
CS 252, Exam 1 Name:

This is a 75 minute, CLOSED notes, books, etc. exam.
ASK if anything is not clear.
WORK INDIVIDUALLY.

Strategy: Scan the entire exam first. Work on the easier ones before the harder ones. Don’t waste too
much time on any one problem. Show all work on the space provided. Write your name on each page. Check
to make sure you have 6 pages.

Question Points Score

1 5

2 5

3 5

4 5

5 5

6 20

7 10

8 10

9 20

10 15

Total: 100

Page 1 of 6



CS 252, Exam 1 Name:

1. (5 points) Select all of the following true statements about Haskell.

A. Haskell is a purely functional language.

B. One of the unusual aspects of Haskell is that it uses eager evaluation; for instance, with an if

expression, it evaluates both branches before testing the condition.

C. Haskell uses function currying, meaning that arguments are not evaluated until they are used.

D. Haskell is a dynamically typed language.

E. All functions in Haskell are curried by default.

2. (5 points) Select all of the following true statements about functors, applicative functors, and monads.

A. The usual analogy for a functor is a “box”, though the analogy is perhaps less fitting for cases
like IO.

B. A monad is a “box” containing a function.

C. The fmap function maps a function over a functor.

D. The do syntax is syntactic sugar for chaining calls to the “bind” (>>=) operator.

E. Some examples of monads in Haskell include Maybe, IO, and lists.

3. (5 points) Select all of the following true statements about formal semantics.

A. Small-step operational semantics evaluate an expression to a value in one step.

B. Big-step operational semantics, sometimes called “natural semantics” are often easier to trans-
late into programming logic.

C. With operational semantics, there is no way to represent “state”, such as mutable variables.

D. An advantage of small-step operational semantics over big-step semantics is that it can be used
to reason about intermediary state, whereas big-step semantics can only reason about the final
result of the evaluation.

E. Operational semantics are often unnecessary, since it is obvious what most language constructs
should do.

4. (5 points) Select all of the following true statements about functional programming.

A. Java is a functional programming language, since it supports recursion.

B. A higher-order function is a function that takes another function as a parameter or returns a
function as its return value.

C. Functional solutions generally rely on iteration rather than recursion.

D. Compilers can convert tail recursive code to more efficient iterative solutions.

E. Purely functional languages like Haskell allow programmers to more easily write code without
side effects.

5. (5 points) Select all of the following true statements about types and kinds in Haskell.

A. A kind can be thought of as “the type of a type”.

B. An abstract data type in Haskell is similar to an interface in Java, except that it may specify
functionality.

C. The type of a function in Haskell is specified by an “arrow” (->), indicating the type of the
input and the type of the output.

D. In Haskell, null is a special value (similar to null in Java) that matches any type, and therefore
will always typecheck as a return value.

E. A typeclass is a type formed by combining other types.
For example: data Tree = Empty | Node Tree Tree

Page 2 of 6



CS 252, Exam 1 Name:

6. (20 points) Consider the following language:

e ::= Expressions

true true constant
false false constant
if e then e else e conditional expressions
e + e addition

v ::= Values

true true constant
false false constant

Convert the following small-step operational semantics to use contexts instead of evaluation order rules.

[ss-if-order]
e1 → e

′

1

if e1 then e2 else e3 → if e
′

1
then e2 else e3

[ss-if-true]
if true then e2 else e3 → e2

[ss-if-false]
if false then e2 else e3 → e3

[ss-plus-order1]
e1 → e

′

1

e1 + e2 → e
′

1
+ e2

[ss-plus-order2]
e2 → e

′

2

v1 + e2 → v1 + e
′

2

[ss-plus]
v3 = v1 + v2

v1 + v2 → v3

Page 3 of 6



CS 252, Exam 1 Name:

7. (10 points) Write a Haskell function called makeListOfAdders that takes a list of Integers and returns a
list of adders (i.e. functions that add a number to their input). Include the proper type signature.

-- Sample usage

adders = makeListOfAdders [1,2]

(head adders) 10 -- results in 11

(head (tail adders)) 10 -- results in 12

8. (10 points) Implement the following higher-order functions. You may not use map or any of Haskell’s
built-in fold functions.

(a) -- Usage: myMap (+1) [1,2] ---------> [2,3]

myMap :: (a -> b) -> [a] -> [b]

(b) -- Usage: myFoldLeft (+) 0 [1,3,5] ---------> 9

myFoldLeft :: (a -> b -> a) -> a -> [b] -> a

Page 4 of 6



CS 252, Exam 1 Name:

9. (20 points) Consider the following Haskell code:

x -: f = f x

myadd x y = y + x

mysub x y = y - x

mymul x y = y * x

mydiv d = (\n -> case d of

0 -> error "div by zero"

d -> div n d)

-- Evaluates to 4

10 -: mydiv 5 -: myadd 4 -: mysub 2

-- Error

10 -: mydiv 5 -: myadd 4 -: mysub 2 -: mydiv 0 -: mymul 10

(a) Rewrite this program to return Maybe values, where Nothing is returned instead of an error. Use
the bind operator (>>=) instead of -:.

(b) Using do syntax, write the function foo, which takes a parameter x and

1. Sets y to x divided by 60 (using mydiv; pay attention to the order of arguments).

2. Sets z to 9 plus 3 (using myadd).

3. Returns the result of multiplying y and z (using mymul).

Page 5 of 6



CS 252, Exam 1 Name:

10. (15 points) Consider the following language and big-step operational semantics:

e ::= Expressions

0 zero
succ e successor function
pred e predecessor function
if e then e else e conditional expressions

v ::= Values

0 zero
succ v number

[succ]
e ⇓ v

succ e ⇓ succ v

[pred]
e ⇓ succ v

pred e ⇓ v

[pred-zero]
e ⇓ 0

pred e ⇓ 0

[zero]
0 ⇓ 0

[if-true]
e1 ⇓ succ 0 e2 ⇓ v

if e1 then e2 else e3 ⇓ v

[if-false]
e1 ⇓ 0 e3 ⇓ v

if e1 then e2 else e3 ⇓ v

(a) What is the result of evaluating

if (if (pred succ 0) then (succ succ 0)

else (pred succ succ 0))

then (succ succ 0)

else 0

(b) What is the result of evaluating

if (succ succ 0)

then (succ 0)

else (pred succ 0)

Page 6 of 6


