

DETECTING UNDETECTABLE COMPUTER VIRUSES

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science in Computer Science

by

Sujandharan Venkatachalam

May 2010

© 2010

Sujandharan Venkatachalam

ALL RIGHTS RESERVED

SAN JOSÉ STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Project Titled

DETECTING UNDETECTABLE COMPUTER VIRUSES

by

Sujandharan Venkatachalam

 Dr. Mark Stamp, Department of Computer Science Date

 Dr. Robert Chun, Department of Computer Science Date

__
 Mr. Manikandan Alagappan, Cisco Systems Inc. Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

ii

ABSTRACT

Signature-based detection relies on patterns present in viruses and provides a relatively simple

and efficient method for detecting known viruses. At present, most anti-virus systems rely

primarily on signature detection.

Metamorphic viruses are one of the most difficult types of viruses to detect. Such viruses change

their internal structure, which provides an effective means of evading signature detection.

Previous work has provided a rigorous proof that a fairly simple metamorphic engine can

generate viruses that will evade any signature-based detection.

In this project, we first implement a metamorphic engine that is provably undetectable—in the

sense of signature-based detection. We then show that, as expected, the resulting viruses are not

detected by popular commercial anti-virus scanners. Finally, we analyze the same set of viruses

using a previously developed approach based on hidden Markov models (HMM). This HMM-

based technique easily detects the viruses.

iii

ACKNOWLEDGEMENTS

I would like to thank my project advisor Dr. Mark Stamp for his guidance and insights

throughout the project. I would also like to thank my committee members – Dr. Robert Chun and

Mr. Manikandan Alagappan for providing me with their valuable feedback.

I would also like to thank my parents and friends for their support and encouragement

throughout the Masters program.

