
CS 152: Programming Language Paradigms

Prof. Tom Austin
San José State University

Modules, Structs,
Hashes, and

Operational Semantics

Modules

Review Modules from HW 1
(in-class)

How do we organize code in Java?

•Packages provide units
of code
•Keywords specify
method access

In Java, keywords specify access

• public
• protected
• no keyword (package access)
• private

Java method access levels

• public: everyone
• protected: subclasses and

code in the same package
• no keyword (package access):

code in the same package
• private: only code in the

current class

Organizing Code in Racket
Racket organizes code in terms of imports and
exports.
• The library specifies which code is

available to others by the provide
keyword.
–anything not named by provide is

hidden.
• If you want to use the library, you

use the keyword require.

Organizing Code in Racket

• Exports specify public values:
(provide big-add)

• Imports specify code dependencies:
(require "big-num.rkt")

Structs and Hashes

Structs

• Structures allow us to create more
sophisticated data structures:
(struct name (field1 field2 …))

• Once we have a structure, we can
destructure it with the match
keyword to get at the contents.
• <Example in class>

Hashes

•Hashes are maps of key/value
pairs.
•Unlike Java, hashes are

immutable.
• <example in class>

Formal Semantics

Why do we need
formal semantics?

Everyone knows what an
if statement does, right?

if true then
x = 1

else
x = 0

At the end of this code
snippet, the value of x

will be 1

Everyone knows what an
if statement does, right?

if false then
x = 1

else
x = 0

At the end of this code
snippet, the value of x

will be 0

Everyone knows what an
if statement does, right?

if 0 then
x = 1

else
x = 0

Will x be set to 0,
like in C/C++?

Will x be set to 1,
like in Ruby?

Or will it be an
error, like in Java?

Everyone knows what an
if statement does, right?

x = if true
then 1
else 0

Is assignment
valid or an error?

Formal semantics define how
a language works concisely
and with minimal ambiguity.

A Review of Compilers

Lexer/
Tokenizer

Parsersource
code

tokens

Abstract
Syntax Tree

(AST)

Compiler

Machine code

Interpreter

Commands

We don't
care

about
lexing or
parsing.

We don't care if we
have a compiler or

interpreter

A Review of Compilers

Lexer/
Tokenizer

Parsersource
code

tokens

Compiler

Machine code

Interpreter

Commands

We don't
care

about
lexing or
parsing.

We don't care if we
have a compiler or

interpreter

Abstract
Syntax Tree

(AST)

Abstract
Syntax Tree

(AST)

ASTs are the
key to

understanding
a language

Bool* Language

e ::=
true

| false
| if e

then e
else e

expressions:
constant true
constant false
conditional

Despite appearances,
these are really ASTs

Values in Bool*

v ::=
true

| false

values:
constant true
constant false

Formal Semantic Styles

• Operational semantics
–Big-step (or "natural")
–Small-step (or "structural")

• Axiomatic semantics
• Denotational semantics

Formal Semantic Styles

• Operational semantics
–Big-step (or "natural")
–Small-step (or "structural")

• Axiomatic semantics
• Denotational semantics

Operational semantics specify how
expressions should be evaluated.
There are two different approaches.

Small-step semantics
evaluate an
expression until it is
in normal form &
cannot be evaluated
any further.

In contrast, big-step operational
semantics evaluate every expression
to a value.

Big-step rules
tend to have a
recursive
structure.

Big-Step Evaluation Relation

e v⇓
An expression e …

… evaluates to …

… a value v.

Big-Step Evaluation Relation

e v⇓
Preconditions

limits when the
rule applies

Big-step semantics for Bool*

e1 ⇓ true e2 ⇓ v
if e1 then e2 else e3 ⇓ v

B-IfTrue

e1 ⇓ false e3 ⇓ v
if e1 then e2 else e3 ⇓ v

B-IfFalse

v ⇓ vB-Value

Bool* big-step example

if (if true then false
else true)

then true
else false

if true
then false
else true

⇓ false

true ⇓ true false ⇓ false

false ⇓ false

⇓ false

Converting our rules into code
(in-class)

Bool* extension: numbers

Users demand a new feature – numbers!
We will add 3 new features:
• Numbers, represented by n
• succ, which takes a number and returns

the next highest number.
• pred, which takes a number and returns

the next lowest number.

Extended Bool* Language

e ::= true
| false
| if e then e else e
| n
| succ e
| pred e

Let's extend our
semantics to handle
these new language

constructs

Pop Quiz: Write operational semantics
e ::= e and e

| e or e
| not e
| true
| false

v ::= true
| false

e ⇓ v

Lab: Write a Bool* Interpreter

• Starter code is available on the
course website
• Extend Bool* with numbers,
succ, and pred

Adding State to Semantics

SpartanLang

e ::= !x
| v
| x:=e
| e;e
| e op e
| if e then e

else e end
| while e do e end

dereferencing
values
assignment
sequence
binary operations
conditionals

while loops

SpartanLang (continued)

v ::= i
| b

op ::= + | -
| \ | *
| < | >
| <= | >=

integers
booleans

binary operators

Bool* vs. SpartanLang evaluation

e ⇓ v
e,σ ⇓ v,σ'

Bool* relation:

SpartanLang relation:

A "store", represented by
the Greek letter sigma

The Store

• A mapping of references to values
• Roughly analogous to the heap in

Java

Key store operations

• σ(x)
–get the value for reference x.

• σ[x:=v]
–create a copy of store σ, except …
–reference x has value v.

Special syntax for references
In languages like ML, references are accessed
with special syntax:
• x = ref 42

creates a new reference with value 42 and
stores the reference in variable x.

• x := 7
changes the value of the reference to 7.

• !x
– gets the value of the reference that x refers to.

HW 2: Write an Interpreter for
SpartanLang.

Details in Canvas

