SAN JOSE STATE
UNIVERSITY

METAMORPHIC VIRUSES WITH BUILT-IN
BUFFER OVERFLOW

A Research Project
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Computer Science

by
Ronak Shah

Spring 2010

© 2010
Ronak Shah

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Project-Thesis Titled

METAMORPHIC VIRUSES WITH BUILT-IN
BUFFER OVERFLOW

by
Ronak Shah

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp, Department of Computer Science Date
Dr. Sami Khuri, Department of Computer Science Date
Mr. Dhrumin Shah, NetApp Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

Abstract

METAMORPHIC VIRUSES WITH BUILT-IN BUFFER OVERFLOW

Metamorphic computer viruses change their structure—and thereby their signature—each
time they infect a system. Metamorphic viruses are potentially one of the most dangerous
types of computer viruses because they are difficult to detect using signature-based methods.

Most anti-virus software today is based on signature detection techniques.

In this project, we create and analyze a metamorphic virus toolkit which creates viruses with a
built-in buffer overflow. The buffer overflow serves to obfuscate the entry point of the actual
virus, thereby making detection more challenging. We show that the resulting viruses

successfully evade detection by commercial virus scanners.

Several modern operating systems (e.g., Windows Vista and Windows 7) employ address space
layout randomization (ASLR), which is designed to prevent most buffer overflow attacks. We
show that our proposed buffer overflow technique succeeds, even in the presence of ASLR.

Finally, we consider possible defenses against our proposed technique.

Acknowledgements

| would really like to thank Dr. Mark Stamp, for giving me an opportunity to work on this
research project under his guidance. | also thank him for the patience, ideas, suggestions and

inspirations without which this Master’s research project would not have been possible.

| would also like to thank Prof. Janelle Melvin for helping and guiding me with the writing of the

research project.

Table of Contents

0 0o U oY L6 ot () o U TSP 1
2. BACKGIOUN ..ot sssss st 4
2.1, Types Of COMPUELET VITUSES ...cereureureeeeurersesserssessesssesssssssssessesssssssssssssssssssssesssssssssssssasassssssssessssssssasssssssssssnsans 4
2.1.1. ENCIYPLEA VITUSES..oieeeeereemeeseeseessesssesssesssesssseessessssssssesssesssesssssssssssssssssssssssasesssesssassssssssesssassssssasesssessnens 4
2.1.2. OligOMOTIPRNIC VITUSES ..o ieuriueeueeeetseesseseesseesesssessesssssessssssessesssssses s sssss s ssss s ssssssssnsans 5
2.1.3. POlYMOTPNIC VITUSES....cuierieeeereeeetseesesseesseesetasessessessss s ssssssss s s sss s st 5
2.1.4. MetamOTPRIC VITUSES wcuieureeeereersersseesseeesesesseessssssessssssesssessssssssssssessssssssssasssssessssssssssssssssssssessasesssessaees 5

2.2. Virus Generation Tools and TECHNIQUESccoucruemeereereeseieesseesesseessesesssesssessessessssssss s sssssssssessssans 7
2.3, Virus Detection TECHNIQUES ... ieesseessee s ssssesss e ssses s es bbb 8
2.3.1. Signature Detection TEChNIQUE ... rereseereersersees s sssessseessessssssssssssessssesssessaees 8
2.3.2. Change Detection TeCRNIQUE. ... eesssesses e sses s sssss s s et snsans 8
2.3.3. Anomaly Detection Technique or Heuristic ANalySiscoceeerneermmeemeesseessmessseesseesseesssessessnees 9

I JR 100 i (= W00 =) g i [0 T 10
3.1. What is 2 BUfer OVEITIOW? ...t seessssssesssees s ss s ssssssssssssssssssnssssssssanees 10
3.2. Buffer OVerflow AtacKS....iss s s ssses 14
3.3. Attempts to Avoid or Detect Buffer OVErfloWS......ooeoneneenseenseseeeeseeseseesesessssessessessessesseenns 15
4. Address Space Layout Randomization (ASLR) .. sessessessessessessesens 18
4.1, WRAE IS ASLRY ooeeeseeteeesseesssessssessssessssessssessss s s sss s 18
I VT4 ¢ 1S5 =3B (3D L 0 £ o I PP 19
4.3. De-Randomization AtLACKS ... s ss 19
4.4. Analysis of ASLR in Microsoft Windows ViSta......eeemeeesnessmeeseessessessssssessseesssssssesssesseeens 20

ST W =Tod 3N Tor 1 D=3 = 1 T 21
5.1. Virus Code with the Buffer Overflow EXPlOit.....cecneeeessesseeseesssesseesssessesssessssesnees 21
5.2. Code Encryption and DeCTYPiON ... ceereereeereesesseesseeseessessesssessss s ssessssssssssesssessssssssssssessssssssssssans 23
5.3, OPAQUE PrediCAtES ...oveueeeieeeeeeerrenseesseceseessseessessessssesessseesssssssessseessssssss s sssess st ssssssesssssssessasesusesssesssssssnees 25
5.4. Insertion of Junk Code and Normal COE.......cmmmnminnissssessissssssssssssssesssssessssssssnns 27
5.5. Subroutine Permutation ... s sssssssses 28
5.6. INline FUNCHONS IN CH comrieeceeceeeereesseceseeeseeseessessse s seessessssessseessesssss s sssesssesssessssesssesssessssesssesssessssessnees 32
6. Metamorphic Virus Generation TOOL......oiessesesssses s ssssssssssssssssnns 33
6.1. Metamorphic Virus Generation Tool: Detailed StEPS ... eerernreemeesseersseeseesseesseesseessessseessseeeees 34
6.1.1. Metamorphic ENGINE ... s s s s ssssssss s sssssssans 34