v

Table of Contents
1 Introduction ... 1

2 Evolution of Viruses ... 2

2.1 Early stages ... 2

2.2 Stealth Viruses .. 3

2.3 Polymorphic Viruses ... 3

2.4 Metamorphic Viruses .. 5

3 Intrusion Detection Systems ... 7

3.1 Signature based Intrusion detection .. 7

3.2 Anomaly based detection .. 8

3.3 Emulation based detection .. 8

4 Code obfuscation techniques .. 9

4.1 Garbage Instructions ... 10

4.2 Instruction Reordering .. 10

4.3 Subroutine Reordering .. 11

4.4 Interchangeable Instructions ... 11

4.5 Swapping of registers .. 12

5 Virus detection using machine learning techniques .. 14

5.1 Neural networks .. 14

5.2 Data mining techniques ... 14

5.3 Hidden Markov models ... 15

5.4 Training the model .. 15

6 Generation of Metamorphic Viruses ... 16

6.1 Implementation method .. 16

6.2 Training the HMM Model... 19

vi

6.3 Testing the HMM Model .. 20

7 Experiment Setup and results .. 21

7.1 Experimental Setup ... 21

7.2 Creation of Seed Virus .. 22

7.3 Creation of Metamorphic Viruses ... 23

7.4 Testing Signature Detection .. 23

7.5 Testing using HMM Model... 26

8 Conclusion and Future Work .. 27

References ... 29

Appendix A: HMM Scores for different Metamorphic Viruses ... 31

Appendix B : Scatter plot of HMM Scores of Metamorphic viruses .. 37

Appendix C : Garbage Instructions used .. 40

vii

List of Figures

FIGURE 1: GENERATIONS OF A POLYMORPHIC VIRUS [17] .. 4

FIGURE 2: GENERATIONS OF A METAMORPHIC VIRUS [17] ... 6

FIGURE 3: SEARCH PATTERN FOR STONED VIRUS [18] ... 8

FIGURE 4: CODE REORDERING [18] .. 11

FIGURE 5: CODE OBFUSCATION IN OUR ENGINE ... 18

FIGURE 6: TEST DATA PREPARATION ... 19

FIGURE 7: TRAINING A HMM MODEL .. 20

FIGURE 8: TESTING SEED VIRUS WITH MCAFEE ANTIVIRUS ... 22

FIGURE 9: SAMPLE VERSIONS GENERATED BY CODE OBFUSCATION ENGINE 23

FIGURE 10: SCANNING THE GENERATED METAMORPHIC VIRUSES USING MCAFEE 24

FIGURE 11: SCANNING THE GENERATED METAMORPHIC VIRUSES USING AVAST 25

FIGURE 12: LOG FILE GENERATED BY AVAST ... 25

FIGURE 13: HMM SCORES GRAPH .. 26

FIGURE 14: NGVCK FAMILY VIRUSES WITH 2 HIDDEN STATES .. 37

FIGURE 15: G2 FAMILY VIRUSES WITH 2 HIDDEN STATES ... 37

FIGURE 16: VCL32 FAMILY VIRUSES WITH 2 HIDDEN STATES .. 38

FIGURE 17: NGVCK FAMILY VIRUSES WITH 3 HIDDEN STATES .. 38

FIGURE 18: G2 FAMILY VIRUSES WITH 3 HIDDEN STATES ... 39

FIGURE 19: VCL32 FAMILY VIRUSES WITH 3 HIDDEN STATES .. 39

viii

List of Tables

TABLE 1: VIRUS DETECTION TECHNIQUES [2] .. 9

TABLE 2: CODE OBFUSCATION TECHNIQUES IN DIFFERENT VIRUSES [4] 10

TABLE 3: CODE OBFUSCATION OF NGVCK VIRUS [6] ... 13

TABLE 4: EXPERIMENTAL SETUP .. 21

TABLE 5: HMM SCORES FOR NGVCK VIRUSES WITH 2 HIDDEN STATES 31

TABLE 6: HMM SCORES FOR G2 VIRUSES WITH 2 HIDDEN STATES .. 32

TABLE 7: HMM SCORES FOR VCL32 VIRUSES WITH 2 HIDDEN STATES 33

TABLE 8: HMM SCORES FOR NGVCK VIRUSES WITH 3 HIDDEN STATES 34

TABLE 9: HMM SCORES FOR G2 VIRUSES WITH 3 HIDDEN STATES .. 35

TABLE 10: HMM SCORES FOR VCL32 FAMILY WITH 3 HIDDEN STATES 36

1

1 Introduction

Malware are programs that infect a machine and perform malicious actions on that machine.

Viruses, worms and trojan horses are some typical categories of malware. The first PC virus,

called Brain, was created in 1986; it infected the boot sector of the storage media [21]. Since

the creation of Brain, virus creation and detection methodologies have evolved considerably

[21]. Virus creators try to evade popular detection mechanisms. Once a virus bypassed an

anti-virus system and infects a large number of computers, virus detection mechanisms are

generally updated to prevent further infections.

Virus programmers have created several types of viruses that attempt to bypass certain

detection systems [21]. Polymorphic viruses spread to host machines after encrypting their

code with unique keys to hide their signature. In contrast, metamorphic viruses change their

signature by altering their code [15]. The ultimate goal of an antivirus program is to develop

a security mechanism that is strong enough to detect any virus and prevent further infection.

However, the detection mechanisms currently available do not detect all types of viruses. In

particular, metamorphic viruses are difficult to detect. In this project, we implement a

metamorphic technique that evades any signature-based detection system. We then show

that a machine learning technique can efficiently detect these types of viruses.

2

2 Evolution of Viruses

2.1 Early stages

During the early stages of virus creation, virus programmers tried to infect a large number of

victims throughout the world. Viruses created were similar in their type of infection, but the

malicious actions performed were different. Viruses were created to corrupt the disk system,

email accounts, private networks, etc. The methods used to infect a host machine and spread to

other machines were similar for all these viruses. Virus detection systems attempted to detect the

infections based on the signature files and actions performed by viruses. Most of the early stage

viruses were detected based on their signatures. As virus detection systems detected and stopped

the infections with increasing strength, virus programmers started implementing new methods

for creating viruses and spreading the infections.

During recent years, the number of malicious programs has grown rapidly. According to security

experts, the number of viruses will be more than a million before the end of this decade [16].

Even though there the number of viruses has drastically increased, patches and removal tools for

most of the viruses have been created immediately after their appearance. In addition, the

infections spread by these malware are decreasing. For example, the amount of infections spread

by email attachment viruses has reduced from one in 40 to one in 1000 in the last 10 years. This

decrease in infections is due to efficient intrusion detection systems [16]. On a similar note, virus

writers are developing new techniques to create and spread viruses without being detected. Thus,

an intelligent intrusion detection system is necessary to handle different types of viruses.

3

2.2 Stealth Viruses

Stealth viruses are the first step taken by virus programmers to elude virus detection

systems. These types of viruses take control of the file management system and conceal the

changes it has made to the infected files. Due to the stealth nature, these types of viruses reside in

memory and hide from virus detection systems. These viruses corrupt the files and sometimes

encrypt the data present in the files [21]. When virus scanners attempt to scan the files, viruses

redirect them to the proper data location and avoid detection. In order to detect such memory

resident viruses, virus detection systems were built so that the active memory could be scanned

for infections before the files were scanned. These types of detection systems worked more

effectively when executed from a compact disc or floppy disk, which is write-protected. Brain,

Frodo and Whale are some of the popular stealth viruses [21].

2.3 Polymorphic Viruses

Polymorphic viruses try to bypass virus detection systems by mutating themselves through

self-encryption [5]. The code encryption implemented in polymorphic viruses hides the signature

of virus files. The code is encrypted using different keys for the victim host machines. The

decryption engine is attached in the code itself, which will then decrypt the code and execute the

virus. This type of viruses is harder to detect since signature is hidden using encryption. Figure 1

illustrates different variants of a typical polymorphic virus.

4

Figure 1: Generations of a Polymorphic Virus [17]

Although the code is encrypted, the decryption engine used is the same. In order to bypass

the detection systems, these viruses use multiple encryption schemes and carry different

decryption engines [17]. While decrypting the code, one of the decryption engines is used. So

this type of viruses can be possibly detected using emulation based detection systems [2]. The

virus named 1260 was the first polymorphic virus; it paved the way to the creation of

sophisticated polymorphic viruses with different techniques for encryption and decryption.

5

2.4 Metamorphic Viruses

Metamorphic viruses modify their code to produce an equivalent one during propagation

[3]. These viruses attempt to evade detection through static analysis by implementing code

obfuscation techniques. Such techniques implemented are swapping interchangeable instructions,

inserting garbage instructions and introducing conditional jumps to produce the child virus [9].

The child virus will basically do the same function but will have a different signature. In this

method, the signature of a virus is broken by changing the order of instructions without altering

the control flow. A sophisticated type of this virus will generate code based on the host’s

operating system by translating the instructions to the corresponding machine code [8]. Figure 2

illustrates different variants of a typical metamorphic virus.

