is rendered, it can be captured in analog

form
–  DRM cannot prevent such an attack

•  Human nature matters
–  Absolute DRM security is impossible
–  Want something that “works” in practice
–  What works depends on context

•  DRM is not strictly a technical problem!

Software-based DRM
•  Strong software-based DRM is impossible
•  Why?
–  We can’t really hide a secret in software
–  We cannot prevent SRE
–  User with full admin privilege can eventually break any

anti-SRE protection
•  Bottom line: The killer attack on software-based

DRM is SRE

DRM for a P2P Application

•  Today, much digital content is delivered via peer-
to-peer (P2P) networks
–  P2P networks contain lots of pirated music

•  Is it possible to get people to pay for digital content
on such P2P networks?

•  How can this possibly work?
•  A peer offering service (POS) is one idea

P2P File Sharing: Query
•  Suppose Alice requests “Hey Jude”
•  Black arrows: query flooding
•  Red arrows: positive responses

Frank

Ted Carol Pat

Marilyn Bob Alice Dean

Fred

q  Alice can select from: Carol, Pat

Carol
Pat

P2P File Sharing with POS
•  Suppose Alice requests “Hey Jude”
•  Black arrow: query
•  Red arrow: positive response

POS

Ted Carol Pat

Marilyn Bob Alice Dean

Fred

q  Alice selects from: Bill, Ben, Carol, Joe, Pat
q  Bill, Ben, & Joe have DRM protected content

Bill
Ben
Joe

Carol
Pat

POS
•  Bill, Ben and Joe must appear normal to Alice
•  If “victim” (Alice) clicks POS response
–  DRM protected content downloaded
–  Then small payment required to play

•  Alice can choose not to pay
–  But then she must download again
–  Is it worth the hassle to avoid paying small fee?
–  POS content can also offer extras

POS Conclusions
•  A very clever idea!
•  Piggybacking on existing P2P networks
•  Weak DRM works very well here
–  Pirated content already exists
–  DRM only needs to be more hassle to break than the

hassle of clicking and waiting
•  Current state of POS?
–  Very little interest from the music industry
–  Considerable interest from the “adult” industry

DRM Failures

•  Many examples of DRM failures
– One system defeated by a felt-tip pen
– One defeated my holding down shift key
– Secure Digital Music Initiative (SDMI)

completely broken before it was finished
– Adobe eBooks
– Microsoft MS-DRM (version 2)
– Many, many others!

PyMusique

•  iTunes was not available on Linux.
•  DRM was applied on the client.
•  PyMusique (later SharpMusique) purchased

and downloaded songs, but did not apply the
DRM.

•  Apple very quickly released a new version &
forced its users to upgrade.

DRM Conclusions
•  DRM nicely illustrates limitations of doing

security in software
•  Software in a hostile environment is extremely

vulnerable to attack
•  Protection options are very limited
•  Attacker has enormous advantage
•  Tamper-resistant hardware and a trusted OS can

make a difference
–  We’ll discuss this more later: TCG/NGSCB

