Interactive Augmented Reality for Dance
Paper type: System Paper

Taylor Brockhoeft1, Jennifer Petuch2, James Bach1, Emil Djerekarov1, Margareta Ackerman1, Gary Tyson1

Computer Science Department1 and School of Dance2
Florida State University
Tallahassee, FL 32306 USA
tjb12@my.fsu.edu, jap14@my.fsu.edu, bach@cs.fsu.edu, ed13h@my.fsu.edu, mackerman@fsu.edu, tyson@cs.fsu.edu

"Like the overlap in a Venn diagram, shared kinesthetic and intellectual constructs from the field of dance and the field of technology will reinforce and enhance one another, resulting in an ultimately deepened experience for both viewer and performer." - Alyssa Schoeneman

Abstract

With the rise of the digital age, dancers and choreographers started looking for new ways to connect with younger audiences who were left disengaged from traditional dance productions. This led to the growing popularity of multimedia performances where digitally projected spaces appear to be influenced by dancers’ movements. Unfortunately current approaches, such as reliance on pre-rendered videos, merely create the illusion of interaction with dancers, when in fact the dancers are actually closely synchronized with the multimedia display to create the illusion. This calls for unprecedented accuracy of movement and timing on the part of the dancers, which increases cost and rehearsal time, as well as greatly limits the dancers’ creative expression.

We propose the first truly interactive solution for integrating digital spaces into dance performance: ViFlow. Our approach is simple, cost effective, and fully interactive in real-time, allowing the dancers to retain full freedom of movement and creative expression. In addition, our system eliminates reliance on a technical expert. A movement-based language enables choreographers to directly interact with ViFlow, empowering them to independently create fully interactive, live augmented reality productions.

Introduction

Digital technology continues to impact a variety of seemingly disparate fields from the sciences to the humanities and arts. This is true of dance performance as well, as interactive technology incorporated into choreographic works is a prime point of access for younger audiences. Due in no small part to the overwhelming impact of technology on younger generations, the artistic preferences of today’s youth differ radically from those raised without the prevalence of technology. This results in the decline of youth attending live dance performances (Tepper 2008). Randy Cohen, vice president for research and policy at Americans for the Arts, commented that: "People are not walking away from the arts so much, but walking away from the traditional delivery mechanisms. A lot of what we’re seeing is people engaging in the arts differently." (Cohen 2013).

Given that younger viewers are less intrigued by traditional dance productions, dancers and choreographers are looking for ways to engage younger viewers without alienating their core audiences.

Through digital technology, dance thrives. Adding a multimedia component to a dance performance alleviates the need for supplementary explanations of the choreography. The inclusion of digital effects creates a more easily relatable experience for general audiences. Recently there has been an effort to integrate augmented reality into dance performance. The goal is to use projections that respond to the performers’ movement. For example, a performer raising her arms may trigger a projected explosion on the screen behind her. Or, the dancers may be followed by downwards streams of sand as they move across the stage (see Figure 1).

However, current approaches to augmented reality in professional dance merely create the illusion of interaction. Furthermore, only a few choreographers today have the technological collaboration necessary to incorporate projection effects in the theater space.
Florida State University is fortunate to have an established collaboration between a top-ranked School of Dance and Department of Computer Science in an environment supportive of interdisciplinary creative activities. Where these collaborative efforts have occurred, we have seen a new artistic form flourish. However, the vast majority of dance programs and companies lack access to the financial resources and technical expertise necessary to explore this new creative space. We believe that this access problem can be solved through the development of a new generation of low-cost, interactive video analysis and projection tools capable of providing choreographers direct access to the video layering that they desire to augment their dance compositions.

Augmented dance performances that utilize pre-rendered video projected behind performers on stage to create the illusion of interactivity have several notable drawbacks. The dancers must rehearse extensively to stay in sync with the video. This results in an increase in production time and cost, and makes it impractical to alter choreographic choices. Further, this approach restricts the range of motion available to dancers as they must align with a precise location and timing. This not only sets limits on improvisation, but restricts the development of creative expression and movement invention of the dancer and choreographer. If a dancer even slightly misses a cue, the illusion is ineffective and distracting for the viewer.

