
 Part 4 ⎯ Software 1

Part IV: Software

 Part 4 ⎯ Software 2

Why Software?
q Why is software as important to security

as crypto, access control, protocols?
q Virtually all of information security is

implemented in software
q  If your software is subject to attack, your

security can be broken
o  Regardless of strength of crypto, access

control or protocols
q Software is a poor foundation for security

Chapter 11:
Software Flaws and Malware
If automobiles had followed the same development cycle as the computer,

a Rolls-Royce would today cost $100, get a million miles per gallon,
and explode once a year, killing everyone inside.

 ⎯ Robert X. Cringely

My software never has bugs. It just develops random features.

⎯ Anonymous

 Part 4 ⎯ Software 3

 Part 4 ⎯ Software 4

Bad Software is Ubiquitous
q  NASA Mars Lander (cost $165 million)

o  Crashed into Mars due to…
o  …error in converting English and metric units of measure
o  Believe it or not

q  Denver airport
o  Baggage handling system --- very buggy software
o  Delayed airport opening by 11 months
o  Cost of delay exceeded $1 million/day
o  What happened to person responsible for this fiasco?

q  MV-22 Osprey
o  Advanced military aircraft
o  Faulty software can be fatal

 Part 4 ⎯ Software 5

Software Issues
Trudy
q Actively looks for

bugs and flaws
q  Likes bad software…
q …and tries to make

it misbehave
q Attacks systems via

bad software

Alice and Bob
q  Find bugs and flaws

by accident
q Hate bad software…
q …but must learn to

live with it
q Must make bad

software work

 Part 4 ⎯ Software 6

Complexity
q  “Complexity is the enemy of security”, Paul

Kocher, Cryptography Research, Inc.

q  A new car contains more LOC than was required
to land the Apollo astronauts on the moon

System Lines of Code (LOC)
Netscape 17 million

Space Shuttle 10 million
Linux kernel 2.6.0 5 million

Windows XP 40 million
Mac OS X 10.4 86 million

Boeing 777 7 million

 Part 4 ⎯ Software 7

Lines of Code and Bugs
q  Conservative estimate: 5 bugs/10,000 LOC
q Do the math

o  Typical computer: 3k exe’s of 100k LOC each
o  Conservative estimate: 50 bugs/exe
o  So, about 150k bugs per computer
o  So, 30,000-node network has 4.5 billion bugs
o  Maybe only 10% of bugs security-critical and

only 10% of those remotely exploitable
o  Then “only” 45 million critical security flaws!

 Part 4 ⎯ Software 8

Software Security Topics
q  Program flaws (unintentional)

o  Buffer overflow
o  Incomplete mediation
o  Race conditions

q Malicious software (intentional)
o  Viruses
o  Worms
o  Other breeds of malware

 Part 4 ⎯ Software 9

Program Flaws
q An error is a programming mistake

o  To err is human
q An error may lead to incorrect state: fault

o  A fault is internal to the program

q A fault may lead to a failure, where a
system departs from its expected behavior
o  A failure is externally observable

error fault failure

 Part 4 ⎯ Software 10

Example
! !char array[10];!
! !for(i = 0; i < 10; ++i)!
! ! !array[i] = `A`;!
! !array[10] = `B`;

q This program has an error
q This error might cause a fault

o  Incorrect internal state
q  If a fault occurs, it might lead to a failure

o  Program behaves incorrectly (external)

q We use the term flaw for all of the above

 Part 4 ⎯ Software 11

Secure Software
q  In software engineering, try to ensure that

a program does what is intended
q Secure software engineering requires that

software does what is intended…
q …and nothing more
q Absolutely secure software is impossible

o  But, absolute security anywhere is impossible

q How can we manage software risks?

 Part 4 ⎯ Software 12

Program Flaws
q Program flaws are unintentional

o But can still create security risks
q We’ll consider 3 types of flaws

o Buffer overflow (smashing the stack)
o  Incomplete mediation
o Race conditions

q These are the most common problems

 Part 4 ⎯ Software 13

Buffer Overflow

The Twilight Hack
The problem: gamers wanted to create
their own games for Nintendo's Wii…

 Part 4 ⎯ Software 14

…but Nintendo did not
want them to do that.

Horsing Around
q In "The Legend of

Zelda: Twilight
Princess", the hero
gets a horse.

q You can rename the
horse, but there is a
buffer overflow flaw.

 Part 4 ⎯ Software 15

WiiBrew
q With the right name, the WII

reboots and reads from an SD card.
q This exploit allowed users to run

WiiBrew and
play custom
Wii games.

