

CS 152: Programming Language Paradigms

Prof. Tom Austin
San José State University

Syntax, Semantics,
and Language

Design Criteria

Lab 1 solution
(in class)

Formally defining a language

Two aspects of a language:
• Syntax – structure of a program
• Semantics – meaning of a program

The two parts of syntax

• Lexemes or tokens – the "words"
of the language
• Grammar – the way that words

can be ordered

How a compiler works

Lexer/
Tokenizer

source
code

tokens …

Tokens are the "words"
of the language.

How a compiler works

Lexer/
Tokenizer

source
code

tokens

if (x < 42) {
y++;

} else {
y = 42;

}

"if" "(" "x" "<"
"42" ")" "{" "y"
"++" ";" "}"
"else" "{" "y"
"=" "42" ";" "}"

Tokens are the "words"
of the language.

How a compiler works

Types of tokens:
• Identifiers
• Numbers
• Reserved words
• Special characters

Lexer/
Tokenizer

source
code

tokens

if (x < 42) {
y++;

} else {
y = 42;

}

"if" "(" "x" "<"
"42" ")" "{" "y"
"++" ";" "}"
"else" "{" "y"
"=" "42" ";" "}"

How a compiler works

Lexer/
Tokenizer

Parsersource
code

tokens

Abstract
Syntax Tree

(AST)

The parser reads
tokens to form an
abstract syntax tree.

Parsing Example

Parser

"if" "(" "x" "<"
"42" ")" "{" "y"
"++" ";" "}"
"else" "{" "y"
"=" "42" ";" "}"

42

if

<

X 42

=

y +

y 1

=

y

y++ has disappeared in the AST.
'++' is an example of
syntactic sugar.

Formally defining language syntax

Context-free grammars define
the structure of a language.

Backas-Naur Form (BNF) is
a common notation.

Context-free grammar for math expressions
(in BNF notation)

<expr> -> <expr> + <term>
| <expr> - <term>
| <term>

<term> -> <term> * <factor>
| <term> / <factor>
| <factor>

How a compiler works

Lexer/
Tokenizer

Parsersource
code

tokens

Abstract
Syntax Tree

(AST)

Compiler

Machine code

Interpreter

Commands

Compilers and interpreters derive meaning
from ASTs to turn programs into actions.

Formally defining language meaning:
• Operational semantics
• Denotational semantics
• Axiomatic semantics

Covered another day

Judging a language

Louden & Lambert's Design Criteria

1. Efficiency
2. Regularity
3. Security
4. Extensibility

Efficiency

• Machine efficiency
–tips to the compiler

• Programmer efficiency
–ease of writing programs
–expressiveness (conciseness helps)

• Reliability
–code maintenance

Efficiency

Java:
int i = 10;
String s = "hi";

Python:
i = 10
s = "hi"

• Machine efficiency:
Java offers tips to the compiler

• Programmer efficiency:
Python reduces the amount of typing required

Regularity

• Generality:
–avoid special cases
– favor general constructs

• Orthogonal design:
–different constructs can be combined with

no unexpected restrictions
• Uniformity
– similar things look similar
–different things look different

Bad uniformity example (PHP):
Same things look different

Inconsistent function
naming:
• isset()
• is_null()
• strip_tags()
• stripslashes()

Bad uniformity example (Pascal):
Different things look the same

function f : boolean;
begin
...
f := true;
end;

Return value is true

Security

• Stop programmer errors
– or handle them gracefully

• Strong typing prevents some run-time errors.
• Semantically-safe languages
– stop executing code violating language definition
– Contrast array handling by Java and by C/C++

Safety (Java vs. Scheme)

Java:
int x = 4;
boolean b = true;
if (b) {

x++;
} else {

x = x / "2";
}

Scheme:
(let ([x 4]

[b #t])
(if b

(+ 1 x)
(/ x "2")))

Extensibility

Allows the programmer to add new
language constructs easily.

Macros in Scheme are an example.

Before next class

Read Chapter 6 of Teach Yourself Scheme.

Lab 2: More Scheme practice

• Codecheck exercises (links on
course webpage)
–Implement reverse function
–Implement add-two-lists
–Implement positive-nums-only

• Using Louden & Lambert's criteria,
compare Java & Scheme (or two
languages of your choice)