6

Figure 2: Generations of a Metamorphic Virus [17]

The detection of these viruses using their signature is challenging since the signature is

broken in each version of the virus. In order to detect such metamorphic viruses, the detection

system should be designed to extract the essential instructions of the virus from virus instance.

This extracted instruction set should be used to detect the viruses of that type [9].

7

3 Virus Detection Systems

3.1 Signature based virus detection

Signature based detection systems scan the files for specific signatures that are present in

them. The pattern of instructions present in a virus code is identified as the signature of the virus

file. This will raise an alarm for virus if the signature of a virus is detected in any of the files

scanned. This method of intrusion detection is fast and accurate since the chances of false alarms

are very low in this system. The main requirement of the system is to have an updated database

of all the signature files of malware. The accuracy is totally dependent on the signature database

of the system. Signature based detection systems cannot detect a new virus since the database

will not have any information about the new virus.

An antivirus scanner extracts the opcode pattern from an executable file and searches the

signature database for the input opcode pattern. The input opcode pattern is considered as the

signature of the input file. If a match is found in the signature database, the input file is classified

as the corresponding virus family matched in the signature database. For example, if the

signature of the input file is 83EB 0274 EB0E 740A 81EB 0301 0000, then this will be searched

in the signature database and the file will be classified as W32/Beast virus since 83EB 0274

EB0E 740A 81EB 0301 0000 is the signature of the W32/Beast virus [18]. A similar search

pattern used to detect Stoned virus is shown in Figure 3 [18].

8

Figure 3: Search Pattern for Stoned virus [18]

3.2 Anomaly based virus detection

Anomaly based detection systems monitor the processes on a host machine for any

abnormal activity. If any abnormal activity is identified, the system raises an alarm signaling the

possible presence of malware [15]. In this detection technique, the system uses the collected

heuristics to categorize an activity as normal or malicious. Even though chances of false alarm

are relatively higher in this method, it is more reliable because it is also capable of detecting new

viruses. The important thing to note is that raising a false alarm is not as potential harmful as

allowing a new virus. However, these systems can be trained gradually by intruders to consider

abnormal behavior as normal. Thus, system will fail to detect the abnormal activity in such cases

[15].

3.3 Emulation based detection

The emulation based detection is an effective method where a virus is executed in a virtual

environment by emulating the instructions in the virus code. This type of detection is used to

detect polymorphic, as well as metamorphic, viruses. The virus instance can be executed in the

9

virtual environment in order to identify instruction sequence or behavior of the virus [21]. In

addition to the virtual environment, code optimization techniques can be applied to the execution

process to decrease the time for detection. Table 1 lists the strength and weakness of these

detection methods.

Table 1: Virus Detection Techniques [2]

Detection technique Strength Weakness

Signature based Efficient New malware

Anomaly based New malware Costly to implement, False

Positives, unproven

Emulation based Encrypted viruses Costly to implement

4 Code obfuscation techniques

 Metamorphic viruses use one or more code obfuscation techniques to produce different

metamorphic versions of the same virus. The obfuscation techniques are used in this method to

break the signatures of the virus files. Therefore, most of the virus programmers will implement

as many as possible obfuscation techniques to bypass the intrusion detection systems. In some

cases, the obfuscation techniques implemented may help the detection systems detect the viruses.

This is due to the excess amount of obfuscation implemented rather than the obfuscation required

to bypass the detection system. The code obfuscation techniques implemented in various viruses

are shown in Table 2.

10

Table 2: Code obfuscation techniques in different viruses [4]

Evol
(2000)

Zmist
(2001)

Zperm
(2000)

Regswap
(2000)

MetaPHOR
(2001)

Instruction Substitution �

Instruction Permutation � � �

Garbage code Insertion � � �

Variable Substitution � � � �

Altering Control Flow � � �

4.1 Garbage Instructions

Inserting garbage instructions like NOP instructions or opaque predicates in between the

actual code blocks is a simple obfuscation technique used in all of the virus generators. These

garbage instructions will not alter the functionality of the code but will increase the size of the

code. Viruses that contain garbage instructions are hard to detect using the signatures since these

instructions break the signature of the virus. The garbage instructions should be inserted within a

threshold value. If the number of garbage instructions is high, the intrusion detection systems can

easily detect the abnormality in the code. In our code obfuscation engine, the garbage

instructions are inserted at random with a threshold value. Also, the instructions inserted between

the blocks are not similar.

4.2 Instruction Reordering

In this method, the instructions in the virus code are reordered in a random fashion and

control flow is adjusted to make it execute in the same order. This is accomplished by providing

labels for each reorder and then using conditional jump instructions to jump the control to the

labels. Thus, the instructions are reordered inside the code without altering the control flow. This

method of obfuscation is well known for bypassing signature detection since it changes the order

11

of opcode sequence. The instructions are reordered in such a way that it does not introduce too

many jump instructions. If too many jump instructions are inserted, the intrusion detection

systems may detect the abnormal behavior and report that as malware. Figure 4 shows an

example of code reordering

Figure 4: Code Reordering [18]

4.3 Subroutine Reordering

In this method, the subroutines in the virus code are reordered without changing the control

flow of the virus code. This method is similar to instruction reordering where the subroutines are

reordered using labels and conditional jump instructions.

