
https://xkcd.com/303/

https://xkcd.com/303/

CS 152: Programming Language Paradigms

Prof. Tom Austin
San José State University

Rust

What is wrong with C/C++?

• Painfully slow build times
• Not memory safe
• No good concurrency story

"When the three of us [Ken Thompson,
Rob Pike, and Robert Griesemer] got
started, it was pure research. The three
of us got together and decided that we
hated C++."
--Ken Thompson on the motivation for Go

"C makes it easy to shoot yourself in the
foot;
C++ makes it harder, but when you do it
blows your whole leg off."
--Bjarne Stroustrup

C++ is a horrible language.
--Linus Torvalds

Tony Hoare's billion dollar mistake

"But I couldn't resist the temptation to put
in a null reference, simply because it was
so easy to implement. This has led to
innumerable errors, vulnerabilities, and
system crashes, which have probably
caused a billion dollars of pain and damage
in the last forty years."

Challenges with C

A buggy C function

int* zero_negs(int a[], int len){
int res[len];
for (int i=0; i<len; i++) {
if (a[i] < 0) res[i] = 0;
else res[i] = a[i];

}
return res;

}

Fixed?

int* zero_negs(int a[], int len){
int *res=malloc(sizeof(int)*len);
for (int i=0; i<len; i++) {
if (a[i] < 0) res[i] = 0;
else res[i] = a[i];

}
return res;

}

A consumer of data, which frees the data.

void print_arr(int a[], int len){
for (int i=0; i<len; i++) {

printf("%d ", a[i]);
}
printf("\n");
free(a);

}

But what if the consumer is called twice?

int main(int argc, char** argv) {
int nums[] = {0,12,5,-42,9,7,-18,0};
int n = 8;
int *no_negs = zero_out_negs(nums,n);
print_arr(no_negs, n);
// ... Sometime later in the code.
// Freeing memory twice.
print_arr(no_negs, n);

}

Memory Management

• C/C++ force the programmer to
manage memory, which can cause:
–Memory leaks
–Dangling pointers

• Java uses a garbage collector
–Stop-the-world gc.
–Applications stops while gc runs.

Rust history

• Developed by Graydon Hoare of
Mozilla
• Used in
–Project Servo: layout engine for Firefox
–The Rust compiler

• Emphasis:
–Safety
–Control of memory layout
–Concurrency

hello_world.rs

fn main() {
println!("Hello, world!");

}

$ rustc hello_world.rs
$./hello_world
Hello, world!

Denotes that
println is a macro

Primitive Types

• signed integers: i8, i16, i32, i64
• unsigned integers: u8, u16, u32, u64
• pointer sizes: isize (signed),

usize (unsigned)
• floating point: f32, f64
• char, bool
• arrays [1,2,3] and tuples (1,true)
• the unit type ()

Functions in Rust

fn foo(x: i32) -> i32 {
x + 3

}

fn main() {
println!("{}", foo(4));

}

Compiling and Running Rust Program

$ rustc fun.rs
$./fun
7
$

Broken Rust Program

fn foo(x: i32) -> i32 {
x + 3 ; // Semicolon error

}

fn main() {
println!("{}", foo(4));

}

$ rustc fun.rs
error[E0308]: mismatched types
--> fun.rs:1:19
|

1 | fn foo(x: i32) -> i32 {
| --- ^^^ expected `i32`, found `()`
| |
| implicitly returns `()` as its body has no tail

or `return` expression
2 | x + 3; // Bad semicolon

| - help: consider removing this semicolon

error: aborting due to previous error

For more information about this error, try `rustc --
explain E0308`.

Variables in Rust

fn main() {
// Type annotations are not needed
let a = 1;
let b = 2;

// But you can specify them if you want
let c: isize = 3;

// '{}' is a placeholder for arguments
println!("a:{} b:{} c:{}", a, b, c);

}

More sophisticated printing

fn main() {
// Numbers can specify argument
println!("<{0}>{1}</{0}>", "h1", "Hi!");

// Named arguments can also be useful
println!("<{tag}>{body}</{tag}>",
tag="strong",
body="Welcome to Rust");

}

Structs

• Rust can create more sophisticated
data structures through structs
• We will illustrate with a complex

number example

struct Complex { real: i32, imaginary: i32 }

fn add_complex(c1: Complex, c2: Complex) -> Complex {
let r = c1.real + c2.real;
let i = c1.imaginary + c2.imaginary;
Complex { real: r, imaginary: i }