6.1.2. Build Framework for Buffer Overflow (Compile BUffer.cpp)ccummmenmnemmnesnseneenn. 35

6.1.3. OULPUL FILES ettt ettt st ns b s s s b s bbb 35
6.1.4. The Virus Attack: BUfEr.eXe ..o sses s sssssssssssseens 36

7. TeSt and RESUILS ... 37
7.1, BUffer OVErflOW TeSt .. 37
7.2. Hiding Entry Point to the VIrUS...ssanes 41
7.3. Test against ComMmMmercial VIrus SCANMNETS......ccoucmumeueemeereessernsesessssesssssesssssssssssesssesssssssssssssesssssssssssans 42
8. Defense TeCHNIQUES ... s 44
8.1. ASLR Improvements for Preventing Buffer OVerflow........eeneenneeneeecnsesesseesseeennees 44
8.1.1. Use Of 64-Dit ArChILECTUIES ..o s s s ss s sasesnes 44
8.1.2. Increase Randomization FreqUENCY ... ssesse s sessseesssssssessesasesaees 44
8.1.3. Randomizing Addresses at a Finer Granularity ... eeeseneeseeeesseesseesssessessnes 45
8.1.4. Monitoring and CatChing EITOrS ... ssssssesssesssssssssssssssssssssssssssaes 45

8.2, MONItOTriNg File CrEatioN. ..o ierieceeeeeeereesesseesseessessessesssesses s s ssssss s s sss s s s s ssssnsaas 45
8.3. Code Transformation DEtECLION ... e eereerrersees s seeeseessees s sssesssesssesssssssssessessssssmsessessssssssees 46
8.4. Advanced Techniques fOr VIrus DeteCtioN.....ouereereenernsesseeseessessesssssesssessesssesesssssssessessessssssenns 46
9. Conclusions and FULUIE WOTKcmnnenenesssesessessessns 47
T S (=5 (=) 4 Lol T3 49
0 N) 0= 4 U Db SO 51
11.1. Appendix A: Normal Codes as disassembled from Windows Filesconrneenecrnneennennne. 51
11.2. Appendix B: Opaque PrediCates..... e seesessessssssessesssssssssssssssssssssssssssssessssssssssssans 55
11.3. Appendix C: Virus code used fOr teSHING. ... eeremeesreereesseesseesssessessessseessesssssesssessessssssessnes 56
0 2 104 =Y] /T 57

List of Figures

Figure 1: Metamorphic VIFUSEScocuiiiiiiiiiiie sttt sttt snneen 6
Figure 2: C++ Code Example for a simple buffer overflow.........ccccoovveriiiiinnciiiinieeee 11
Figure 3: Diagrammatic Description of the memory of a programcccceceeecveevvenciencieennen. 12
Figure 4: Diagrammatic Description of an Exploited Buffer Overflowcccccevenienennene. 13
Figure 5: Stack Frame with Canary Implementation.........c.cccoecevvciiniinineiinnienieeee e 17
Figure 6: Distribution of Stack AddresSescceviriiririeniiienieeeseeeeee e 20
Figure 7: buffer.cpp (C++ file containing the actual buffer overflow exploit).........c.cccce....... 21
Figure 8: Buffer Overflow in DisasSembIlyccccciriiiiriiniiiiniiieeeeeeeee e 22
Figure 9: ENCryption LOZIC.....couuiiiiiiiieiiiie ettt e s e e e e 23
Figure 10: Decryption LOZICeeeiiiiiiiieeiiiee ettt e s s e e s 24
Figure 11: Calls to the encryption and decryption functions...........ccccecceveevenienenienennienene 24
Figure 12: Simple Opaque PrediCate.........ccvviiiiiiiiiiniinieeieseeeeesee et 25
Figure 13: Opaque Predicate Involving Complex Math.........c.cccceriiniiiiniininnicee e 25
Figure 14: Opaque Predicate as shown in ASSemblyccccoceeviriiniiiinieniiee e 26
Figure 15: Subroutine Permutationcccoooveviriiriiiinieeee e 28
Figure 16: Inline Functions in C++ Code EXtractcccceoervieriiiinieninicseeeneee e 32
Figure 17: Screenshot of Metamorphic Virus Generation Toolcccccovevinieneniiineeniennne 33
Figure 18: Virus Generation TOOL........cccooiiiiriiniriinieeeeee e 34
Figure 19: BUSTEI.EXEcoouiiiiieeee et s e e 36
Figure 20: OllyDbg Error on Dynamic LinKing.........cccccoovieiiiiiiiniiiieieeeeeeeeeee e, 41
Figure 21: ASM EXtract NOTePaAdc.coiiiiiiiiieieeieeee et 51
Figure 22: ASM EXtract WordPad...........ccoouiiiiiiiiiieeeeeee e 51
Figure 23: ASM EXtract EXPlOrer.......c.cooiiiiiiiiiieeeeee e 52
Figure 24: ASM Extract Registry EditOr........cccooiiiiiiiiiiieee e 53
Figure 25: ASM Extract Internet EXplOrer..........ccoooiiiiiiiiiiinee e 54
Figure 26: VIrus code iN CH...co..oiiiiiiieiieeeeee ettt sttt s 56