4.4 Interchangeable Instructions

In this method, the instructions that have many equivalent instructions performing the

same operation are replaced by one of its equivalent instructions. This introduces a smaller

amount of metamorphism since the opcode pattern is changed due to this method. Thus, the

metamorphic versions of a virus will have a different pattern of opcode but perform the same

functionalities. This method is only successful for signature detection systems because it totally

detects the viruses based on the opcode pattern. Also, the obfuscation introduced through this

12

method is not permanent. When the assembled executables of different virus forms, which uses

this obfuscation method, are disassembled using any disassembler, these obfuscation are

removed.

4.5 Swapping of registers

This is a similar method to Interchangeable instructions; instead of replacing instructions,

the registers are replaced with equivalent registers. The underling idea is same in both the

methods, which try to change the opcode pattern and bypass the signature detection. This

technique was used in the generation of W95/Regswap virus [18]. Table 3 provides an example

of code obfuscation used by the Next Generation Virus Construction Kit (NGVCK) [21].

13

Table 3: Code obfuscation of NGVCK [6]

Basic Version Morphed Version 1 (Code

Reordering)

Morphed Version 2

(Garbage Insertion)

Call Delta

Delta: pop ebp

Sub ebp, offset Delta

Call Delta

Delta: sub dword ptr[esp], offset Delta

Pop eax

Mov ebp, eax

Add ecx, 0031751B ; junk

Call Delta

Delta: sub dword ptr[esp], offset

Delta

Sub ebx,00000909 ; junk

Mov edx, [esp]

Xchg ecx, eax ; junk

Add esp, 00000004

And ecx, 00005E44 ; junk

Xchg edx, ebp

HEX equivalent:

E8000000005D81ED05104000

HEX equivalent:

E800000000812C2405104000588BE8

HEX equivalent:

*812C240B104000*8B1424*83C

404*87EA

14

5 Virus detection using machine learning techniques

Machine learning techniques can be applied to detect metamorphic viruses since they can

be used to detect patterns between the generations of a specific family of virus. These detected

patterns from a training model that can be used to test any input instance for similarities.

5.1 Neural networks

The Neural networks can be implemented in detecting viruses that possess a specific set of

features. Initially, the features of a virus should be analyzed and the networks should be trained

based on the features [7]. Then, the network model can be used to identify viruses that contain

most of the features present in the model. These network models are well known for detecting

viruses that are not in the same family as the training model, but possess some of the malicious

features from the training model.

The efficiency of these network models also depends upon the threshold values for the

minimum number of features to be present in a test file. A higher threshold value trains the

network model to detect viruses only from the specific virus family whereas a lower threshold

value results in higher false positive rates. This detection technique was implemented in IBM

Antivirus program to detect boot sector viruses. The program was able to detect the boot sector

viruses efficiently with a very low false positive rate [7]. This is because the scanner was able to

cover most of the features of boot sector viruses in the network model.

5.2 Data mining techniques

Most data mining techniques are rule based methods that train the models with a set of

rules about the functionality of the viruses. The training model classifies the test files based on

15

the rules covered by those files [22]. Once again, the chance of false positives is high in this

case. However, this technique is used widely for pattern detection in a large set of data.

Researchers have shown that the data mining techniques produce effective results when multiple

data mining models are combined.

5.3 Hidden Markov models

Hidden Markov models (HMM) are statistical models used to analyze and understand a

Markov process and provide a result based on a series of observations related to the process. This

is a state machine based model, which completely relies on the current state and does not

consider the past states. This model is used to take decisions based on a process using the

observations that are obtained as input to the model. However, the underlying process is always

hidden in this model and the observations and results are only visible to the outside world. It is

demonstrated in [22] that hidden Markov models (HMMs) could be used for detection of

metamorphic viruses.

5.4 Training the model

The HMM can be trained for a particular model using the observations and state transitions

from a training set. Once the model is trained on a training data set, it is able to detect the similar

patterns from any set of observations and make state transitions according to that. In this project,

we train a HMM model with the observations for a particular metamorphic virus family. Once

the model is trained, it is able to detect the metamorphic viruses using the similarities between

the opcode patterns.

16

6 Generating Metamorphic Viruses

In this project, a metamorphic virus generator is implemented in Perl, which satisfies the

conditions specified in [4]. This engine generates metamorphic versions of a seed virus, which is

given as input. It also implements code obfuscation techniques, like instruction reordering and

garbage insertion, to produce the metamorphic versions of a virus.

6.1 Implementation method

The input virus code is split into smaller blocks of code and then reordered using

conditional jump instructions and labels. The number of instructions in each block is set to a

variable and it is initially set to six. The virus code is split into blocks based on conditions

provided in [4]. The code blocks should not end with a jump instruction or a NOP instruction. In

addition to that, the entire virus code should be present in the code section of the assembly file.

Viruses, which contain a part of the code in the data section, could not be given as input to the

generator. After splitting the code into smaller blocks of code, the blocks are randomly shuffled.

Then, labels are placed for each block of code and the control flow is then maintained by placing

conditional jump instructions for each block. The code obfuscation techniques implemented in

the generator are instruction reordering and garbage insertion. The overall process of the code

obfuscation process is shown in Figure 5.

The low level description of the functions performed by the code obfuscation engine is:

• Any valid instruction present in the assembly file is identified

• Block generator generated the blocks based on the following specific conditions.

17

• The first and last block of the code should not be changed.

• The last instruction of the block could not be a label, JMP and NOP

• Insert garbage instructions within a minimum threshold value. Also, the inserted

instructions should not have affected the original virus code.

• The block numbers are generated using permutation at random.