A small number of dance companies (Wechsler, Weiß, and Dowling 2004) (Bardainne and Mondot 2015) have started to integrate dynamic visual effects through solutions such as touch-screen technology (see the following section for details.) However, moving away from static video into dynamically generated visualizations gives rise to a new set of challenges. Dynamic digital effects require a specialized skillset to setup and operate. The complex technical requirements of such systems often dictate that the visual content has to be produced by a separate team of technical developers in conjunction with performing artists. This requirement can lead to miscommunication as the language incorporated into the lexicon of dancers differs significantly from that employed by computer programmers and graphical designers. This disconnect can impair the overall quality of the performance as artists may ask for too much or too little from technical experts because they are unfamiliar with the inner workings of the technology and its capabilities.

In this paper we introduce ViFlow (short for Visual Flow\footnote{Flow is one of the main components of the dynamics of movement. In our system, it also refers to the smooth interaction between the dancer’s movements and the visual effects.}), a new system that remedies these problems. Dancers, choreographers, and artists can use our system to create interactive augmented reality for live performances. In contrast with previous methods that provide the illusion of interactivity, ViFlow is truly interactive. With minimal low-cost hardware, just an infrared light emitter and an infrared sensitive webcam, we can track multiple users’ motions on stage. The projected visual effects are then changed in real time in response to the dancers’ movements (see Figure 2 for an illustration). Further, by requiring no physical gear, our approach places no restriction on movements, interaction among dancers, or costume choices. In addition, our system is highly configurable enabling it to be used in virtually any performance space.

With traditional systems, an artist’s vision must be translated to the system through a technical consultant. To eliminate the need for a technical expert, we have created a gesture-based language that allows performers to specify visualization behavior through movement. Visual content is edited on the fly in a fashion similar to that of a dance rehearsal using our internal gesture based menu system and a simple movement-driven language. Using this movement-based language, an entire show’s visual choreography can be composed solely by an artist on stage without the need of an outside technical consultant. This solution expands the artist’s creative space by allowing the artist’s vision to be directly interpreted by the system without a technical expert.

ViFlow was first presented live at Florida State University’s Nancy Smith Ficther Theatre on February 19, 2016 as part of Days of Dance performance series audi-
Related Works

The dance industry has a rich history of utilizing multimedia to enhance performance. As new technology is developed, dancers have explored how to utilize it to enhance their artistic expression and movement invention. We will present a brief history of multimedia in dance performances, including previous systems for interactive performance, and discuss the application of interactive sets in related art forms. We will also present the most relevant prior work on the technology created for motion capture and discuss limitations of their application to live dance performance.

History of Interactive Sets in Dance

Many artists in the dance industry have experimented with the juxtaposition of dance and multimedia. As early as the 1950s, the American choreographer, Alwin Nikolais, was well known for his dance pieces that incorporated hand-painted slides projected onto the dancer’s bodies on stage. Over the past decade, more multimedia choreographers in the dance industry have been experimenting with projections, particularly interactive projection. Choreographers Middendorp, Magliano, and Hanabusa used video projection and very well trained dancers to provide an interplay between dancer and projection. Lack of true interaction is still detectable to the audience as precision of movement is still detectable to the audience as precision of movement is difficult to sustain throughout complex pieces. This has the potential of turning the audience into judges focusing on the timing of a piece while missing some of the emotional impact developed through the choreography.

In the early 2000s, as technology was becoming more accessible, dance companies started collaborating with technical experts to produce interactive shows with computer generated imagery (CGI). Adrien M/Claire B used a physics particle simulation environment they developed called eMotion2 that resulted in effects that looked more fluid. This was achieved by employing offstage puppeteers with tablet-like input devices that they used to trace the movements of performers on stage and thus determine the location of the projected visual effects (Bardainne and Mondot 2015). Synchronization is still required, though the burden is eased, because dancers are no longer required to maintain synchronized movement. This duty now falls to the puppeteer.

Eyecon (Wechsler, Weiß, and Dowling 2004) is an infrared tracking-based system utilized in Obarzanek’s Mortal Engine. The projected effects create a convincing illusion of dancers appearing as bio-fiction creatures in an organic-like environment. However, Eyecon’s solution does not provide the ability to differentiate and individually track each performer. As a result, all performers must share the same effect. The system does not provide the ability for separate dancers to have separate on-screen interactions. Moreover, Eyecon can only be applied in very limited performance spaces. The software forces dancers to be very close to the stage walls or floor. This is because the tracking mechanism determines a dancer’s location by shining infrared light against a highly reflective surface, and then looking for dark spots or “shadows” created by the presence of the dancer. By contrast, we identify the reflections of infrared light directly from the dancers’ bodies, which allows us to reliably detect each dancer anywhere on the stage without imposing a limit on location, stage size, or number of dancers.

