Part IV: Software

Part 4 — Software

Why Software?

0 Why is software as important to security
as crypto, access control, protocols?

0 Virtually all of information security is
implemented in software

0 If your software is subject to attack, your
security can be broken

o Regardless of strength of crypto, access
control or protocols

0 Software is a poor foundation for security

Part 4 — Software 2

Chapter 11:
Software Flaws and Malware

If automobiles had followed the same development cycle as the computer,
a Rolls-Royce would today cost $100, get a million miles per gallon,

and explode once a year, killing everyone inside.

— Robert X. Cringely

My software never has bugs. It just develops random features.

— Anonymous

Part 4 — Software 3

Bad Software is Ubiquitous

2 NASA Mars Lander (cost $165 million)
o Crashed into Mars due to...
o ..error in converting English and metric units of measure
o Believe it or not

0 Denver airport
o Baggage handling system --- very buggy software
o Delayed airport opening by 11 months
o Cost of delay exceeded $1 million/day
o What happened to person responsible for this fiasco?

O MV-22 Osprey

o Advanced military aircraft
o Faulty software can be fatal

Part 4 — Software 4

Software Issues

Alice and Bob

0 Find bugs and flaws
by accident

a Hate bad software...

a ..but must learn to
live with it

a Must make bad
software work

Part 4 — Software

Trudy

a Actively looks for
bugs and flaws

a Likes bad software...

a ..and tries to make
IT misbehave

0 Attacks systems via
bad software

Complexity

0 "Complexity is the enemy of security”, Paul
Kocher, Cryptography Research, Inc.

Lines of Code (LOC)

Netscape 17 million
Space Shuttle 10 million
Linux kernel 2.6.0 5 million
Windows XP 40 million
Mac OS X 10.4 86 million
Boeing 777 7 million

aQ A new car contains more LOC than was required
to land the Apollo astronauts on the moon

Part 4 — Software

Lines of Code and Bugs

0 Conservative estimate: 5 bugs/10,000 LOC

0 Do the math
o Typical computer: 3k exe's of 100k LOC each
o Conservative estimate: 50 bugs/exe
o So, about 150k bugs per computer
o So, 30,000-node network has 4.5 billion bugs

o Maybe only 10% of bugs security-critical and
only 10% of those remotely exploitable

o Then “only” 45 million critical security flaws!

Part 4 — Software 7

Software Security Topics

0 Program flaws (unintentional)
o Buffer overflow
o Incomplete mediation
o Race conditions

2 Malicious software (intentional)
o Viruses
o Worms
o Other breeds of malware

Part 4 — Software

Program Flaws

a An error is a programming mistake
o To err is human

a An error may lead to incorrect state: fault
o A fault is internal to the program

a A fault may lead to a failure, where a
system departs from its expected behavior

o A failure is externally observable

error ey fault ——oy failure

Part 4 — Software 9

Example

char array[1l0];

~ ~

array[i] = A ;
array[10] = B ;

for(i1 = 0; 1 < 10; ++1)

0 This program has an error

0 This error might cause a fault

o Incorrect internal state

0 If a fault occurs, it might lead to a failure

o Program behaves incorrectly (external)

a We use the term flaw for all of the above

Part 4 — Software

10

Secure Software

0 In software engineering, try to ensure that
a program does what is intended

0 Secure software engineering requires that
software does what is intended...

Q ...and nothing more

0 Absolutely secure software is impossible
o But, absolute security anywhere is impossible

a0 How can we manage software risks?

Part 4 — Software 11

Program Flaws

0 Program flaws are unintentional
o But can still create security risks

a0 We'll consider 3 types of flaws
o Buffer overflow (smashing the stack)
o Incomplete mediation
o Race conditions

0 These are the most common problems

Part 4 — Software 12

Part 4 — Software

Buffer Overflow

13

The Twilight Hack

The problem: gamers wanted to create
their own games for Nintendo's Wii...

Part 4 — Software 14

Horsing Around

0In"The Legend of
Zelda: Twilight
Princess", the hero
gets a horse.

2 You can rename the
horse, but there is a
buffer overflow flaw.

Part 4 — Software 15

WiiBrew

a With the right name, the WII
reboots and reads from an SD card.

