CS 152: Programming Language Paradigm

e ES6 JavaScript,
Aﬁq PDA Metaprogramming,

g & Object Proxies
v

Prof. Tom Austin

San Jos¢ State University




Fixing JavaScript

* ECMASCcript committee formed
to carefully evolve the language.

—"Don't break the web."

* Involved big players in JS world:

—Google, Microsoft, Apple, Mozilla,
Adobe, and many more




ECMAScript Schism

* ECMAScript 4 was divisive

* A group broke off to create
ECMAScript 3.1

—more minor updates
—later became ECMAScript 3

 Adobe left the fold




Strict Mode

* Turns anti-patterns into errors:
—Variables must be declared.
—Using with not allowed.
—Many others.

 To use, add "use strict";
(including quotes) to the top of your
function or file.

—Why 1n a string?




Forget var, variables are global

function swap(arr,1i,]) {
tmp = arr[1]; arr([1i] = arr[j];
}
function sortAndGetLargest (arr) {
tmp = arr([0]; // largest elem
for (1=0; 1i<arr.length; 1++) {
1f (arr[i] > tmp) tmp = arr[i];
for (j=1+1; j<arr.length; j++)
1f (arr[1i] < arr[j]) swap(arr,1i,]);
}

return tmp;

}

var largest =
sortAndGetLargest ([99,2,43,8,0,21,121);

console.log(largest); // should be 99, but prints 0



But with "use strict", the error 1s detected.

"use strict";
function swap(arr,1i,]) {
tmp = arr[1]; arr[1] = arr[]]; arr[j] = tmp;
}
function sortAndGetLargest (arr) {
tmp = arr([0]; // largest elem
for (1=0; 1i<arr.length; 1++) {
1f (arr[i] > tmp) tmp = arr[i];
for (jJ=1+1l; j<arr.length; j++)
1f (arr[1i] < arr[3j]) swap(arr,1i,]);
}

return tmp;

}

var largest =
sortAndGetLargest ([99,2,43,8,0,21,12]1);

console.log(largest); // should be 99, but prints 0




$ node sort.js




ES6 Harmony: Can't we all just get along?

* ECMASCcript 6 (ES6) Harmony
—Later renamed ECMA Script 2015

e New features:
—classes

—block scoping

—arrow functions (lambdas)
—promises

—proxies




t 1S the new var




function makelListOfAdders(lst) {
var arr = [];
for (var 1=0; 1<lst.length; 1++) {
var n = 1st[i];
arr[i1] = function(x) { return x + n; }

J

return arr;

Prints:

var adders =
makelListOfAdders([1,3,99,21]);
adders.forEach (function (adder) {
console.log (adder (100)) ;

b)) s




function makelListOfAdders(lst) {
let arr = [];
for (let 1=0; 1<lst.length; 1++) {
let n = 1st[i];
arr[i1] = function(x) { return x + n; }

J

return arr;

Prints:

var adders =
makelListOfAdders([1,3,99,21]);
adders.forEach (function (adder) {
console.log (adder (100)) ;

b)) s




Arrow functions

* Concise function syntax

* this bound lexically

—Normal functions bind this
dynamically.




function sort (lst, fn) {
for (let 1=0; 1<lst.length; 1++) {
for (let 3=0; j<lst.length-1; J++) {
1f (fn(lstf1], 1st[J])) A
let tmp = 1st[i];
1st[i] st(J3]7

1
1st[]] tmp;

J

let arr = [1,2,99,10,42,77,-3,88,0];
sort (arr, function(x,y) { return x<y; });




function sort (lst, fn) {
for (let 1=0; 1<lst.length; 1++) {
for (let 3=0; j<lst.length-1; J++) {
1f (fn(lstf1], 1st[J])) A
let tmp = 1st[i];
1st[i] 1st[7];
1st[]] tmp;

J

let arr = [1,2,99,10,42,77,-3,88,0];
sort (arr, (x,y) => x<y);




A broken JavaScript constructor

function Rabbit (name, favFoods) {
this.name = name;
this.myFoods = [];
favFoods.forFach (function (food) {
this.myFoods.push (food);

b)) ; this refers to

} the global scope

var bugs = new Rabbit ("Bugs",
["carrots", "lettuce", "souls"]);
console.log (bugs.myFoods) ;




this bound lexically with arrows

function Rabbit (name, favFoods) {
this.name = name;
this.myFoods = [];
favFoods.forEach ((food) =>

this.myFoods. h (food) ;
1s.myFoods.pus (food) Now this

refers to the

) ;

} new object

var bugs = new Rabbit ("Bugs",
["carrots", "lettuce", "souls"]);
console.log (bugs.myFoods) ;




Promises

* Promise: an object that may produce
a value 1n the future.