Studies have also been conducted to examine the interactions of people with virtual forms or robots. One such study by (Jacob and Magerko 2015), presents the VAI (Viewpoint Artificial intelligence) installation which aims to explore how well a performer can build a collaborative relationship with a virtual partner. VAI allows performers to watch a virtual dance partner react to their own movements. VAI’s virtual dancers move independently, however, VAI’s movements are reactive to the movement of the human performer. This enhances the relationship between the dancer and the performer because VAI appears to act intelligently.

Another study by (Corness, Seo, and Carlson 2015), utilized the Sphero robot as a dance partner. In this study, the Sphero robot was remotely controlled by a person in another room. Although the performer was aware of this, they had no interaction with the controller apart from dancing with the Sphero. In this case, the performer does not only drive, but must also react to the independent choices made by the Sphero operator. Users reported feeling connected to the device, and often compared it to playing with a small child.

Interactivity in performance can even extend past the artist’s control and be given to the audience. For LAIT (Laboratory for Audience Interactive Technologies) audience members are able to download an application to their phones that allows them to directly interact with the show (Toenjes and Reimer 2015). Audience members can then collectively engage in the performance, changing certain visualizations or triggering cues. It can be used to allow an audience member to click on a button to signal recognition of a specific dance gesture or to use aggregate accelerometer data of the entire audience to drive a particle system projected on a screen behind the performers.

Interactive Sets in Other Art Forms

Multimedia effects and visualizations are also being used with increasing frequency in the music industry. A number of large international music festivals, such as A State of Trance and Global Gathering, have emerged over the last fifteen years that rely heavily on musically driven visual and interactive content to augment the overall experience for the audience. A recent multimedia stage production for musician Armin Van Buuren made use of motion sensors attached to the Sphero, an interactive robot which allows them to directly impact and interact with the audience. A recent multimedia stage production for musician Armin Van Buuren made use of motion sensors attached to the Sphero, an interactive robot which allows them to directly impact and interact with the audience.

The use of technology with dance performance is not limited to live productions. Often, artists will produce dance films to show their piece. As an example, the piece "Un-
not considered a viable technology for live performance.

Motion Capture Approaches (Tracking)

Many traditional motion capture systems use multiple cameras with markers on the tracked objects. Such systems are often used by Hollywood film studios and professional game studios. These systems are very expensive and require a high level of technical expertise to operate. Cameras are arranged in multiple places around a subject to capture movement in 3D space. Each camera must be set up and configured for each new performance space and requires markers on the body, which restrict movement and interaction among dancers. (Sharma et al. 2013)

Microsoft’s Kinect is a popular tool that does not require markers and is used for interactive artwork displays, gesture control, and motion capture. The Kinect is a 3D depth sensing camera. User skeletal data and positioning is easily grabbed in real time. However, Kinect only has a working area of about 8x10 feet, resulting in a limited performance space, thus rendering it impractical for professional productions on a traditional Proscenium stage, which is generally about 30x50 feet in size. (Shingade and Ghotkar 2014).

Organic motion capture is another marker-less system that provides 3D motion capture. It uses multiple cameras to capture motion, but requires that the background environment from all angles be easily distinguishable from the performer, so that the system can accurately isolate the moving shapes and build a skeleton. Additionally, the dancers are confined to a small, encapsulated performance space.

Several researchers (Lee and Nevatia 2009), (Peursum, Venkatesh, and West 2010), (Cailliette, Galata, and Howard 2008) have built systems using commercial cameras that rely heavily on statistical methods and machine learning models to predict the location of a person’s limbs during body movement. Due to the delay caused by such computations, these systems are too slow to react and cannot perform in real time (Shingade and Ghotkar 2014).

One of the most accurate forms of movement tracking is based on Inertial Measurement Units (IMUs) that measure orientation and acceleration of a given point in 3D space using electromagnetic sensors. Xsens and Synertial have pioneered the use of many IMUs for motion capture suits which are worn by performers and contain sensors along all major joints. The collected data from all sensors is used to construct an accurate digital three dimensional version of the performer’s body. Due to their complexity, cost, and high number of bodily attached sensors, IMU systems are not considered a viable technology for live performance.

Setup and System Design

ViFlow has been designed specifically for live performance with minimal constraints on the performers. The system is also easy to configure for different spaces. The camera can receive information from a variety of different camera setups and is therefore conducive to placement in a wide spectrum of dance venues. By using Infrared (IR) light in the primary tracking system, it also enables conventional lighting setups ranging from very low light settings to fully illuminated outdoor venues.