0 This exploit allowed users to run
WiiBrew and
play custom

Wii games. wiibrew

the wii homebrew channel

Wii Menu Start

Part 4 — Software 16

Possible Attack Scenario

a Users enter data into a Web form
1 Web form is sent to server

a Server writes data to array called buffer,
without checking length of input data

0 Data “overflows" buffer
o Such overflow might enable an attack

o If so, attack could be carried out by anyone
with Internet access

Part 4 — Software

17

Buffer Overflow

int main(){
int buffer[10];
buffer[20] = 37;}

0 Q: What happens when code is executed?

0 A: Depending on what resides in memory
at location "buffer[20]"

o Might overwrite user data or code
o Might overwrite system data or code
o Or program could work just fine

Part 4 — Software 18

Simple Buffer Overflow

0 Consider boolean flag for authentication

0 Buffer overflow could overwrite flag
allowing anyone to authenticate

Boolean flag
_buffer b

:lF olu|r|slc| .. |F

0 In some cases, Trudy need not be so lucky
as in this example

Part 4 — Software 19

Memory Organization

0 Text == code e(mmss
0 Data == static variables
ata
0 Heap == dynamic data
a Stack == "scratch paper”
< stack

o Dynamic local variables
o Parameters to functions

pointer (SP)

< high
o Return address qd%r'ess

Part 4 — Software 20

Simplified Stack Example

void func(int a, int b){
char buffer[10];

}

void main(){
func(1l, 2);

}

Part 4 — Software

<— SP

«— BE&turn
address

<— SP
< SP

21

Smashing the Stack

IOW%-

277

a0 What happens if
buffer overflows?

aProgram "returns”

. < SP
to wrong location
. < &R... NOT!
a A crash is likely
<— SP

high — < SP

Part 4 — Software 22

Smashing the Stack

low —

better idea...
aCode injection

a Trudy can run
code of her
choosing...

0 ...on your machine

high —

Part 4 — Software

23

Smashing the Stack

a Trudy may not know...
1) Address of evil code
2) Location of ret on stack

2 Solutions

1) Precede evil code with
NOP “landing pad”

2) Insert ret many times

<~ ret

Part 4 — Software * 24

Stack Smashing Summary

0 A buffer overflow must exist in the code

0 Not all buffer overflows are exploitable
o Things must align properly

0 If exploitable, attacker can inject code

a Trial and error is likely required

o Fear not, lots of help is available online
o Smashing the Stack for Fun and Profit, Aleph One

0 Stack smashing is "attack of the decade”
o Regardless of the current decade
o Also heap overflow, integer overflow, ...

Part 4 — Software 25

Stack Smashing Example

0 Program asks for a serial number that the
attacker does not know

0 Attacker does not have source code
0 Attacker does have the executable (exe)

[]command Prompt .

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>ho

Enter Serial Number
woeliweliow

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>

a Program quits on incorrect serial number

Part 4 — Software 26

Buffer Overflow Present?

a By trial and error, attacker discovers
apparent buffer overflow

B

[] command Prompt - bo

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>ho

Enter Serial Number
AAAAAAARAARAAAAAAAAAAAAAAAAAAAAAAA

@ The instruction at "0x00004141" referenced memory at "0x00004141", The memory could not be "read".

Click on OK to terminate the program
Click on CANCEL to debug the program

OK | Cancel |

2 Note that 0x41 is ASCII for “"A"
0 Looks like ret overwritten by 2 bytes!

Part 4 — Software 27

Disassemble Code

a Next, disassemble bo.exe to find

-.text:00401008

.text:00401000 sub
-.text:004010803 push
.text:00401008 call
.text:00401006D lea
-text:00481011 push
-text:00401012 push
-text:004010817 call
-text:0040101C push
-text:00401081E lea
-.text:004010822 push
-text:00401027 push
.text:00401028 call
-text:0046102D add
.text:00401038 test
.text:00401032 jnz
-.text:00401034 push
-.text:00401039 call
-text:0046103E add

esp, 1Ch

offset aEnterSerialNum ; "‘nEnter Serial Humberin®”
sub_46109F

eax, [esp+2Bh+var_1C]

eax

offset aS ; "'%s"

sub_4610688

8

ecx, [esp+2Ch+var_1C]

offset asS123n456 ; ""S123N456"

ecx

sub_4616580

esp, 18h

eax, eax

short loc_481841

offset aSerialNumberIs ; “Serial number is correct.in”
sub_46109F

esp, 4

0 The goal is to exploit buffer overflow
to jump to address 0x401034

Part 4 — Software

28

Buffer Overflow Attack

a Find that, in ASCITI, 0x401034 is "@/p4"

¢4 |Command Prompt - bo

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>ho

Enter Serial Number
AAR P4

Q The instruction at "0x00341040" referenced memory at "0x00341040", The memory could not be "read".

Click on OK to terminate the program
Click on CANCEL to debug the program

OK | Cancel |

0 Byte order is reversed? Why?
0 X86 processors are "little-endian”

Part 4 — Software

29

Overflow Attack, Take 2

0 Reverse the byte order to "4"P@" and...

[l Ccommand Prompt
C:\Documents and Settings“\Administrator\Desktop\programs\sre\Release>ho

Enter Serial Number

AA4" PR

Serial number is correct.

