GUT ™ FRUIRCESEN

HOW TO SAVE THE PRINCESS BY © toggl
USING & PROGRAMMING

Coon SqUAo
LANGUAGES
TIME
YOU HAVE JAVASCRIPT You SPEND HOURS o A
PICKING LIBRARIES, THE FRAMEWORK,
SETTING UP NODE %

THE FORT HAS
BEEN ABANDONED
AND THE PRINCESS

L]
~

BUILDING A FRAME WORK
FOR THE CASTLE.

e
HAS ™MOVED To

@ ANOTHER CASTLE &
. ‘




YOu HAVE C You HAVE A LIBRARY || Yoy RESCUE THE PRINCESS
' FOR A CASTLE & HER DOG, HER ENTIRE

A LIBRARY FoR THE WARDROBE & EVERYTHING SHE

PRINCESS - HAS EVER EATEN..

CHARGE ! FUCK-DID | FORGET A

YOU SPEND HOURS YOU GIVE uP AND GO
TRYING TO EXPRESS THE [|TO STACKOVERFLOW TO

ENTIRE RESCVE IN A HAVE JON SKEET
RESCUE THE PRINCESS




You HAVE JAVA

YOU QUICKLY DEPLOY

THE RESCUE
TO PRODUCTION

YOU DISCOVER YOU'VE
LOADED TWO VERSIONS

OF THE CASTLE
BUT NO PRINCESS

(ccceeeceecdmmm
@ umy

(CCcccececcecc pny

CCCCCCCCCCcccdpmm
(CCCCCCLCLe Fm

e hmmmmINM
ccececcedmmmmm
CcececccdMmmmn S

Cccccceecdmmmmm




YoU HAVE GO

WE DON'T SUPPORT FREEING CAPTURED
PRINCESSES , WE ALREADY HAVE THESE
FREE PRINCESSES IN THE STANDARD LIBR..

WAIT, 1S
THIS THE
PRINCESS

()

FROM THE _ (3
JAVA PANEL -

YOU DECLARE 4
YOUR PRINCESS, S

CASTLE & &7 Al
RESCUE PLAN /\*yb

THEN YOu GO FOR
A DRINK % FORGET AsouT
THE IMPLEMENTATION




You HAVE PHP YOU HAVE To
RESCUE THE PRINCESS...




CS 152: Programming Language Paradigms

Syntax, Semantics,
and Language
Design Criteria

Prof. Tom Austin

San Jos¢ State University




Lab 1 solution
(in class)




Formally defining a language

Two aspects of a language:

* Syntax — structure of a program

* Semantics — meaning of a program




The two parts of syntax

e [ exemes or tokens — the "words"
of the language

* Grammar — the way that words
can be ordered




How a compiler works

source s Lexer/ tokens s

code Tokenizer

Tokens are the "words"
of the language.




How a compiler works

if (x < 42) {

source s Lexer/ tokens s

TOkenizer " if " " ( " " x" "< "
"42" ") " "{" "y"
" ++ " " ; " " } "

"else" "{" "y"
M= "42" ";" "}"

Tokens are the "words"
of the language.




How a compiler works

if (x < 42) {

source s Lexer/ tokens s

TOkenizer " if " " ( " " x" "< "
"42" ") " "{" "y"
" ++ " " ; " " } "

"else" "{" "y"
M= "42" ";" "}"

Types of tokens:

* Identifiers

* Numbers

* Reserved words

* Special characters




How a compiler works

SOuUrce

code

The parser reads
tokens to form an
abstract syntax tree.

>

Lexer/
Tokenizer

tokens

>

Abstract

/

Syntax Tree

(AST)




Parsing Example

"if" " (" "x" "<"
"42" ") " "{" "y"
" ++" " ,. " " } "

"else" " { " "y"
N "42" ";" "}"

o

y++ has disappeared in the AST.
'++' 1s an example of
syntactic sugar.




Formally defining language syntax

Context-free grammars define
the structure of a language.

Backas-Naur Form (BNF) 1s
a common notation.




Context-free grammar for math expressions
(in BNF notation)

-> <expr>

<expr>

<expr>
<term>

<term>
<term>

+ <term>
— <term>

* <factor>
/ <factor>

<factor>




How a compiler works

SOuUrce

code

Compiler

l

Machine code

>

Lexer/
Tokenizer

tokens

>

—

Abstract

Syntax Tree

(AST)

/

— > | Interpreter

l

Commands




Compilers and interpreters derive meaning
from ASTs to turn programs 1nto actions.

Formally defining language meaning:
* Operational semantics
* Denotational semantics

e Axiomatic semantics




Judging a language




Louden & Lambert's Design Criteria

Programming
Languages

2- Regl]larity PRINCIPLES AND PRACFICE

KENNETH C. LOUDEN & KENNETH A. LAMBERT
. -

1. Efficiency

3. Security
4. Extensibility




Efficiency

* Machine efficiency
—t1ps to the compiler

* Programmer efficiency

—case of writing programs
—expressiveness (conciseness helps)

« Reliability

—code maintenance




Efficiency

Java: Pvython:
int 1 = 10; 1 =10

String s = "hi"; s = "hi"

* Machine efficiency:
Java offers tips to the compiler

* Programmer efficiency:
Python reduces the amount of typing required




Regularity

* Generality:
—avoid special cases
—favor general constructs

* Orthogonal design:

—different constructs can be combined with
no unexpected restrictions

* Uniformity
— similar things look similar
—different things look different




Bad uniformity example (PHP):
Same things look different

Inconsistent function
naming: —

1sset ()
1s null ()
strip tags ()

S t r j_ p S l a S h e S ( ) TRAINING WHEELS WITHOUT THE BIKE




Bad uniformity example (Pascal):
Different things look the same

function £ : boolean;

begin

Return value 1s true
/
r := true;

end;




Security

* Stop programmer errors

— or handle them gracefully

* Strong typing prevents some run-time errors.

o Semantically-safe languages
— stop executing code violating language definition
— Contrast array handling by Java and by C/C++




Safety (Java vs. Scheme)

Java: Scheme:
int x = 4; (let ([x 4]
boolean b = true; ‘b #t1)
1f (b) { (if b

X++;

} else { (+ 1 x)
X =x / "2"; (/ x "2")))

J




Extensibility

Allows the programmer to add new
language constructs easily.

Macros 1in Scheme are an example.




Before next class

Read Chapter 6 of Teach Yourself Scheme.




Lab 2: More Scheme practice

* Codecheck exercises (links on
course webpage)

—Implement reverse function
—Implement add-two-1ists

—Implement positive-nums-only

* Using Louden & Lambert's criteria,
compare Java & Scheme (or two
languages of your choice)