List of Tables

Table 1: Subroutine Transformation Code EXtracts........ccccocceeieviriieneenenieenenieneeee e 29
Table 2: Disassembly of Code EXtract 1.......ccoocveciiiiieriiieiienie et 30
Table 3: Disassembly of Code EXtract 2........coocuveuiiiieriiiiiienie et 31
Table 4: Defeating ASLR (FirSt RUN)coccoiiiiiiiiiiiiciceceee e 38
Table 5: Defeating ASLR (Second RUN)ccoviiiiiiiiiniiiiieeieeeese e 39
Table 6: Defeating ASLR (Third RUN)......c.cociiiiiiiiiiiieniieeere e 40
Table 7: Opaque PrediCatesccoviieiiiiiiiiieie ettt s ste e e e en 55

Vi

METAMORPHIC VIRUSES WITH BUILT-IN BUFFER
OVERFLOW

Introduction

The field of computer security is relatively new and is constantly changing to meet the
needs of a rapidly evolving industry. As our dependence on computers and the Internet for
communication, banking, shopping, internet booking and trading, and almost every aspect
of our day-to-day experience has grown, so has the importance of computer security. In
recent years there has been a drastic increase in the number of virus attacks on computer

systems. Research into potential attacks and possible defenses against these attacks is vital.

A computer virus is a malicious piece of software that infects user machines, servers, or
other larger systems, by copying itself and disrupting the normal functioning of a computer
system. Typically, a computer virus is easily spread, small, and has the ability to reproduce
itself. According to [6], one of the first computer viruses was the famous and successful
Brain virus, in 1986. Since then, the number of computer attacks and viruses has increased

exponentially.

A virus attack is the harm that is caused to a computer (mostly software) by the malicious
code that is contained in a virus. Typically, virus attacks aim at using up the software or
hardware resources by making these resources unavailable, corrupting data, using sensitive

data for malicious activities, and so on. Generally, a virus is very difficult to trace back to its

publisher. Statistics show that most virus attacks are carried out by troubled employees,

college students, and information hackers, among others [23].

Metamorphic viruses change their code structure across generations in such a way that the
viruses’ functionality does not change. This means that multiple distinctive copies of the
same virus perform the same attack, which makes detection extremely difficult. Generally,
metamorphic viruses are generated with the help of a metamorphic engine that performs
all the code transformations to the virus software. The aim of this research project is to
develop a metamorphic virus generation tool that uses a publicly known and detected virus,
and convert it into a resident metamorphic virus. In our project we further obfuscate the
virus code by making it appear to be “dead code” that should never execute. However, this
“dead code” does actually execute due to a buffer overflow and de-randomization
technique. Since this virus appears to be dead code, it should be more difficult to detect

with conventional signature detection techniques.

This paper is organized as follows:

e Section 2 gives a background of computer viruses in general and discusses their
importance and severity in today’s world. This section also discusses the various
types of computer viruses, along with the different techniques used to generate and
detect them.

e In Section 3 we introduce and discuss buffer overflows, their history, importance,

buffer overflow attacks, and ways to avoid or mitigate them.

In Section 4 we discuss the Address Space Layout Randomization technique that is
used by some of operating systems, like Linux PaX, Microsoft Windows Vista (and
later), to make buffer overflows difficult to exploit. We also analyze the
effectiveness of ASLR as implemented in Windows Vista.

In Section 5 we discuss the different software techniques that are used by our
metamorphic virus generator to create highly metamorphic viruses.

In Section 6 we discuss the implementation of our metamorphic virus generator tool
for generating undetectable viruses.

In Section 7 we present the tests performed to evaluate the results achieved by our
metamorphic virus generation tool.

In Section 8 we discuss some of the mechanisms that could be used by anti-virus
software in an effort to detect the viruses proposed in this paper.

Finally, Section 9 summarizes our results and offers proposed directions for future

research in this area.

2.1.

2.1.1.

Background

Computer viruses attempt to infect user machines, servers, or other larger systems by
copying themselves and disrupting the normal functioning of a computer system. By and
large, these viruses, malware, adware, and other spyware are detected with the help of
anti-virus software, most of which uses signature-based detection techniques. Various
sophisticated virus generation techniques have been employed to make signature-based

virus detection difficult. We discuss some of these techniques here.

Types of Computer Viruses

According to [1] and [16], viruses can be classified into four different types, or categories,

namely, encrypted, oligomorphic, polymorphic, and metamorphic.

Encrypted Viruses

The body of an encrypted virus consists of a small decryption module and an encrypted
virus body. Thus it is difficult for virus scanning software using signature detection

technique to detect, as the virus body is encrypted and residing in the binary.

But the decryption modules of such viruses remain the same and have a unique signature.
Thus, it is fairly simple to detect such viruses based on the signature of the decryption
module itself. Hence, such viruses can easily be detected using conventional signature

detection strategies.

2.1.2.

2.1.3.

2.1.4.