 Part 4 ⎯ Software 16

 Part 4 ⎯ Software 17

Possible Attack Scenario
q Users enter data into a Web form
q Web form is sent to server
q Server writes data to array called buffer,

without checking length of input data
q Data “overflows” buffer	

o  Such overflow might enable an attack
o  If so, attack could be carried out by anyone

with Internet access

 Part 4 ⎯ Software 18

Buffer Overflow

q Q: What happens when code is executed?
q A: Depending on what resides in memory

at location “buffer[20]”
o  Might overwrite user data or code
o  Might overwrite system data or code
o  Or program could work just fine

! !int main(){!
! ! int buffer[10];!
! ! buffer[20] = 37;}!

 Part 4 ⎯ Software 19

Simple Buffer Overflow
q  Consider boolean flag for authentication
q  Buffer overflow could overwrite flag

allowing anyone to authenticate

buffer
F T F O U R S C …

Boolean flag

q  In some cases, Trudy need not be so lucky
as in this example

 Part 4 ⎯ Software 20

Memory Organization

q Text == code
q Data == static variables
q Heap == dynamic data
q Stack == “scratch paper”

o  Dynamic local variables
o  Parameters to functions
o  Return address

stack

heap
↓

↑

data

text

←  high
 address

←  low
 address

←  stack
 pointer (SP)

 Part 4 ⎯ Software 21

Simplified Stack Example

high →

void func(int a, int b){!
!char buffer[10];!

}!!
void main(){!
!func(1, 2);!

}!

:
:

buffer	

ret	

a	

b	

←  return
 address

low →

←  SP
←  SP
←  SP

←  SP

 Part 4 ⎯ Software 22

Smashing the Stack

high →

q What happens if
buffer overflows?

: :

buffer	

a	

b	

←  ret…

low →

←  SP
←  SP
←  SP

←  SP

ret	

overflow	

q Program “returns”
to wrong location

NOT!

???

q A crash is likely
overflow	

 Part 4 ⎯ Software 23

Smashing the Stack

high →

q Trudy has a
better idea… :

:

evil code	

a	

b	

low →

←  SP
←  SP
←  SP

←  SP

ret	

ret	

q Code injection
q Trudy can run

code of her
choosing…
o …on your machine

 Part 4 ⎯ Software 24

Smashing the Stack

q  Trudy may not know…
1)  Address of evil code
2)  Location of ret on stack

q  Solutions
1)  Precede evil code with

NOP “landing pad”
2)  Insert ret many times

evil code	

: :

: :

ret	

ret	

:

NOP	

NOP	

:

ret	

←  ret

 Part 4 ⎯ Software 25

Stack Smashing Summary
q A buffer overflow must exist in the code
q Not all buffer overflows are exploitable

o  Things must align properly
q  If exploitable, attacker can inject code
q Trial and error is likely required

o  Fear not, lots of help is available online
o  Smashing the Stack for Fun and Profit, Aleph One

q Stack smashing is “attack of the decade”
o  Regardless of the current decade
o  Also heap overflow, integer overflow, …

 Part 4 ⎯ Software 26

Stack Smashing Example
q  Program asks for a serial number that the

attacker does not know
q Attacker does not have source code
q Attacker does have the executable (exe)

q  Program quits on incorrect serial number

 Part 4 ⎯ Software 27

Buffer Overflow Present?
q  By trial and error, attacker discovers

apparent buffer overflow

q Note that 0x41 is ASCII for “A”
q  Looks like ret overwritten by 2 bytes!

 Part 4 ⎯ Software 28

Disassemble Code
q Next, disassemble bo.exe to find

q The goal is to exploit buffer overflow
to jump to address 0x401034

 Part 4 ⎯ Software 29

Buffer Overflow Attack
q  Find that, in ASCII, 0x401034 is “@^P4”

q  Byte order is reversed? Why?
q X86 processors are “little-endian”

 Part 4 ⎯ Software 30

Overflow Attack, Take 2
q  Reverse the byte order to “4^P@” and…

q Success! We’ve bypassed serial number
check by exploiting a buffer overflow

q What just happened?
o  Overwrote return address on the stack

 Part 4 ⎯ Software 31

Buffer Overflow

q Attacker did not require access to the
source code

q Only tool used was a disassembler to
determine address to jump to

q Find desired address by trial and error?
o Necessary if attacker does not have exe
o For example, a remote attack

 Part 4 ⎯ Software 32

Source Code
q Source code for buffer overflow example
q Flaw easily

found by
attacker…

q …without
access to
source code!