Hardware and Physical Setup

ViFlow requires three hardware components: A camera modified to detect light in the infrared spectrum, infrared light emitters, and a computer running the ViFlow software. We utilize infrared light because it is invisible to the audience and results in a high contrast video feed that alleviates the process of isolating the performers from the rest of the environment, when compared to a regular RGB video feed. By flooding the performance space with infrared light, we can identify the location of each performer within the frame of the camera. At the same time, ViFlow does not process any of the light in the visible spectrum and thus is not influenced by stage lighting, digital effect projections, or colorful costumes.

Most video cameras have a filter over the image sensor that blocks infrared light and prevents overexposure of the sensor in traditional applications. For ViFlow, this filter is replaced with the magnetic disk material found in old floppy diskettes. This effectively blocks all visible light while allowing infrared light to pass through.

In order to provide sufficient infrared light coverage for an entire stage, professional light projectors are used in conjunction with a series of filters. The exact setup consists of Roscolux gel filters - Yellow R15, Magenta R46, and Cyan R68 layered to make a natural light filter, in conjunction with an assortment of 750-1000 watt LED stage projectors. See Figure[5] for an illustration.

The projector lights are placed around the perimeter of the stage inside the wings (see Figure[4]). At least two lights should be positioned in front of the stage to provide illumination to the center stage area. This prevents forms from being lost while tracking in the event that one dancer is blocking light coming from the wings of the stage.

The camera placement is arbitrary and can be placed anywhere to suit the needs of the performance. However, care must be taken to handle possible body occlusions (i.e. two dancers behind each other in the camera’s line of sight) when multiple performers are on stage. To alleviate this problem, the camera can be placed high over the front of the stage angled downwards. (see Figure[4])

ViFlow Software

The software developed for this project is split into two components: the Tracking Software and the Rendering/Effect creation software. The tracking software includes data collection, analysis, and transmission of positional data to the

1http://www.organicmotion.com/
2http://www.xsens.com
3http://synertial.com/
4Roscolux is a brand of professional lighting gels.
Figure 3: Gels may be placed in any order on the gel extender. We used LED lighting, which runs much cooler than traditional incandescent lighting.

front end program, where it displays the effects for a performance. ViFlow makes use of OpenCV, a popular open source computer vision framework. ViFlow must be calibrated to the lighting for each stage setup. This profile can be saved and reused later. Once calibrated, ViFlow can get data on each performer's silhouette and movement.

At present, there are certain limitations in the tracking capabilities of ViFlow. Since a traditional 2D camera is used, there is only a limited amount of depth data that can be derived. Because of the angled setup of the camera, we do obtain some depth data through interpolation on the y axis, but it lacks the fine granularity for detecting depth in small movements. Fortunately, performances do not rely on very fine gesture precision, and dancers naturally seem to employ exaggerated, far-reaching gestures designed to be clearly visible and distinguishable to larger audiences. In working with numerous dancers, we have found that this more theatrical movement seems to be instilled in them both on and off stage.

Visual Effects

The front end uses Unity3D by Unity Technologies for displaying the visual medium. Unity3D is a cross-platform game engine that connects the graphical aspects of developing a game to JavaScript or C# programming. Unity has customization tools to generate content and is extensible enough to support the tracker. The front end consists of five elements: a camera, a character model, an environment, visual effects, and an interactive menu using gesture control which is discussed in more detail in following sections.

The camera object correlates to what the end-user will see in the environment and the contents of the camera viewport are projected onto the stage. The visual perspective is both 2D and 3D to support different styles of effects.

The character model belongs to a collection of objects representing each performer. Each object is a collection of two attached sphere colliders for hand representations and a body capsule collider as seen in Figure 6. The colliders are part of the Unity engine and are the point of interaction and triggers menus, environmental props, and interactive effects.

Environments consist of multiple objects including, walls, floors, and ceilings of various shapes and colors. Aesthetic considerations for these objects are applied per performance or scene such as Figure 7. Most of our environmental textures consist of creative usage of colors, abstract art, and free art textures.

The effects are delivered in a variety of methods such as interactive objects, particle systems, and timed effects. Some objects are a combination of other effects designed to
Figure 5: Four figures being tracked with our tracking software. Each individual is bathed in infrared light, thus allowing us to easily segment their form from the background. This shot is from the camera angle depicted in Figure [Fig].

