
CS152 – Programming Language Paradigms
Prof. Tom Austin

Closures & Scoping

Variables

• Parameters
• Local variables
• Free variables
– Variables not defined in the current scope
– e.g. global variables

#!/bin/bash
x=42
function foo {

echo $x
}
function bar {

local x=666
foo

}
bar

x is a free
variable

Is x 42?

Or is x
666?

Lab part 1

• Guess what the bash script should print
• Run the script
• Rewrite the script into a Java program as

faithfully as you can. What does it return?

#!/bin/bash
x=42
function foo {

echo $x
}
function bar {

local x=666
foo

}
bar

But Bash uses dynamic
scoping, so x is 666?

Most languages uses static
or lexical scoping, so x

would be 42.

Scoping definitions

• In static or lexical scoping, name
resolution depends on where the
named variable is defined.
• In dynamic scoping, name resolution

depends on the execution path of the
code (the calling context).

Why do some languages use
dynamic scoping?

Closures and environments

• A closure is a pair of
– a function, and
– its environment

• An environment is a mapping of free variables
to their values defined outside the function.

Scoping example in Scheme

(define x 2)

{let ([y 3])
{let ([z 4])

(+ x y z)
}

}

Function scoping is the same as let

(define x 2)

{let ([y 3])
({lambda (z)

(+ x y z)}
4)

}

We can nest functions

(define x 2)

({lambda (y)
({lambda (z)

(+ x y z)}
4)}

3)

Simple example of closures

(define (make-adder x)
(lambda (y) (+ x y)))

(let ([add-two (make-adder 2)])
(add-two 3))

(define (make-counter)
(let ([count 0])
(lambda ()
(set! count (+ count 1))
count)))

(define my-count (make-counter))
(my-count)
(my-count)
(define ctr2 (make-counter))
(ctr2)
(my-count)

(define (box x)
(cons
(λ() x)
(λ(y) (set! x y))))

(define (get-val bx)
((car bx)))

(define (set-val! bx new-val)
((cdr bx) new-val))

Using box

(let ([my-box (box 3)])
(displayln (get-val my-box))
(set-val! my-box 4)
(displayln (get-val my-box)))

Lab, part 2

• Use box to create an Employee
object.
• Details in Canvas.