• Then, the output file is written with the code blocks written in the order computed

through permutation

The garbage insertion is implemented in the generator as an optional element. The amount

of garbage instructions inserted could be controlled using a threshold value. Based on the

threshold value selected, the garbage instructions, such as dummy copy instructions and opaque

predicates, are inserted in between each pair of code blocks. The garbage instructions are

inserted into the virus code after the blocks shuffling is done. Since the amount and content of

obfuscation is varied every time for each generation of a virus, the metamorphic form generated

has a different signature every time. The generator has been tested with virus families like

NGVCK, Phalcon Skism G2 and PS-MPC.

18

Figure 5: Code Obfuscation in our engine

19

6.2 Training the HMM Model

The HMM Engine developed for [22] is used for testing our implementation. In order to

train the HMM engine, 200 different versions of a seed virus are created using the code

obfuscation engine. The files created by the code obfuscation engine are ASM files with same

functionality but different signatures. These 200 files are assembled using Borland Turbo TASM

5.0 assembler to produce corresponding OBJ and MAP files. Then, Borland Turbo TLINK 7.1

linker is used to produce EXE files from the OBJ files. The EXE files obtained in the previous

step are disassembled using IDA Pro disassembler and the corresponding ASM files are

produced. The steps performed in preparing the test data is shown in Figure 6.

Figure 6: Test Data Preparation

Among the 200 ASM files, only 160 files are used for Training and the rest 40 ASM files

are used for testing the HMM model. Instead of using the ASM files generated by the code

obfuscation engine, the disassembled ASM files obtained from IDA Pro are used for final

testing. This increased the efficiency of the comparison and removed the coding style

discrepancies between the source ASM files [22]. The steps involved in training a HMM model

is shown in Figure 7.

20

Figure 7: Training a HMM Model

6.3 Testing the HMM Model

The HMM engine is tested using the 40 ASM files that remained in the set of 200 files

disassembled using IDA Pro. In addition to these 40 files, the test set also includes 25 other

family viruses and 40 clean files. The other family viruses are included in the test case to ensure

that scores between the family viruses and other viruses are different. We perform a k-fold cross

validation with the data set provided as input to test the HMM model. It splits the input data set

with 200 files into 5 equal sets. Among these five sets, four sets of files are used for training the

model and one set is used to test the trained HMM model.

21

7 Experiment Setup and results

We analyzed viruses generated using different virus generators like MPCGEN

(Phalcon/Skism Mass Code Generator), G2 (Generation 2 Virus Generator), VCL32 (Virus

Creation Lab for Win32) and NGVCK (Next Generation Virus Creation Kit). In each test case,

the popular anti-virus scanners could not detect the generated virus files. We were able to

successfully bypass the signature detection, but, irrespective of the seed viruses that were used,

HMM engine was able to detect the viruses effectively. In addition to that, the HMM engine was

able to clearly distinguish between virus files and normal files.

7.1 Experimental Setup

Virus creation, analysis and testing were executed using the setup listed in Table 4.

Table 4: Experimental Setup

Experiment platform

Windows XP
VMware virtual machine

Programming language
 Perl5
Disassembler

OllyDbg v1.10
IDA Pro 4.9

Assembler
 Borland Turbo Assembler 5.0
Linker
 Borland Turbo Linker 7.1

Virus generator

 MPCGEN (Phalcon/Skism Mass Code Generator)
 G2 (Generation 2 Virus Generator)
 VCL32 (Virus Creation Lab for Win32)
 NGVCK (Next Generation Virus Creation Kit)

Virus scanners

 Avast Home Edition 4.8
 McAfee Antivirus 2009

22

7.2 Creation of Seed Virus

The seed virus, which was given as the input to the code obfuscation engine, was created

using a virus construction kit. Virus generators that we used for this implementation were

MPCGEN (Phalcon/Skism Mass Code Generator), G2 (Generation 2 Virus Generator), VCL32

(Virus Creation Lab for Win32) and NGVCK (Next Generation Virus Creation Kit). These

generators were downloaded from the vxheaven website. Each constructor had specific

instructions and options to create a seed virus. Seed viruses were created following the

instructions given by the virus construction kits. When the created ASM file of the seed virus

was compiled, the anti-virus scanners detected the executables as the corresponding virus. This

test was done to ensure that the anti-virus scanner used for testing the obfuscated files was able

to detect the seed virus. The screenshot of the security alert displayed as soon as the seed virus is

compiled is shown in Figure 8.

Figure 8: Testing Seed virus with McAfee Antivirus

23

7.3 Creation of Metamorphic Viruses

The metamorphic variants of the seed virus were created using our code obfuscation

engine. The parameters were set to generate 200 different variants of seed virus with a threshold

of two garbage instructions. The screenshots of two variants of NGVCK seed virus is shown in

Figure 9.

Figure 9: Sample versions generated by Code Obfuscation Engine

7.4 Testing Signature Detection

Viruses created using the code obfuscation engine were assembled and compiled using

TASM and TLINK to produce executables of the viruses. These viruses were scanned using

24

popular anti-virus scanners like Avast and McAfee. The post-scan summary is shown in Figure

10 and Figure 11.

Figure 10: Scanning the generated metamorphic viruses using McAfee

These scanners were not able detect these executables as viruses since the signature was

totally broken with the help of code obfuscation engine.

25

Figure 11: Scanning the generated metamorphic viruses using Avast

The log file generated by Avast antivirus after the scan is also provided. The log file did

not have any information about malicious executables. The screenshot of the log file is shown in

Figure 12.