Figure 6: Character Model Object. The small orbs are the colliders for hand positions and the larger capsule is the body collider.

deliver a specific effect such as an interactive object that will trigger a particle system explosion upon interaction with a performer.

The particle system delivers ambience and interactive effects like rain, fog, waterfalls, fire, shiny rainbow flares, or explosions. ViFlow’s effects provide a set of adjustable features such as color, intensity, or direction. The particle systems have been preconfigured as interactive effects such as a sand waterfall that splashes off the performers as seen in Figure [Fig] or a wildfire trail that follows the performers in Figure [Fig].

Some effects involve environmental objects that the dancer can interact with. One effect is a symmetric wall of orbs that cover the lower portion of the 2D viewport. When touched by the performer’s Unity collider, these dots have preconfigured effects such as shrinking, floating up, or just spiraling away. The customizations supported for the performers allow them to place the effects in specific locations, change their colors, and adjust to predefined effects.

Lastly, there are global effects that can be both environmentally aesthetic, such as sand storms and snow falls, or interactive such as a large face that watches the dancer and responds based on their position. The face might smile when they are running and frown when they are not moving, or turn left and right as the dancers are moving stage left or right.

Communication Gap Between Dancers and Technologists

Multimedia productions in the realm of performing arts are traditionally complex due to the high degree of collaboration and synchronization that is required between artists on stage and the dedicated technical team behind the scenes. Working in conjunction with a technical group necessitates a significant time investment for synchronization of multimedia content and dance choreography. Moreover, there are a number of problems that arise due to the vastly different backgrounds of artists and technicians in relation to linguistic expression. In order to address these communication difficulties, we developed a system which allows artists to directly control and configure digital effects without the need for additional technical personnel by utilizing a series of dance movements which collectively form a gesture based movement language within ViFlow.

One of the main goals of our system is to enhance the expressive power of performing artists by blending two traditionally disjoint disciplines - dance choreography and computer vision. An important take away from this collaboration is the stark contrast and vast difference in the language, phrasing, and style of expression used by dancers and those with computing oriented backgrounds. The linguistic gap
between these two groups creates a variety of development challenges such as system requirements misinterpretations and difficulties in creating agreed upon visual content.

To better understand the disparity between different people’s interpretations of various visual effects provided by our system, we asked several dancers and system developers to describe visual content in multimedia performances. The phrasing used to describe the effects and dancer interactions of the system were highly inconsistent, as well as a potential source of ambiguity and conflict during implementation.

Dancers and developers were separately shown a batch of video clips of dance performances that utilized pre-rendered visual effects. Each person was asked to describe the effect that was shown in the video. The goal was to see how the two different groups would describe the same artistic visual content, and moreover, to gain some insight into how well people with a non-artistic, technical background could interpret a visual effect description coming from an artist.

The collected responses exposed two major issues. First, the descriptions were inconsistent from person to person, and second, that there was a significant linguistic gap between artists and people with a computing background. As an example, consider this description of a visual effect written by a dancer: “I see metallic needles, projected onto a dark surface behind a solo dancer. They begin subtly, as if only a reference, and as they intensify and grow in number, I realize that they are the echoes of a moving body. They appear as breathing, rippling, paint strokes, reflecting motion”. A different dancer describes the same effect as “sunlight through palm fronds, becomes porcupine quills being ruffled by movement of dancer”. A system developer on the other hand, described the same visual effect as “a series of small line segments resembling a vector field, synchronized to dance movements”. It is evident that the descriptions are drastically different.

This presents a major challenge as typically, a technician would have to translate artists descriptions into visual effects. Yet, the descriptions provided by dancers leave a lot of room for personal interpretation, and lead to difficulties for artists and technicians when they need to reach agreement on how a visualization should look like on screen. In order to address this critical linguistic problem, our system incorporates a dance derived, gesture-based, motion system that allows performers to parameterize effects directly by themselves while dancing, without having to go through a technician who would face interpretation difficulties. This allows dancers a new level of artistic freedom and independence, empowering them to fully incorporate interactive projections into their creative repertoire.

Front End User Interface and Gesture Control

Our interactive system strives to eliminate the need for a technician to serve as an interpreter, or middleman, between an artists original vision and the effects displayed during a performance. As discussed above, a number of linguistic problems make this traditional approach inefficient. We address this problem by implementing a direct dance-based gesture control, which is used for user interactions with the system as well as customizing effects for a performance.

The system has two primary modes of operation: a **show-time mode** which is used to run and display the computerized visual component of the choreographed performance during rehearsals or production, and an **edit mode** which is used to customize effects and build the sequence of events for a performance. In other words, edit mode is used to build and prepare the final show-time product.

