
CS 152: Programming Language Paradigms

Prof. Tom Austin
San José State University

Virtual Machine 
Lab



A Review of Compilers

Lexer/ 
Tokenizer

Parsersource 
code

tokens

Abstract
Syntax Tree 

(AST)

Compiler

Machine code

Interpreter

Commands



Virtual Machines (VM)

• Code is compiled to bytecode
–low-level
–platform independent

• The VM interprets bytecode



Lab: Scheme VM

In today's lab, you will implement:
• a compiler for Scheme
• a stack-based VM



Input program

(println (+ 2 3 4))
(println (- 13 (* 2 4)))
(println (- 10 4 3))



Supported VM Operations

• PUSH – adds argument to stack
• PRINT – pops & prints top of stack
• ADD
–pops top two elements
–adds them together
–places result on stack

• SUB – subtraction
• MUL – multiplication



Bytecode Output

PUSH 2
PUSH 3
ADD
PUSH 4
ADD
PRINT
PUSH 13
PUSH 2
PUSH 4

MUL
SUB
PRINT
PUSH 10
PUSH 4
SUB
PUSH 3
SUB
PRINT



Lab, part 1: Write a VM

• Starter code is provided.
• PUSH and PRINT are functional.
• Your job: add support for the 

other opcodes



Compiler or Interpreter?

• Compilers
–efficient code

• Interpreters
–runtime flexibility

• Can we get the best of both?



Review of compiler.rb
(in class)



Just-in-time compilers (JITs) 
• interpret code
• "hot" sections are compiled 
at run time



JIT tradeoffs

+Speed of compiled code
+Flexibility of interpreter
-Overhead of both approaches
-Complex implementation



Dynamic recompilation

• JIT pursues aggressive 
optimizations
–make assumptions about code
–guard conditions verify 

assumptions
• Unexpected cases interpreted 
• Can outperform static compilation



Types of JITs

• Method based
–Compiles methods

• Trace based
–Compiles loops
–Gal et al. 2009 

http://www.stanford.edu/class/cs34
3/resources/tracemonkey.pdf

http://www.stanford.edu/class/cs343/resources/tracemonkey.pdf


Trace-based JIT design (Gal et al. 2009)



How can a language designer make use of a JIT?

1. Become an expert in JITs
–study the latest techniques
–build large code bases to test
–profile your code execution

2. Use someone else's JIT-ed VM



Lab, part 2 – Write a Compiler

• Starter code is provided.
• println is functional.
• Your job: update to_bytecode

to add support for the 
mathematical operators.



EXTRA CREDIT

Add compiler 
support for
• if expressions
• boolean variables
• let expressions

Add VM support for
• labels
• Jump 

(JMP/JZ/JNZ) 
operations

• STOR/LOAD
operations