Figure 12: Log file generated by Avast

26

7.5 Testing using HMM Model

A HMM model was trained using the viruses generated and then tested against variants.

The executables generated to test the antivirus scanners were disassembled using IDA Pro, and

the ASM files produced were given as the input for the HMM Model. Then, we perform a k-fold

validation with 800 iterations and 5 sets of 40 viruses each. Among the five sets, four sets were

used for training the model and one set was used for testing the model. The number of

observation symbols was in the range from 40 to 42 and the total number of observations ranged

from 41472 to 42151. The HMM score graph is shown in Figure 13.

Figure 13: HMM Scores graph

27

8 Conclusions and Future Work

This project’s main goal is to show that the metamorphic viruses generated satisfying the

conditions in [4] will bypass the signature detection systems. This is due to the code obfuscation

techniques implemented in generating the metamorphic viruses. The second goal of the project is

to prove that the machine learning methods are effective in detecting these metamorphic viruses.

In our second phase, a HMM model is trained using datasets from different metamorphic viruses

and then used to detect the metamorphic viruses generated using the code obfuscation engine

developed in the previous phase.

We performed a five-fold cross validation by dividing the data set containing 200 viruses

into five equal sets. Among these five sets, four sets were used for training the HMM model and

the excluded set was used to test the model. Since it follows five-fold cross validation, five

different models were generated and tested for efficient results. Finally, we were able to

conclude that metamorphic viruses generated by following the conditions in [4] successfully

evaded signature detection. The experiment results clearly showed that HMM models were able

to detect these metamorphic viruses efficiently.

In this project, we obfuscated the code by inserting garbage instructions and shuffling the

code blocks without altering the control flow. The HMM model was able to detect the opcode

patterns in these viruses even after obfuscation. This implementation can be improved further by

strengthening the code obfuscation process. The techniques currently used by metamorphic

generators are not producing variants that challenge HMM models. The obfuscation process

should be able to replace one or more instructions with a different set of equivalent instructions

28

performing same functions. As a result, viruses will contain different opcode sequences which

might be challenging to detect by an HMM model.

The disassembly process implemented in our implementation takes considerable amount of

time to prepare the input data files for HMM detection. Virus executables were disassembled

using IDA Pro disassembler. Due to this, the time taken for the detection process is relatively

more than signature detection. This time factor can be reduced by designing a disassembler that

can speed up this process by extracting the opcodes from the raw binary file. If a faster

disassembly process is implemented, the HMM models can be used to analyze a large set of

virus variants and increase the efficiency of the detection.

29

References

[1] Avast Antivirus, http://www.avast.com/

[2] S. Attaluri, “Profile hidden Markov models for metamorphic virus analysis,” Master’s

thesis, San Jose State University, 2007.
http://www.cs.sjsu.edu/faculty/stamp/students/Srilatha_cs298Report.pdf

[3] “Benny/29A", Theme: metamorphism,

http://www.vx.netlux.org/lib/static/vdat/epmetam2.htm

[4] J. Borello and L. Me, “Code Obfuscation Techniques for Metamorphic Viruses”,

Feb 2008, http://www.springerlink.com/content/233883w3r2652537

[5] P. Desai, “Towards an undetectable Computer Virus,” Master’s

thesis, San Jose State University, 2008.
http://www.cs.sjsu.edu/faculty/stamp/students/Desai_Priti.pdf

[6] J. Dickinson, “The New Anti-Virus Formula,” Messaging News Press 2005.

http://www.ironport.com/pdf/ironport_new_anti-virus_formula.pdf

[7] IBM Corporation. (1996). “Neural Networks for Computer Virus Recognition”,

Retrieved April 10, 2010, from
http://www.research.ibm.com/antivirus/SciPapers/Tesauro/NeuralNets.html

[8] IDA Pro, http://www.hex-rays.com/idapro/

[9] E. Konstantinou, “Metamorphic Virus: Analysis and Detection,” January 2008.

[10] A. Lakhotia, “Are metamorphic viruses really invincible?” Virus Bulletin,

December 2005.

[11] P. Mishra, “A taxonomy of software uniqueness transformations”, master’s thesis,

San Jose State University, Dec. 2003.
http://home.earthlink.net/~mstamp1/mss_v.html#masters

[12] Orr, “The molecular virology of Lexotan32: Metamorphism illustrated,” 2007.

http://www.antilife.org/files/Lexo32.pdf

[13] Orr, “The viral Darwinism of W32.Evol: An in-depth analysis of a metamorphic

engine,” 2006. http://www.antilife.org/files/Evol.pdf

 [14] M. Stamp, “A Revealing Introduction to Hidden Markov Models”, January 2004.

http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

30

[15] M. Stamp, “Information Security: Principles and Practice,” August 2005.

[16] PCWorld. (2008). “Viruses Expected to Hit 1 Million This Year”, Retrieved April 10,

2010, from
http://www.pcworld.com/article/144181/viruses_expected_to_hit_1_million_this_year.

html

[17] P. Szor, P. Ferrie, “Hunting for Metamorphic”, Symantec Security Response.

http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

[18] P. Szor, “The Art of Computer Virus Defense and Research,” Symantec Press 2005.

[19] A. Venkatesan, “Code Obfuscation and Metamoprhic Virus Detection,” Master’s thesis,

San Jose State University, 2008.