C:\Documents and Settings\Administrator\Desktop\programs\sre\Release>

0 Success! We've bypassed serial number
check by exploiting a buffer overflow

a2 What just happened?

o Overwrote return address on the stack

Part 4 — Software 30

Buffer Overflow

0 Attacker did not require access to the
source code

0 Only tool used was a disassembler to
determine address to jump to

a Find desired address by trial and error?
o Necessary if attacker does not have exe
o For example, a remote attack

Part 4 — Software 31

Source Code

0 Source code for buffer overflow example

D FIC(W CGSily ¥include <stdio.h>

#include <string. h>
found by e
attacker... Y cher in[75]:
o _without printf("\nEnter Serial Number“n"):
scanf ("%s", in):
access to if (!strncmp(in, "S123N456", 8))
source codel t printf("Serial number is correct. \n");

¥
¥

Part 4 — Software 32

Stack Smashing Defenses

0 Employ non-executable stack
o "No execute” NX bit (if available)

o Seems like the logical thing to do, but some real
code executes on the stack (Java, for example)

Q Use a canary
0 Address space layout randomization (ASLR)
0 Use safe languages (Java, CH#)

a Use safer C functions
o For unsafe functions, safer versions exist
o For example, strncpy instead of strepy

Part 4 — Software 33

Stack Smashing Defenses

low —

a Canary
o Run-time stack check
o Push canary onto stack

o Canary value:
= Constant 0x000affOd
= Or may depends on ret

©

Part 4 — Software 34

Microsoft's Canary

0 Microsoft added buffer security check
feature to C++ with /GS compiler flag

o Based on canary (or "security cookie")
Q: What to do when canary dies?
A: Check for user-supplied "handler”

0 Handler shown to be subject to attack
o Claim that attacker can specify handler code

o If so, formerly "safe” buffer overflows become
exploitable when /GS is used!

Part 4 — Software 35

ASLR

0 Address Space Layout Randomization
o Randomize place where code loaded in memory

a Makes most buffer overflow attacks
probabilistic

0 Windows Vista uses 256 random layouts
o So about 1/256 chance buffer overflow works?

a Similar thing in Mac OS X and other OSs

0 Attacks against Microsoft's ASLR do exist
o Possible to "de-randomize”

Part 4 — Software 36

Buffer Overflow

a0 A major security threat yesterday, today,
and tomorrow

0 The good news?

0 It is possible to reduced overflow attacks
o Safe languages, NX bit, ASLR, education, etc.

0 The bad news?
0 Buffer overflows will exist for a long time

o Legacy code, bad development practices, etc.

Part 4 — Software 37

Incomplete Mediation

Part 4 — Software

38

Input Validation

2 Consider: strcpy(buffer, argv[l])
0 A buffer overflow occurs if
len(buffer) < len(argv[l])

0 Software must validate the input by
checking the length of argv[1]

0 Failure to do so is an example of a more
general problem: incomplete mediation

Part 4 — Software 39

Input Validation

0 Consider web form data
0 Suppose input is validated on client

0 For example, the following is valid

http://www.things.com/orders/
final&custID=112&num=55A&qty=20&price=10&shi
pping=5&total=205

0 Suppose input is not checked on server

o Why bother since input checked on client?

o Then attacker could send http message

http://www.things.com/orders/
final&custID=112&num=55A&qty=20&price=10&shi
pping=5&total=25

Part 4 — Software 40

Incomplete Mediation

a Linux kernel
o Research has revealed many buffer overflows
o Many of these are due to incomplete mediation

0 Linux kernel is "good" software since
o Open-source
o Kernel — written by coding gurus

0 Tools exist to help find such problems

o But incomplete mediation errors can be subtle
o And tools useful to attackers tool!

Part 4 — Software 41

Part 4 — Software

Race Conditions

42

Race Condition

0 Security processes should be atomic
o Occur "all at once”

0 Race conditions can arise when security-
critical process occurs in stages

0 Attacker makes change between stages

o Often, between stage that gives authorization,
but before stage that transfers ownership

0 Example: Unix mkdir

Part 4 — Software 43

mkdir Race Condition

0 mkdir creates hew directory
0 How mkdir is supposed to work

1. Allocate
space

2. Transfer
ownership

Part 4 — Software 44

mkdir Attack

0 The mkdir race condition

mkdir

1. Allocate
space

3. Transfer
ownership

aNot really a "race”
o But attacker’s timing is critical

Part 4 — Software 45

Race Conditions

0 Race conditions are common

0 Race conditions may be more prevalent
than buffer overflows

0 But race conditions harder to exploit
o Buffer overflow is "low hanging fruit" today

0 To prevent race conditions, make security-
critical processes atomic

o Occur all at once, not in stages
o Not always easy to accomplish in practice

Part 4 — Software 46

Buffer Overflow Lab

Part 4 — Software

47

