

CS 152: Programming Language Paradigms

Prof. Tom Austin
San José State University

Higher Order
Functions

Functional languages treat
programs as mathematical

functions.

Definition: A function is a rule that
associates to each x from some set X of
values a unique y from a set of Y values.

y = f(x)
f is the name of

the function

Definition: A function is a rule that
associates to each x from some set X of
values a unique y from a set of Y values.

y = f(x)
x is a variable in

the set X

X is the domain of f.
x∈X is the independent
variable.

Definition: A function is a rule that
associates to each x from some set X of
values a unique y from a set of Y values.

y = f(x)
y is a variable in

the set Y

Y is the range of f.
y∈Y is the dependent
variable.

Qualities of Functional Programing

1. Functions clearly distinguish inputs
from outputs

2. No assignment (pure)
3. No loops (pure)
4. Result depends only on input values
– Evaluation order does not matter

5. Functions are first class values

Referential transparency

In purely functional programs you can
• replace an expression with its value
• write code free of side-effects

Functions are first-class data values.

We can do anything with them that we
can do with other values.

Higher-order function

A function that
• takes functions as arguments; or
• returns a function as its result; or
• dynamically constructs new

functions

Higher-order functions example
(in class)

Map example

(define (add-one x)
(+ x 1))

(add-one 1)

(map add-one '(1 2 3))

Returns 1

Returns '(2 3 4)

More map examples

(define lst '(1 2 3 4 5))

(map number->string lst)

(map (lambda(x)(* x x)) lst)

(map number->string
(map (λ(x) (expt 2 x))

lst))

Filter example

(positive? 3)

(positive? -2)

(filter positive?
'(1 2 -3 4 0 5))

true

false

'(1 2 4 5)

Combining higher-order functions

(map (λ(x)(* x x))
(filter even?

'(1 2 3 4 5 6)))

Lab 3: map and filter
See Canvas for a more detailed explanation.
1. Using map, implement strings-to-nums.

(strings-to-nums '("1" "2"))
-> '(1 2)

2. Using map, create a make-names function:
1. input: list of first names, list of last names
2. output: list of full names

3. Using the filter function, write a function that takes a
list of employees and returns a list containing only
managers.

