
CS 152: Programming Language Paradigms

Prof. Tom Austin
San José State University

Ruby

Introduction to Ruby

Created by
Yukihiro Matsumoto
(known as "Matz")

Ruby influences

Smalltalk
• everything is an object
• blocks
• metaprogramming

Perl
• regular expressions
• function names

Ruby on Rails

• Ruby's "killer app"
–lightweight web framework
–"convention over configuration"

• David Heinemeier Hansson (DHH)
–initial framework was PHP
–abandoned PHP for Ruby

Hello World in Ruby

puts 'Hello world!'

Working with data structures

a = [1,2,3]
m = {'a'=>"Apple",

'b'=>"Banana",
'c'=>"Cantalope"}

puts a[0]
puts m['a']

Ruby is object-oriented

"I was talking with my colleague about the
possibility of an object-oriented scripting
language. […] I knew Python then. But I
didn't like it, because I didn't think it was a
true object-oriented language — OO features
appeared to be add-on to the language. As a
language maniac and OO fan for 15 years, I
really wanted a genuine object-oriented,
easy-to-use scripting language. I looked for
but couldn't find one. So I decided to make
it." --Matz 1999

http://en.wikipedia.org/wiki/Python_(programming_language)

class Person
def initialize name # Constructor

@name = name
end

def name # Getter
return @name

end

def name= newName # Setter
@name = newName

end

def say_hi # Method
puts "Hello, my name is #{@name}."

end
end

The @ indicates an
object's field

The = in the method
name (by convention)
indicates assignment

Generating getters and setters

class Person
attr_accessor :name
def initialize name # Constructor
@name = name

end
def say_hi # Method
puts "Hello, my name is #{@name}."

end
end

Powerful
metaprogramming

Using a class in Ruby

p = Person.new "Joe"
puts "Name is #{p.name}"
p.say_hi

Inheritance in Ruby
(in-class)

Parent Class
class Dog
def initialize(name)
@name = name

end

def speak
puts "#{@name} says bark"

end
end

rex = Dog.new('Rex')
rex.speak

Child Class
class GuardDog < Dog

attr_reader :breed
def initialize(name, breed)

super(name)
@breed = breed

end
def attack

puts "Growl"
end

end

satan = GuardDog.new('Satan', 'Doberman')
puts "Satan is a #{satan.breed}"
satan.speak
satan.attack

Equivalent to
extends in Java

Mixins

• Allow user to add features to a class
• Similar to interfaces in Java, but

programmer can specify functionality.
class Person

include Comparable
end

module RevString
def to_rev_s
to_s.reverse

end
end

class Person # Re-opening class
include RevString
def to_s
@name

end
end

p.to_rev_s # p defined previously

Blocks in Ruby

Blocks in Ruby

• Superficially similar to blocks in
other languages.
• Can create custom control structures.
• (We'll discuss in depth another day).

File I/O Example
(in class)

file = File.open(
'temp.txt', 'r')

file.each_line do |line|
puts line

end
file.close

File I/O

File.open('file','r') do |f|
f.each_line { |ln| puts ln }

end

File I/O with blocks

Dynamic code evaluation

eval
• Executes dynamically
• Typically, eval takes a string:
eval "puts 2+3"
• Popular feature
–especially in JavaScript
• Richards et al. The Eval that Men Do, 2011

• Source of security problems

Additional Ruby eval methods

• instance_eval
–evaluates code within object body

• class_eval
–evaluates code within class body

• Take a string or a block of code
–block of code more secure

String Processing

Regular Expressions in Ruby

s = "Hi, I'm Larry; this is my" +
" brother Darryl, and this" +
" is my other brother Darryl."

s.sub(/Larry/,'Laurent')
puts s
s.sub!(/Larry/,'Laurent')
puts s
puts s.sub(/brother/, 'frère')
puts s.gsub(/brother/, 'frère')

Regular Expression Symbols
• /./ - Any character except a newline
• /\w/ - A word character ([a-zA-Z0-9_])
• /\W/ - A non-word character ([^a-zA-Z0-9_])
• /\d/ - A digit character ([0-9])
• /\D/ - A non-digit character ([^0-9])
• /\s/ - A whitespace character: /[\t\r\n\f]/
• /\S/ - A non-whitespace char: /[^ \t\r\n\f]/
• * - Zero or more times
• + - One or more times
• ? - Zero or one times (optional)

References for Ruby

• "Programming Ruby: The Pragmatic
Programmer's Guide", http://ruby-
doc.com/docs/ProgrammingRuby/
• "Why's Guide to Ruby",

http://mislav.uniqpath.com/poignant
-guide/ (unusual, but entertaining
reference).
• David Black, "Ruby for Rails",

2006.

http://ruby-doc.com/docs/ProgrammingRuby/
http://mislav.uniqpath.com/poignant-guide/

Lab: Eliza in Ruby

Use Ruby to model a psychiatrist.
http://en.wikipedia.org/wiki/ELIZA

Download eliza.rb from the course
website and extend it. Note that if
you call `ruby eliza.rb -test`, you
will get some cases to consider.

http://en.wikipedia.org/wiki/ELIZA