Oligomorphic Viruses

Oligomorphic viruses, as described, by Peter Ferrie, Symantec, in [16], change their
decryptors across generations. With this technique, signature detection of the viruses on
the basis of the decryption module becomes difficult. However, most commercial virus
scanners are smart enough to defeat this technique by detecting the viruses after
decryption, which will obviously reveal the constant code structure and a constant

signature.

Polymorphic Viruses

Polymorphic viruses work in the same way as encrypted viruses but there are multiple
encryption and decryption modules in each generation. All these modules work to hide the
single piece of virus code. Detection is still possible using code emulation. Virus scanners
can use code emulation technique to decrypt the virus body dynamically. The reason for

this is that all polymorphic viruses contain the same virus structure.

Metamorphic Viruses

This is the fourth and the most dangerous type of virus, as discussed in [1]. The structure of
a metamorphic virus changes completely with each new generation. Metamorphic viruses
hide their signature by employing various code obfuscation techniques. Metamorphic
viruses have a different internal structure in each instance, but the functionality of each

instance is identical. It is difficult for signature detection virus scanners to detect such

viruses. Metamorphic viruses are therefore only detectable by highly sophisticated

detection techniques.

Metamorphic viruses use different types of technologies to obfuscate the virus code and at
the same time attempt to change their code so that they will be difficult to scan using virus

signatures.

Let us consider the following diagram to understand metamorphic viruses in detail. As
shown in the diagram, the metamorphosis of a virus involves taking the original copy of a

virus and changing it so that it remains the same functionally but its structure is drastically

altered.
Figure 1: Metamorphic Viruses
Morph Morph
P e
G Genera Ganeration
o of Virus of Viru
HEX Signature HEX Signature HEX Signature HEX Signature
«.1224 SABC .., . 3458 938D ... <« BOAF387C .. W LBAA OBTA L.

| am a virus. | am a virus. | am a virus

2.2.

Virus Generation Tools and Techniques

There are many different virus generation techniques available, and the list is constantly
growing. Hundreds of virus generation tools are freely available online. Some of the virus
generation tools available at VXHeavens website [11] are:

1. C++ Worm Generator

2. CcT's Malware Construction Kit

3. CompVCK for Win32Asm Sources

4. Next Generation Virus Construktion Kit (NGVCK)

5. Windows Virus Creation Kit

All these tools provide a full-fledged framework to generate dangerous and metamorphic
computer viruses. The different techniques used by these virus generating tools are:

1. Code insertion

2. Code obfuscation

3. Code transformation

4. Replacement of existing operations with similar operations or operations that do not

change the way the virus program is performing

2.3.

2.3.1.

2.3.2.

Virus Detection Techniques

With the increase in the number and sophistication of virus attacks, there is also a need for

advanced virus detection techniques. Some of the techniques used for virus detection are:

Signature Detection Technique

A signature is the binary footprint of any virus. A signature-based virus scanner looks for a
match amongst the available signatures in all the binary files in a computer. If a match is
found it means that a particular known virus is detected. This is brute force technique and is
very effective for the detection of known viruses, but it is not very effective when not much
is known about a virus’ signature or if it’'s a completely new virus attack. Still, most

commercial virus scanners use conventional signature detection technique.

Change Detection Technique

Change detection technique involves monitoring the important files on a system for
changes. This can be done by computing and storing the hashes during the ideal state of the
system for files that do not generally change. These hashes can be computed periodically
and compared with the original saved hash of the file. If the newly computed hash is
different from the saved hash, it means that the file is changed and has therefore been

affected by a virus or other malicious code.

This can prove to be a very effective technique even in detecting new or unknown viruses.
However, there are also a number of disadvantages associated with this technique. Since,
many files change in a system; it is difficult to take into account these changes into the

8

change detection technique. This technique can easily flag for false positives, for instance
when a file changes for a good reason. Also it puts a heavy load on the processor, if used

very frequently.

2.3.3. Anomaly Detection Technique or Heuristic Analysis

Anomaly detection, or heuristic analysis, is another technique that can be used for
detection of viruses. In this technique, the virus scanner monitors system files and
resources and looks for anomalous behavior. Anomaly detection is a very challenging
problem for the following reasons:

1. The behavior of a system changes constantly depending upon its usage

2. Flagging of anomalous behavior does not always help

3. Itis very difficult to define the norm of a given system

For these reasons, this technique also causes many false positives. Anomaly detection
relates to a problem in the domain of artificial intelligence and is a complex one to solve. It
is very difficult to design a virus scanner that purely uses anomaly detection technique.
There have been some approaches where anomaly detection is combined with signature

detection techniques to develop the scanner.

3.1.

Buffer Overflow

A buffer overflow is a programming flaw due to which more data is pushed into a data
structure than it is designed to hold [3]. For the last two decades, most of the virus attacks
are exploited due to the buffer overflow [9]. The virus generation toolkit that we present in
this research project is based on a simple buffer overflow exploit. We hide the entry point
to a hidden or “dead” piece of code that could never have executed without the buffer
overflow exploit. In this section, we discuss some famous buffer overflow exploits, their
historical importance in the field of computer security, and some of the techniques that

have been used to detect and mitigate buffer overflows in the past.

What is a Buffer Overflow?

Buffer overflow is a programming bug or a hack that can be exploited by attackers to
launch serious virus attacks [9]. Buffer overflow can be exploited through programming
languages like C or C++ easily where strict bound checking is not performed on the data

structures.