Edit mode implements our novel gesture-based approach for direct artist control of computer visualizations. It utilizes a dancer’s body language (using the camera input as previously described in the System Setup and Design Section) to control the appearance of digital content in ViFlow.

Effects are controlled and parameterized by the body language and movements of the dancer. A number of parameters are controlled through different gestures. For example, when configuring a wildfire trail effect, shown in Figure 8, the flame trail is controlled by the movement speed of a dancer on stage, while the size of the flame is controlled via hand gestures showing expansion as the arms of a dancer move away from each other. In a different scenario, in which a column of sand is shown as a waterfall behind a dancer, arm movements from left to right and up and down are used to control the speed of the sand waterfall, as well as the direction of the flow. Depending on the selected effect, different dance movements control different parameters. Since all effects are designed for specific dance routines, this effectively creates a dance derived movement-gesture language, which can be naturally and intuitively used by a dancer to create the exact visual effects desired.

When a dancer is satisfied with the visualization that has been created, it is saved and added to a queue of effects to be used later during the production. Each effect in the queue is supplied with a time at which it should be loaded. When a dancer is ready, this set of effects and timings are saved and can be used during the final performance in show-time mode.

Discussion: Creativity Across Domains

This interdisciplinary research project brought together two fields with different perspectives on what it means to be creative. In our joint work we learned to appreciate both the differences in how we approach the creative process and our goals for the final product.

From the perspective of dance and choreography, this project charts new territories. There is no precedent for allowing the choreographer this degree of freedom with interactive effects on a full scale stage, and very little in the way of similar work. This leaves the creative visionary with a world of possibilities with respect to choreographic choices, visual effects, and creative interpretation, all of which must be pieced together into a visually stunning performance. The challenge lies in part in searching the vast creative space as well as the desire to incorporate creative self-expression, which plays a central role in the arts.

In sharp contrast, our computer science team was given the well-defined goal of creating interactive technology that would work well in the theater space. This greatly limited our search space and provided a clear method for evaluating our work: If the technology works, then we’re on the right
track. Our end goal can be defined as an “invention”, where the focus is on the usefulness of our product – though in order to be a research project it also had to be novel. Unlike the goals of choreography in our project, self-expression played no notable part for the computer science team.

Another intriguing difference is how we view the importance of the process versus the final product. Innovation in the realm of computing tends to be an iterative process, where an idea may start out as a research effort, with intermediate steps demonstrated with a proof-of-concept implementation. Emphasis is placed on the methodology behind the new device or software product.

On the other hand, most dance choreographers focus primarily on the end result without necessarily emphasizing the methodology behind it. At all phases of the creative process, choreographers evaluate new ideas with a strong emphasis on how the finished product will be perceived by the audience. In the technological realm, the concern for general audience acceptance is only factored in later in the process.

During the early stages of ViFlow development, one of the critiques coming from dance instructors after seeing a trial performance was that “the audience will never realize all that went into the preliminary development process;” and that the technique for rendering projections (i.e. pre-recorded vs. real-time with dancer movement tracking) is irrelevant to the final performance from an audience’s point of view. In a sense, a finished dance performance does not make it a point to market its technological components, as this is merely an aspect of backstage production. Technology related products on the other hand are in large part differentiated not only based on the end goal and functionality, but also on the methodology behind the solution.

Conclusions

ViFlow has been created to provide a platform for the production of digitally enhanced dance performance that is approachable to choreographers with limited technical background. This is achieved by moving the creation of visual projection effects from the computer keyboard to the performance stage in a manner more closely matching the dance choreographic construction.

ViFlow integrates low-cost vision recognition hardware and video projection hardware with software developed at Florida State University. The prototype system has been successfully integrated into public performance pieces in the College of Dance and continues to be improved as new technology becomes available, and as we gain more experience with the ways in which choreographers choose to utilize the system.

The use of ViFlow empowers dancers to explore visualization techniques dynamically, at the same time and in the same manner as they explore dance technique and movement invention in the construction of a new performance. In doing so, ViFlow can significantly reduce production time and cost, while greatly enhancing the creative pallet for the choreographer. We anticipate that this relationship will continue into the future and hope that ViFlow will be adopted by other university dance programs and professional dance companies. While we have targeted production companies as the primary target for ViFlow development, we believe that the algorithms can be used in a system targeting individual dancers who would like to explore interactive visualizations at home.

References