}

fn main() {
let cmplx1 = Complex { real: 7, imaginary: 2 };
let cmplx2 = Complex { real: 3, imaginary: 1 };
let ans = add_complex(cmplx1, cmplx2);

println!("The answer is {}+{}i",
ans.real,
ans.imaginary);

}

Lab, part 1: Modify Complex.rs

Currently, the code prints:
The answer is 10+3i

Modify the println to refer to cmplx1
and cmplx2. It should print:
7+2i + 3+1i = 10+3i

Possible attempt:

println!("{}+{}i + {}+{}i = {}+{}i",
cmplx1.real, cmplx1.imaginary,
cmplx2.real, cmplx2.imaginary,
ans.real, ans.imaginary);

$ rustc complex.rs
error[E0382]: borrow of moved value: `cmplx1`

--> complex.rs:16:18
|

10 | let cmplx1 = Complex { real: 7, imaginary: 2 };
| ------ move occurs because `cmplx1` has type

`Complex`, which does not implement the `Copy` trait
11 | let cmplx2 = Complex { real: 3, imaginary: 1 };
12 | let ans = add_complex(cmplx1, cmplx2);

| ------ value moved here
...
16 | cmplx1.real, cmplx1.imaginary,

| ^^^^^^^^^^^^^^^^ value borrowed
here after move

Memory management approaches revisited

• C/C++
–manually managed
– let the programmer beware

• Java
–Virtual machine with garbage collector
–Run-time enforcement of key properties
–Performance overhead

Rust memory management

• No run-time or garbage collection
• Compiler statically enforces memory

safety
• Uses RAII strategy
–Resource Acquisition Is Initialization
– resource allocation done at initialization
– resource deallocation done when the object

goes out of scope

Ownership Transfer Example

fn f(x: Box<i32>) {
println!("{}", x);

}
fn main() {

let a = Box::new(42_i32);
println!("{}", a);
f(a);

}

Error

fn f(x: Box<i32>) {
println!("{}", x);

}
fn main() {

let a = Box::new(42_i32);
println!("{}", a);
f(a);
println!("{}", a);

}

Fixed: f Modified to Borrow

fn f(x: &Box<i32>) {
println!("{}", x);

}
fn main() {

let a = Box::new(42_i32);
println!("{}", a);
f(&a);
println!("{}", a);

}

Lab, part1: continued

Work on lab part1 to fix complex.rs.

Mutability in Rust

• Like Racket, Rust discourages
mutable data.
• If you want to make a value mutable,

you must use the mut modifier.

Array example

fn main() {
let mut a: [i32; 10] = [0;10];
let mut i = 0;
while i <= 10 {

println!("Accessing {}", i);
a[i] = i as i32;
i = i + 1;

}
}

Function with mutable borrow

fn square_cplx(c: &mut Complex) {
let r = c.real * c.real –

c.imaginary * c.imaginary;
let i = c.real * c.imaginary +

c.imaginary * c.real;
c.real = r;
c.imaginary = i;

}

Calling function with mutable borrow

// ans is mutable
let mut ans = ...;

// Loans ans to function
square_cplx(&mut ans);

Typechecking in Rust

• Is Rust statically or dynamically
typed?
• Sample code:
fn main() {

let x = 42;
println!("{}", x);

}

This Code Won't Compile

fn main() {
let s = "hello";
let x = s + 42;
println!("{}", x);

}

Compilation Error

$ rustc typing.rs
error[E0369]: binary operation `+`
cannot be applied to type `&str`
--> typing.rs:3:15
|

3 | let x = s + 42;
| - ^ -- {integer}
| |
| &str
|

Type Inference

• Rust can have type annotations:
let x: i32 = 99;

• For local variables, types are
optional.
• For functions, types are mandatory.

Function Type Annotations

fn double(n: i32) -> i32 {
// No semicolon on the next line.
// (Explicit return w/ ';' also works).
n*2

}

// No arguments, no return value.
fn main() {
let x = 45;
let y = double(3);
println!("{}", x+y);

}

Rust documentation

Rust programming language "book"
https://doc.rust-lang.org/nightly/book/

Rust by Example
http://rustbyexample.com/

https://doc.rust-lang.org/nightly/book/
http://rustbyexample.com/

Lab, part 2: Implement Quicksort

• Use sort0.rs, sort1.rs, and sort2.rs for
reference (available online)

Optional due to COVID-19