The concept of buffer overflow is very simple, “A buffer overflow is very much like pouring
ten ounces of water in a glass designed to hold eight ounces. Obviously, when this
happens, the water overflows the rim of the glass, spilling out somewhere and creating a

mess.” [15]

Buffer overflows can be exploited by writing to an unauthorized memory location using

pointers, arrays, stacks, heaps, or other similar data structures. For example, consider an

10

array or any other data structure that holds N elements. A buffer overflow occurs when a
program tries to store more than N elements in that data structure. The reason for the
occurrence of a buffer overflow is that not enough memory is allocated for a data structure
or the buffer. A code snippet demonstrating a buffer overflow error is as follows:

Figure 2: C++ Code Example for a simple buffer overflow

//8impleBuffer.cpp
int main()
{
1ht arrisls
for (int 1 = 0; 1 < 8; 1++)
i
arr[i] = 1i;
1

return 0;

In the above example, the declaration for the array arr allocates memory for 5 integer
values. The “for loop” tries to put more than 5 integer values in the array arr. This

causes the array buffer to overflow.

In Figure 3 we give a diagrammatic representation of a program’s execution memory stack.
As shown in the figure, function variables and buffers are placed next to the return address
of a function in the execution stack. When an attempt is made to write to a memory
location that is not allocated it causes the buffer to overflow. Thus, when the program
reaches its end it does not know where to go back to. This is even more dangerous if a
buffer overflow attack modifies the path of execution by overwriting the return address

with the known address of some malicious code.

11

Figure 3: Diagrammatic Description of the memory of a program

FEFF |
Buffer Growth Function’s Stack Growth
Return Address
Function
Variables
Buffer

0000

Buffer overflow can be exploited such that the path of execution is altered with malicious
intent. The return address of the executing code can be overwritten with address of some
malicious code with the help of a buffer overflow exploit. This scenario is explained by the

memory map shown in Figure 4 below:

12

Figure 4: Diagrammatic Description of an Exploited Buffer Overflow

FFFF |
Malicious Code o i
verwriting
dressto
point tojmalicious
Function’s
Return Address
Buffer Growth Function Stack Growth
<
Variables
Buffer
0000

13

3.2.

Buffer Overflow Attacks

Buffer overflow attacks are very sensitive and require an in-depth knowledge of the system
that is being attacked. Buffer overflow exploits are very popular amongst virus writers and
hackers because the attacker has full control over the code to execute after the exploit.
Such attacks have been around for quite awhile and there have been many attempts to
avoid or to detect them. We discuss in detail some of the attempts to avoid, void, or detect

buffer overflows in Section 3.3.

Some of the most famous and hostile buffer overflow exploits include [9]:

1. Morris Worm (1988): Affected 6000 machines over the internet

2. Code Red Virus (2001): Exploited a buffer overflow in Microsoft’s IS (Internet
Information Services) Server Software that affected about 250,000 systems in 15 hours

3. SQL Slammer Worm (2003): Caused a denial-of-service (DoS) attack on machines

running Microsoft SQL Server 2000, and affected 250,000 systems in 10 minutes

14

3.3.

3.3.1.

3.3.2.

Attempts to Avoid or Detect Buffer Overflows

We discuss some successful attempts to avoid or detect occurrence of buffer overflows in
this section. Some of these techniques have proved to be very useful in combating against

buffer overflow exploits.

Managed Code Environments

Managed code is the Microsoft naming convention for code that executes in management
of the Common Language Runtime (CLR). The languages that fall into this category are
Managed C++, CH.NET, VB.NET, and XAML for Silverlight. These programming languages
require strict bound checking on all data structures, like arrays, lists, sets, or bags. Java also
runs under the management of Java Virtual Machine (JVM) and produces a Java byte code
when compiled. JVM also requires strict bound checking on the above-listed data
structures. Thus, it is not possible to exploit buffer overflows in such managed
environments. When a buffer overflow is exploited, the exception handlers in managed
environments throw the “out of bounds” exception. Thus buffer overflows can be easily

caught in the managed code environments.

NX (no execute) Bit

NX or no execute bit is supported by some operating systems, like Microsoft Windows Vista
and Windows 7. NX bit works like a flag variable on a program’s execution stack. When this
flag is set, that particular section of the memory becomes non-executable. This is very

useful in making the stack non-executable. This means that even if a buffer overflow is

15

3.3.3.

exploited, it would not be possible to overwrite the stack. Thus, the path of execution
cannot be changed, as the return address would not be modified which is typically the case

in most buffer overflow attacks [9].

As stated in [2], “As the NX approach becomes more widely deployed, we should see a
decline in the number and overall severity of buffer overflow attacks.”

Canary or the /GS Option in Microsoft

Canary or canary bit is a mechanism that can be used to prevent stack smashing attacks. In
this approach we push a special value, called the canary, after the return address. The value
of the canary is constant, and chosen in such a manner that if it is changed or overwritten
the change will be detected. The canary value is validated when the code reaches the end of
control flow and the jump to the return address is only made if the canary is not modified.
The concept of canary is implemented in Microsoft Visual Studio compiler as the Buffer

Security Check (/GS) Option.