[20] virus-scan-software.com, “A history of computer viruses”, Retrieved April 10, 2010,
from http://www.virus-scan-software.com/virus-scan-help/answers/the-history-of-
computer-viruses.shtml

[21] VX Heavens, http://vx.netlux.org/

[22] W. Wong, “Analysis and Detection of Metamorphic Computer Viruses,” Master’s thesis,

San Jose State University, 2006.
http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

31

Appendix A: HMM Scores for different Metamorphic Viruses

Table 5: HMM Scores for NGVCK viruses with 2 hidden states

Scores for N=2, E=2

NGVCK Files Other Viruses Clean Files

-2.795638257 -20.46668687 -51.84229625

-2.783737261 -22.8211953 -49.4776919

-2.809481701 -11.16723377 -51.804289

-2.928199381 -18.3846972 -58.59448795

-2.907143378 -14.58048271 -48.46444149

-2.792977033 -9.25559972 -58.13471737

-2.775864355 -8.526595463 -52.36134393

-2.8068171 -8.792757183 -61.3422692

-2.754450714 -9.306025624 -51.98709398

-2.798528503 -19.65062141 -48.72447636

-2.738060282 -7.265326069 -52.20651307

-2.783705431 -22.09065629 -49.04912269

-2.819092612 -41.67066789 -54.80200888

-4.113166106 -24.57961899 -37.80392716

-2.82903651 -136.2418747 -48.92127872

-4.094386148 -24.91196494 -35.49476913

-2.840284302 -6.019265607 -31.160086

-4.120369757 -10.25663359 -28.18345636

-2.979024953 -13.29981934 -24.43932797

-2.843236131 -27.07212734 -18.06110462

-2.785269053 -13.85353246 -26.77224016

-4.120656337 -15.95424393 -36.33806748

-2.78361351 -14.21023592 -29.28831

-2.880753103 -165.5174174 -28.31494963

-2.799422536 -22.17690111 -27.95208466

32

Table 6: HMM Scores for G2 Viruses with 2 hidden states

Scores for N=2, E=2

G2 Files Other Viruses Clean Files
-2.6205159877823 -12.247479337036 -79.3246785755614

