
http://xkcd.com/224/

http://xkcd.com/224/


CS 152: Programming Language Paradigms

Prof. Tom Austin
San José State University



What are some
programming languages?



Taken from http://pypl.github.io/PYPL.html
January 2016



Taken from http://pypl.github.io/PYPL.html
August 2019



Why are there so many?



Different domains



Different design choices

• Flexibility
• Type safety
• Performance
• Build time
• Concurrency



Which language is better?



Good language features

• Simplicity
• Readability
• Learn-ability
• Safety
• Machine independence
• Efficiency



These goals almost always conflict



Conflict: Type Systems

Stop "bad" programs
… but ... 

restrict the programmer



Why do we make you take a
programming languages course?

• You might use one of these languages.
• Perhaps one of these languages is the 

language of the future (whatever that means).
• You might see similar languages in your job.
• Somebody made us take one, so now we want 

to make you suffer too.
• But most of all…



We want to warp your minds.



Course goal: change the way that you 
think about programming.

That will make 
you a better Java
programmer.



The "Blub" paradox

Why do I need
higher order functions?

My language doesn't have
them, and it works

just fine!!!



"As long as our hypothetical Blub programmer is 
looking down the power continuum, he knows 
he's looking down…
[Blub programmers are] satisfied with whatever 
language they happen to use, because it
dictates the way they think about programs."
--Paul Graham
http://www.paulgraham.com/avg.html

http://www.paulgraham.com/avg.html


Languages we will cover
(subject to change) 



Administrative Details

• Green sheet: 
http://www.cs.sjsu.edu/~austin/cs152-
spring20/greensheet.html. 

• Homework submitted through Canvas: 
https://sjsu.instructure.com/

• Academic integrity policy:
http://info.sjsu.edu/static/catalog/integrity.html

http://www.cs.sjsu.edu/~austin/cs152-spring20/greensheet.html
https://sjsu.instructure.com/
http://info.sjsu.edu/static/catalog/integrity.html


Schedule

• The class schedule is available through 
Canvas.

• Late homeworks will not be accepted.
• CHECK THE SCHEDULE BEFORE EVERY 

CLASS.



Prerequisites

•CS 151 or CMPE 135,
grade C- or better
•Show me proof
–If you don't, I will drop you.



Resources

Dorai Sitaram
"Teach Yourself Scheme
in Fixnum Days".
http://ds26gte.github.io/tyscheme/

Other references TBD.

http://ds26gte.github.io/tyscheme/


Grading

• 30% -- Homework assignments 
(individual work)

• 20% -- Class project (team work)
• 20% -- Midterm
• 20% -- Final
• 10% -- Participation (labs and drills)



Participation: Labs

• No feedback given (usually)
• I will look at them
• If you have questions, ask me



Homework

• Must be done individually
• If your assignment is too close to another 

students,

YOU BOTH GET A 
ZERO.

• Academic integrity policy: 
http://info.sjsu.edu/static/policies/integrity.html

http://info.sjsu.edu/static/policies/integrity.html


Project

• Work alone or with ONE partner.
• Goal: Build an interpreter.
• Use Java and ANTLR



Office hours

•MacQuarrie Hall room 216
•Mondays and Thursdays, 
noon-1pm
•Also by appointment



Racket/
Scheme



What is Scheme?

• A functional language
– Describe what things are, not how to do them.
–More mathematical compared to imperative langs.

• A dialect of Lisp (List Processing)
• (Famously) minimal language
• Racket is a dialect of Scheme



Symbolic Expressions
(s-expressions)

The single datatype in Scheme.  Includes:
• Primitive types: booleans, numbers, 

characters, and symbols.
• Compound data types: strings, vectors, pairs, 

and of course…

LISTS!!!



Scheme lists
• Sample list:
(list 1 2 3 4)

• Alternate form:
'(1 2 3 4)

• Important functions:
– car: gets the first element of the list.
– cdr: gets the tail of the list.
– cons: combines an element and a list.
– append: appends multiple lists together.



Calling functions in Scheme

• First argument assumed to be a function
• Rest of the list are its arguments

// Java
foo(x, y, z);

; Scheme
(foo x y z)



$ racket
Welcome to Racket v6.0.1.
> '(1 2 3 4)
'(1 2 3 4)
> (car '(1 2 3 4))
1
> (cdr '(1 2 3 4))
'(2 3 4)
>  (+ 1 (* 2 4) (- 5 1))
13
> 

Quote indicates list 
is data

First element is 
assumed to be a 

function



Before next class

• Install Racket from http://racket-lang.org/
• Read chapters 1-2 of Teach Yourself 

Scheme.
• Read Paul Graham's "Beating the 

Averages" article. 
http://www.paulgraham.com/avg.html

http://racket-lang.org/
http://www.paulgraham.com/avg.html


First homework due February 13th

• This assignment is designed to get 
you up and running with Racket.
• Available in Canvas.
–If you don't have access to Canvas, see 

http://www.cs.sjsu.edu/~austin/cs152-
spring20/hw/hw1/ instead.

• Get started now!

http://www.cs.sjsu.edu/~austin/cs152-spring20/hw/hw1/


Lab 0

Familiarize yourself with scheme
Write functions to calculate the area of
• A rectangle
• A square
• A triangle