According to [5], the /GS Option, “causes the compiler to add checks that protect the
integrity of the return address and other important stack metadata associated with
procedure invocation. The ‘GS’ protections do not eliminate vulnerabilities, but rather
make it more difficult for an attacker to exploit vulnerabilities.”

However, claims have been made that this implementation in Microsoft Windows is flawed,

and that buffer overflows are still exploitable [5].

16

Figure 5: Stack Frame with Canary Implementation

FFFF
Function’s Return
Buffer Growth Add[’ESS Stack Growth
Canary
Function
Variables
Buffer
0000

3.3.4. ASLR (Address Space Layout Randomization)

Another concept that is used by some operating systems, like Linux PaX and Microsoft
Windows Vista, is Address Space Layout Randomization (ASLR), as discussed in [10]. ASLR
aims at preventing buffer overflow exploits by randomizing the memory address space from
which the program will be executed. This concept is explained in more detail, along with its

advantages and de-randomization attacks, in the Section 4.

17

4.1.

Address Space Layout Randomization (ASLR)

According to [5], “Address Space Layout Randomization is a prophylactic security
technology aimed at reducing the effectiveness of exploit attempts.” ASLR makes it
difficult to exploit vulnerabilities with buffer, stack, or heap overflows. The virus developed
in our project defeats ASLR in Windows systems by exploiting the buffer overflow using
function pointers. This is achieved without going through the lengthy process of de-
randomization. In this section, we discuss ASLR, its background, what it takes to de-

randomize memory space, and ways to make ASLR more robust.

What is ASLR?

Address Space Layout Randomization (ASLR) is a mechanism that randomizes the program
memory. This prevents the program from getting placed at the same address in the main
memory every time it is loaded. Thus, if a program is compromised once using a hard-coded
buffer or stack overflow exploit, the same attack will not be successful subsequently. Thus,
hard-coding addresses to exploit buffer overflows will fail. A sophisticated de-randomization

approach would have to be used to break the security in this kind of protection.

18

4.2. Whereis it used?

4.3.

Address Space Layout Randomization (ASLR) is built in by the newer operating systems like:
e Linux PaX ASLR
e OpenBSD
e Microsoft Windows Vista
e Microsoft Windows 7 and

e Mac OS X Leopard.

ASLR randomizes program memory such that it does not always execute in the same
memory space. ASLR enabled systems are secure against attacks caused by viruses
containing buffer overflow exploits pointing to hard-coded memory addresses. This is
because hard-coding buffer overflows would point to a completely random location in the
memory. In Microsoft Windows Vista, Windows 7, and Mac OS X Leopard, the ASLR
mechanism is used along with the NX (no execute) bit mechanism as discussed in subsection

3.3.2.

De-Randomization Attacks

De-randomization is the process by which an attacker compromises the security provided
by ASLR. After de-randomization, buffer overflows can be exploited by hard-coding memory
addresses even on ASLR enabled system. Two different de-randomization attacks on the
Linux PaX ASLR system demonstrated in [7] are:

1. return-to-libc attack, uses the Oracle buffer overflow

19

4.4.

2. Information leakage attacks
Similar de-randomization attacks can be launched on any other operating system that uses

ASLR.

Analysis of ASLR in Microsoft Windows Vista

Microsoft Windows Vista considers executables (.exe) and dynamic link libraries (.dll)
containing the PE (portable executable) header for ASLR [4]. Windows Vista uses a random
global image offset that is reset on each reboot. Microsoft claims that this random global
image offset is selected from a range of 256 values, but according to statistics and analyses
this range is actually much smaller [4]. This is shown in the figure below, which is taken
from [4], pg. 9, Figure 2. Distribution of Stack Addresses, as follows:

Figure 6: Distribution of Stack Addresses

ASLR Stack Memory Location Usage

S: T 5T =] T T T T P TT T L5 | T

Count

0012F550 0018F754 0O1EF3AS 0024FCAS D02BF83C 003:FB4C

Address

20

5.1.

Technical Details

In this section, we discuss different code obfuscation techniques and exploits used by the

virus generation tool to obfuscate and morph a virus in detail.

Virus Code with the Buffer Overflow Exploit

Figure 7 illustrates the C++ code that uses the buffer overflow exploit to link to malicious
code. This code contains two C++ functions, viz., goodCode and virusCode. The
goodCode function causes the exploit by overwriting its return address with the entry

point of virusCode. The return address is overwritten by overflowing the buffer of array

arr inthe goodCode function.

Figure 7: buffer.cpp (C++ file containing the actual buffer overflow exploit)

/{ buffer_.cpp : Defines entry point for the virus code.
vold goodCode () ;

volid wirusCode () ;

void wirusCode ()

i
printf ("Start Virus code\n");
/*This is the place where the user provided virus code will be
placed when the application runs.*/
printf ("End Virus code\n");
exit (1);

b

vold goodCode ()

{
e gErlB] = ;) & 3y 45 5k

for (int 1 = 5; 1 <87 1++)

{

arr[i] = {int)virusCode;
1
1
int tmain(int arge, TCHARY argwv([]}
{
goodCode () ;

getchar();
return 0;

21

The following compiler options should be set for hiding the buffer overflow exploit:

1. Buffer Security Check (/GS): The Buffer Security Check is on by default. We set it to No
(/GS-) so it will not enforce restrictions on the size of the buffer [18].