-8.14358690086442 -12.52469131331 -72.3660647401549

-5.29921223638555 -12.2371350698591 -45.2833432338538

-5.33984797517399 -12.3395445993703 -98.5463407281103

-2.77163421228652 -12.2053575787154 -68.3676481825592

-2.69751590170883 -12.2661003783605 -65.792285489484

-5.31314280233542 -12.3763461918607 -60.8845373911266

-2.6225655576533 -12.2767774008446 -64.272050389521

-2.63490499260176 -12.3080193181927 -64.6159635854055

-2.60489468633888 -12.2390868089399 -94.7139778335376

-2.78102147379221 -30.5389142645068 -52.7411147142203

-5.27369096934477 -41.7918420024093 -110.895614908444

-5.17290328774662 -32.0468219009278 -67.3343902315585

-2.6129652227626 -41.7250977343909 -97.576830457571

-2.6077090593913 -41.7575871948567 -217.670451016029

-2.60210306154853 -149.410439234569 -72.4819527258201

-2.71668352886356 -115.370956892922 -47.0889318731106

-2.60418566989924 -143.695969073837 -52.6878228513769

-2.60312602923405 -122.587785196554 -61.0664067943091

-2.63671453886313 -126.641841223169 -106.900592123753

-2.62495871119516 -144.243401596867 -110.476467465273

-2.60824523950797 -150.510480232401 -68.111454708464

-5.27739038276747 -125.567588260126 -78.9971111427349

-2.60075307530066 -122.644856638973 -70.3635893069172

-7.73824444386762 -122.498343946442 -121.342886830277

33

Table 7: HMM Scores for VCL32 Viruses with 2 hidden states

Scores for N=2, E=2

VCL32 Files Other Viruses Clean Files
-4.1162788731 -19.502997645 -48.772653031

-4.0175265289 -22.903897592 -55.902548530

-2.6718335612 -13.679756870 -55.010666852

-4.0307656472 -15.231064754 -55.546251322

-3.9672703530 -14.060639809 -51.651700252

-4.1582169640 -8.7586332574 -55.164027849

-2.6720330259 -8.1451491072 -52.674444498

-2.9287837414 -8.4114654383 -55.286429670

-2.8336680018 -9.3660634918 -55.388481768

-2.8099083309 -31.608940127 -51.962286419

-2.7015367881 -12.787001180 -39.128085227

-2.6970031402 -22.138698721 -45.985012886

-2.6929261977 -5.6818496988 -51.353038658

-4.0113219950 -24.531140414 -28.752621669

-2.8414693261 -136.69748000 -45.774960653

-4.0203959733 -24.813590014 -37.463445148

-3.9193982077 -6.1474440361 -33.555714719

-2.7313382287 -10.342876898 -32.014717622

-4.0028881737 -13.370665761 -28.829339625

-2.8473225096 -28.785972370 -20.709775458

-3.9728352294 -13.334668869 -30.190934638

-2.8338993514 -16.668048301 -38.325225235

-2.7079095463 -13.592827479 -31.185974714

-2.8368426056 -6.9932035030 -30.258308408

-2.7919918355 -25.660516810 -29.812347974

34

Table 8: HMM Scores for NGVCK Viruses with 3 hidden states

Scores for N=3, E=2

NGVCK Files Other Viruses Clean Files
-2.5938059773 -42.111747613 -19.224023406

-2.7487193121 -45.812091511 -22.551070159

-3.8978454345 -48.382720132 -13.378005975

-2.6828385775 -48.830503255 -22.135848931

-2.5970854097 -45.040852114 -18.653927844

-2.5920816226 -48.484005015 -9.5675136651

-2.6341866218 -48.997107204 -9.3021469562

-2.5935327091 -51.693663345 -10.107856622

-2.5828247462 -48.607347225 -10.762110353

-2.5940426088 -45.235810697 -29.932178343

-2.7070912310 -38.584737858 -13.432962248

-3.9092215344 -42.324778822 -29.680686705

-3.9005588072 -47.348863022 -6.1157958200

-2.6264436357 -28.139849698 -24.361091642

-2.5724594386 -42.149674862 -142.20417996

-2.5886148009 -35.230399918 -24.551830026

-2.6118651992 -30.923391407 -7.3312967500

-2.5817540054 -27.907348624 -10.022793812

-2.6290215015 -24.178519958 -13.114092089

-2.5920166114 -17.618252880 -43.150421721

-2.6221344733 -26.524258848 -12.111914355

-2.5587086996 -36.166836989 -16.513617074

-2.5868409797 -29.096822543 -14.578562992

-3.9069214000 -28.110741912 -11.636799346

-3.9459464585 -27.674360449 -26.768453122

35

Table 9: HMM Scores for G2 Viruses with 3 hidden states

Scores for N=3, E=2

G2 Files Other Viruses Clean Files
-2.521844850 -9.0315411858 -70.53248125

-2.539329293 -12.336743061 -84.34477031

-2.539620458 -9.0339657877 -46.09604099

-2.560674651 -9.0908540169 -95.64308908

-2.533625571 -9.0281052133 -69.48808074

-5.235913553 -9.0542863222 -53.61526851

-2.535453650 -12.339828126 -50.03673783

-2.550721665 -12.260743188 -57.23544111

-2.547813507 -12.274105877 -51.75387924

-2.548059971 -9.0381307106 -82.45604016

-2.516284482 -30.206718334 -47.15222029

-2.548689623 -41.199766140 -101.3738618

-2.539588016 -28.097114204 -72.44001522

-2.512748109 -45.809802167 -86.28219741

-5.216968093 -41.044651643 -208.8949451

-2.522537069 -137.42779013 -71.31213083

-2.511034608 -110.18986124 -47.75647831

-5.225479206 -130.70579353 -50.21575890

-2.524738831 -113.47012747 -58.11210863

-2.507610660 -106.15910082 -94.01584709

-2.543425779 -132.59716236 -112.0842567

-2.528832979 -140.72759942 -67.23492483

-2.523484644 -119.46452946 -77.44992692

-2.549455456 -118.38014241 -64.15727682

-2.524322434 -114.31042862 -112.7658265

36

Table 10: HMM Scores for VCL32 Family with 3 hidden states

Scores for N=3, E=2

VCL32 Files Other Viruses Clean Files
-2.4505796246 -18.5074314470 -71.774981951

-5.1346394281 -15.4651412631 -74.160822211

-5.1798024193 -12.0938250457 -42.018605632

-5.0901421107 -15.4105235928 -97.497172276

-7.7144216044 -27.9761474186 -69.103957339

-5.0373129583 -21.7148233595 -76.590319606

-2.4562123917 -12.2503494857 -75.540041967

-2.4188462886 -15.2978819038 -80.063503900

-2.4203878681 -21.8123140650 -74.932663496

-2.4335440110 -15.3117210899 -97.188939719

-2.4380260251 -44.2342997034 -46.222516254

-2.4536110216 -50.9008694756 -107.26019358

-2.4461638872 -39.1034482625 -63.125749204

-5.0176314001 -55.5124377950 -92.400695342

-5.0452703920 -53.8868826395 -212.48915338

-2.4566510976 -141.576226480 -68.450851322

-5.1607640361 -115.439544161 -45.498376604

-2.4159925105 -139.878408178 -51.654185612

-5.1374100666 -124.102824933 -60.413640532

-2.4307716445 -115.086911528 -113.25886743

-5.0314336171 -140.828825106 -108.26150071

-5.0362169363 -142.836616588 -65.860880381

-2.4311948001 -123.627192792 -78.379537030

-2.4373640352 -122.727992078 -82.862764026

-2.4392003480 -120.594278439 -118.89145742

37

Appendix B : Scatter plot of HMM Scores of Metamorphic viruses

Figure 14: NGVCK Family Viruses with 2 hidden states

Figure 15: G2 Family Viruses with 2 hidden states

38

Figure 16: VCL32 Family Viruses with 2 hidden states

Figure 17: NGVCK Family Viruses with 3 hidden states

39

Figure 18: G2 Family Viruses with 3 hidden states

Figure 19: VCL32 Family Viruses with 3 hidden states

40

Appendix C : Garbage Instructions used

Shift Instructions

• Perform Shift Right by 0
• Perform Shift Left by 0
• AND with 1
• TEST with 1
• OR with 0
• XOR with 0

Floating Point Instructions

• Perform FADD,FSUB with 0
• Perform FMUL, FDIV with 1
• FLD and FST

Null Operation Instructions

• Swap register contents
• PUSH followed by POP
• Perform INC followed by DEC
• Perform ADD/SUB 0 on Registers

NOP Instructions

• NOP
• NEG CX
• NOT CX
• DEC CX