 Part 4 ⎯ Software 33

Stack Smashing Defenses
q  Employ non-executable stack

o  “No execute” NX bit (if available)
o  Seems like the logical thing to do, but some real

code executes on the stack (Java, for example)
q Use a canary
q Address space layout randomization (ASLR)
q Use safe languages (Java, C#)
q Use safer C functions

o  For unsafe functions, safer versions exist
o  For example, strncpy instead of strcpy	

 Part 4 ⎯ Software 34

Stack Smashing Defenses

q Canary
o Run-time stack check
o  Push canary onto stack
o Canary value:

§ Constant 0x000aff0d
§ Or may depends on ret

← 

high →

: :

buffer	

a	

b	

low →

overflow	

ret	

canary	

overflow	

 Part 4 ⎯ Software 35

Microsoft’s Canary
q Microsoft added buffer security check

feature to C++ with /GS compiler flag
o  Based on canary (or “security cookie”)

Q: What to do when canary dies?
A: Check for user-supplied “handler”
q Handler shown to be subject to attack

o  Claim that attacker can specify handler code
o  If so, formerly “safe” buffer overflows become

exploitable when /GS is used!

 Part 4 ⎯ Software 36

ASLR
q Address Space Layout Randomization

o  Randomize place where code loaded in memory
q Makes most buffer overflow attacks

probabilistic
q Windows Vista uses 256 random layouts

o  So about 1/256 chance buffer overflow works?
q Similar thing in Mac OS X and other OSs
q Attacks against Microsoft’s ASLR do exist

o  Possible to “de-randomize”

 Part 4 ⎯ Software 37

Buffer Overflow
q A major security threat yesterday, today,

and tomorrow
q The good news?
q  It is possible to reduced overflow attacks

o  Safe languages, NX bit, ASLR, education, etc.

q The bad news?
q  Buffer overflows will exist for a long time

o  Legacy code, bad development practices, etc.

 Part 4 ⎯ Software 38

Incomplete Mediation

 Part 4 ⎯ Software 39

Input Validation
q  Consider: strcpy(buffer, argv[1])!
q A buffer overflow occurs if

 len(buffer) < len(argv[1])!
q Software must validate the input by

checking the length of argv[1]
q  Failure to do so is an example of a more

general problem: incomplete mediation!

 Part 4 ⎯ Software 40

Input Validation
q  Consider web form data
q Suppose input is validated on client
q  For example, the following is valid

http://www.things.com/orders/
final&custID=112&num=55A&qty=20&price=10&shi
pping=5&total=205

q Suppose input is not checked on server
o  Why bother since input checked on client?
o  Then attacker could send http message
http://www.things.com/orders/
final&custID=112&num=55A&qty=20&price=10&shi
pping=5&total=25 !

 Part 4 ⎯ Software 41

Incomplete Mediation
q  Linux kernel

o  Research has revealed many buffer overflows
o  Many of these are due to incomplete mediation

q  Linux kernel is “good” software since
o  Open-source
o  Kernel ⎯ written by coding gurus

q Tools exist to help find such problems
o  But incomplete mediation errors can be subtle
o  And tools useful to attackers too!

 Part 4 ⎯ Software 42

Race Conditions

 Part 4 ⎯ Software 43

Race Condition
q Security processes should be atomic

o  Occur “all at once”
q  Race conditions can arise when security-

critical process occurs in stages
q Attacker makes change between stages

o  Often, between stage that gives authorization,
but before stage that transfers ownership

q  Example: Unix mkdir

 Part 4 ⎯ Software 44

mkdir Race Condition
q mkdir creates new directory
q How mkdir is supposed to work

1. Allocate
 space

mkdir	

2. Transfer
 ownership

 Part 4 ⎯ Software 45

mkdir Attack

q Not really a “race”
o But attacker’s timing is critical

1. Allocate
 space

mkdir	

3. Transfer
 ownership

2. Create link to
 password file

q The mkdir race condition

 Part 4 ⎯ Software 46

Race Conditions
q  Race conditions are common
q  Race conditions may be more prevalent

than buffer overflows
q  But race conditions harder to exploit

o  Buffer overflow is “low hanging fruit” today

q To prevent race conditions, make security-
critical processes atomic
o  Occur all at once, not in stages
o  Not always easy to accomplish in practice

Buffer Overflow Lab

 Part 4 ⎯ Software 47