2. Basic Runtime Checks: Disable run-time checks on stack frames, uninitialized variables,
and data type mismatch by setting this compiler option to Default [19].

3. Enable C++ Exceptions: C++ Exception Handling is enabled by default (compiler option is

set to “Yes (/EHsc)”). Disable exceptions by setting this compiler option to No [20].

The disassembly of the code in Figure 7 is shown in Figure 8. The return address of the
subroutine is overwritten with a pointer to another function (buffer.010E1078). Thus, the
code flow jumps to buffer.010E1078 when the subroutine returns. The code in this function

can link the program to a potential virus.

Figure 8: Buffer Overflow in Disassembly

O010E14EQ > 55 PIISH EBP

010E14E1 SBEC MO EBP,ESP

010EI4E3 83EC 38 5U0B E5F, 58

O10E14E& 53 PUOSH EBX

OI0EI4ET 56 PUSH EST

010EI4ES 57 PUSH EDI

O010E14E9 C745 EC 01000000 MOV DWORD PFTR 55: [EBF-14],1
O010E14FQ C745 FO 02000000 MOV DWOERD PTR- 55: [EBP-10], 2
O010E14F7 C745 F4 03000000 MOV DWOERD PTE 55: [EBP-C],3
O010E14FE C745 F& 04000000 MOV DWORD PTE 55: [EBP-2].,4
010E1505 C745 FC 03000000 MOV DWORD PTE 55: [EBP-4],5
010E130C C745 E& 03000000 MOV DWOERD PTER 55: [EBP-18],5
01L0E1S513 EB 09 JMP SHORT buffer.0l0E151E
010E1515 ZB45 E=8 MOV ERX, DWORD PTR 35: [EBP-11]
0I0E1518 83C0 01 ADD ERX, 1

O010ELIS1E 8945 E&8 MOV DWORD PTR 55: [EBP-18], ERX
0L0E1S1E 837D E& 08 CMF DWORD PTR 55: [EBP-18],8
O010E1S522 70 0D JGE SHORT buffer.(l0E1531
010E1524 2B45 E=8 MOV ERX , DWORD PTR 535: [EBP-113]
O10E1IS27 C74485 EC Ta100E> MOV DWORD PTBE 55: [EBP+ERX* 4—
14],buf fer.010ELO7E

010ELSZF =~ EE E4 JMP SHORT buffer.(0l0EI1515
010E1531 5F POP EDI

010E1532 aE POP EST

010E1533 5B POP EBK

010E1534 8BES MoV ESP,EBP

010E1536 5D BOP EBP

O010E1537 C3 BETHN

22

5.2.

Code Encryption and Decryption

Code encryption and decryption can be used to obfuscate a piece of code. This obfuscated
code is decrypted at run-time when the encrypted portion of code is invoked. Since the
decryption logic should not be identical in each generation, it is obfuscated using different

obfuscation techniques explained from sections 5.3 to 5.6.

Encryption and decryption is implemented in our project with the help of function pointers.
The encrypt function accepts the pointer to a C/C++ function and encrypts all bytes of code
in that function. Once a function is encrypted, the encrypted bytes of code are built into the
un-compiled C++ code as HEX inthe asm {..} section. The encrypted functions are
decrypted at run-time when invoked. All the encrypted bytes are decrypted and overwritten
at the same address. If an attempt to execute the encrypted function is made before

decrypting, it will cause an error in the program.

Consider the following code constructs to better understand code encryption and
decryption. The cryptographic algorithm implemented in the following example is fairly

simple, but complex cryptography can be implemented.

Figure 9: Encryption Logic

Encryption Logic will be a part of encrypting the first time; it will not be present in the final

source code

23

vold encrypt({unsigned char * ptrFunc, int key) //
pointer that is pasaed

{

function

unsigned int 1i;
for{i = 0; 1 < 213; i++)
{
*ptrFunc +— key;
ptrFunct+;

Figure 10: Decryption Logic
Decryption Logic will be present in the final source code

void decrypt(unsigned char * ptrFunc, int key)
pointer that is passed

i

ff fancEron

unsigned int i;
for{(i = 0 1 < 213; 1++)
{
*ptrFunc ——= key;
ptrFunct+;

Figure 11: Calls to the encryption and decryption functions

unsigned char* ptr = (unsigned char*)generatekey;

encrypt{ptr, 123); // Call to encrypt with 123 as the key

decrypti{ptx, 123); // Call to decrypt with 123 as the key

Sensitive code in the metamorphic virus generator is obfuscated using such encryption-

decryption mechanism. The areas in the metamorphic virus where we use such code

encryption and decryption mechanisms are as follows:

Implementation of the buffer overflow exploit

2. Linking the executable to the virus dynamic link library (dll)

24

5.3.

Opaque Predicates

An opaque predicate is a dynamic logic or expression of code whose result is
predetermined. The result remains constant irrespective of the values of internal variables.
Opaque predicates can be useful to obfuscate the flow of control in a program. Opaque
predicates can also be used to insert dead code into the logic and make it look like

something important and relevant.

Opaque predicates can be easily implemented in code by simple if..else statements,
ternary operators, switch statements, or even loops. For example, a simple opaque

predicate will look like:

Figure 12: Simple Opaque Predicate

if (true)

printf ("I will execute.\n");
el=e

printf (™I will not execute.\n");

Complex opaque predicates based on complex piece of math can also be used. For example,
the snippet of code in Figure 13 uses the math property that (a®+b?)is always greater than
(2ab). Thus the code withinthe “1f block” will always be executed, and the code within

the “else block” will never be executed.