* Similar to listeners, but
—can only succeed or fail once

—callback i1s called even 1f event took
place earlier

* Simplify writing asynchronous code




Promise states

e Fulfilled (resolved)
*Rejected

*Pending




let fs = require('fs');

let p = new Promise ( (resolve, reject) => {
//{ key: 'hello' }
let £ = fs.readFileSync('./test.json');

resolve () ;

}) s

p.then (JSON.parse)
.then ((res) => res.key)

.then ((res) => console.log(res + " world!"));




let fs = require('fs');

let p = new Promise ( (resolve, reject) => {
//{ key: 'hello' }
let £ = fs.readFileSync('./test.json');

resolve () ;

}) s

p.then (JSON.parse)
.then ((res) => res.key,
(err) => console.error (err)))

.then ((res) => console.log(res + " world!"));




Proxies




What 1s metaprogramming?

Writing programs
that manipulate
other programs.




JavaScript Proxies

Metaprogramming feature proposed
for ECMAScript 6 (Harmony).

;Q’
|

Proposed
By:

Tom Van
Cutsem




Proxies: Design Principles for Robust
Object-orientedIntercession’APIs

Abstract: Proxies are a powerful
approach to implementmeta-objects’in
object-oriented languages without

having to resort tometacircular
mterpretation. We introduce such a
meta-level APIbased on proxies for
Javascript...




Metaprogramming terms

* Reflection
—Introspection: examine a program

—Self-modification: modify a program

e Intercession: redefine the semantics
of operations.

* Reflection 1s fairly common.
Intercession 1s more unusual.




Introspection

Ability to examine the
structure of a program.
In JavaScript:

"x" in o;

lookup

for (prop in o) { .. }

N

Property
enumeration




Selt-modification

Ability to modify the structure of a program.

// computed property

42; // add new property

delete o0.x; // remove property
o["m"].apply (o, [42]);

// reflected method call




Until recently, JavaScript did
not support intercession.

JavaScript proxies are
intended to fix that.

But first a little history...




Common Lisp

* Developed before object-oriented
languages were popular.

* Many libraries were created with

non-standard OO systems.




Common Lisp Object System (CLOS)

* Became standard object-oriented
system for Lisp

* What could be done about pre-
existing object-oriented libraries?




The Devil’s Choice

1. Rewrite libraries for CLOS?
— huge # of libraries

— 1nfeasible to rewrite them all

2. Make complex API?
— difficult API to understand.

— Systems had conflicting features...

— ...But were essentially doing the same things.




Gregor Kiczales chose option 3:

* Keep API simple.

* Modify object
behavior to fit
different systems.

Metaobject protocols were born...




JavaScript Object Proxies
Intercession API




Proxy and handler

The behavior of a proxy
1s determined by traps

specified 1n its handler.

e

The metaobject




What kind of things do we
want to do to an object?




No-op forwarding proxy

No-op handler:
All ops forwarded to
target without change

var target = {}; N
var p = new Proxy (target,{}):
p.a = 37; // op forwarded

console.log(target.a); // 37.




Available traps

has getPrototypeOf

get setPrototypeOf

1sExtensible
set

deleteProperty preventkExtensions

apply
construct

defineProperty

ownkeys

getOwnPropertyDescriptor




Another use case for proxies

* Share a reference to an object, but do
not want 1t to be modified.

—Reference to the DOM, for instance

* We can modify the forwarding
handler to provide this behavior:




Read-only handler

let roHandler = {
deleteProperty: function(t, prop) { return false;},
set: function(t, prop, val, rcvr) { return false;},
setPrototypeOf: function(t,p) { return false; } };

var constantVals = {
pi: 3.14,
e: 2.718,
goldenRatio: 1.30357 };

var p = new Proxy(constantVals, roHandler);
console.log(p.pl):;

delete p.p1;

console.log(p.pl):;

p.p1 = 3;

console.log(p.pl):;




Safe constructor handler

function Cat (name) {
this.name = name;

J
Cat = new Proxy (Cat, {

apply: function(t,thisArg,args) {
throw Exception ("Forgot new");

}
}) s

var g = new Cat ("Garfield");
console.log(g.name) ;
var n = Cat ("Nermal");

T~ Forgot new:

exception raised




Undoable object

get, set, delete trap example
(in class)




Aspect-oriented programming (AOP)

* Some code not well organized by objects

— Cross-cutting concern

* Canonical example: logging statements
— littered throughout code

—Swap out logger = massive code changes




Tracing API for set

(in class)




Lab: Tracing API

* Use proxies to log all actions taken
on an object

—QOverride has, get, set, apply,
construct, & deleteProperty

* Avoids having complexity of logging
framework