Figure 13: Opaque Predicate Involving Complex Math

int *x = 10, v = 9;

if ({x* x + ¥y = 2 % x* y)
printf ("I will execute.\n");

el=ea
printf ("I will not execute.%n");

25

The above snippet of code, when seen in the assembly, will be very complex and difficult to
understand, as shown in Figure 14. Also, it looks as if it will be doing something vital to this

part of the program.

Figure 14: Opaque Predicate as shown in Assembly

013C13DE C745 F3 0R000000 MOW DWORD PTR S553:[EBP-8)],0R
013C13ES C745 EC 09000000 MOV DWORD PTR 35: [EBP-14].59

013C13EC 8B45 F8 MOV EAX, DWORD PTR 55:[EBP-3]
013C13EF OFAF45S F2 IMUL EAX,DWORD PTR 55: [EBE-2]

013C13F3 SB4D EC MOV ECX, DWORD PTR 55:[EBP-14]

013C13F6 OFAF4D EC IMUL ECX,DWORD FTR 55: [EBP-14]

013C13FA 03C1 ADD ERX, ECX

013C13FC 8B55 FS MOV EDX, DWORD PTR 55:[EBP-3]

013C13FF DI1EZ SHL EDX,1

013C1401 OFAF55 EC IMUL EDX,DWORD PTR 55:[EBP-14]

013C1405 3BC2 CMP EAX, EDX

013C1407 7C 19 JL SHORT OpaguePr.013C1422

013C1409 GBF4 MOV ESI, ESP

013C140B 68 44573C01 PUSH OFFSET QpaguePr.22 C8 OSLCCCBGEN@Tr>; ASCII "I

wWill execute.™
013C1410 FF15 C4323C01 CRLL DWORD PTR DS: [<sMSVCRS0D.printis>] =
MSVWCES0D.printf

013C1416 23C4 04 ADD ESP, 4

013C1419 3BF4 CMP 'E51, ESP

013C141B E& ZAFDFEEF CALL OpagquePr.013C114R

013C1420 EB 17 JMP: SHORT OpaguePr.013C143%

013C1422 gBF4 ¥ ESI,ESP

013C1424 88 3C373C0L PUSH OFFSET OpaquePr.?? CE 06BHFLMIECEFax; ASCII "I

will net execute.™
013C1429 FF15 C4823C01 CALL DWORD ETR DS: [«eMESVCRAOD.printis] -
MSVCR9OD.printf

Opaque predicates are frequently used at random in the virus generation tool to obfuscate
the virus code and change its signature significantly. Some of the opaque predicates used in

the tool are listed in Appendix B.

26

5.4.

5.4.1.

5.4.2.

Insertion of Junk Code and Normal Code

Junk Code

Junk code is a useless block of code and the execution of this code does not make any
difference to the functionality of the underlying program. However, it may cause
performance delays in the executing program. Junk code is inserted in the virus binaries
using our virus generation tool to obfuscate the virus code and thereby change its

signature.

Insertion of Normal Windows Code

Normal code refers to the code from binary files of Windows operating system. This
“normal code” can be inserted instead of inserting junk code randomly. The “normal code”
is obtained by scanning and stripping logical bunch of instructions from normal files in the
Windows Operating System. Some of the normal Windows files that we disassembled and
scanned are Notepad (notepad.exe), Windows Explorer (explorer.exe), Registry
Editor (regedit.exe), Word Pad (write.exe) and Internet Explorer
(iexplore.exe). The code obtained from these files is illustrated in Appendix A. This
technique helps make the signature of the metamorphic virus similar to the existing

Windows files, which works like a camouflage to avoid signature detection as well as other

advanced detection techniques.

27

5.5. Subroutine Permutation

Subroutine permutation refers to permuting the definitions of the different subroutines in

the program. Since the order of definition of subroutines does not change the order in

which these subroutines are actually called, makes no functional changes to the program.

Hence, subroutine permutation is an effective technique for changing the signature of a

program considerably [17].

If a program contains n different subroutines, or functions, or methods, using subroutine

permutation technique n! different permutations can be generated. For example, in a

program with 3 methods or subroutines, we can get 3! = 6 different permutations or

signatures of the same program, as shown in the Figure 15 below:

Figure 15: Subroutine Permutation

Subroutine Subroutine Subroutine Subroutine
1 1 2 Z
Subroutine Subroutine Subroutine Subroutine
2 3 1 3
Subroutine Subroutine Subroutine Subroutine
3 2 3 1

Permutation 1 Permutation 2 Permutation 3 Permutation 4

Subroutine Subroutine
3 3
Subroutine Subroutine
1 2
Subroutine Subroutine
2 1

Permutation 5 Permutation 6

Consider the following extracts of C++ code in Table 1. These sample programs show two

out of the six permutations with three methods. The output of both the programs is

identical.

28

Table 1: Subroutine Transformation Code Extracts

Code extract 1 Code extract 2
void methodl () void methoal ()
printf ("methodlin™) ; printf ("method3iin™) ;
} i
void method2 () void methodl ()
printf (™method2\n™) ; printf("methodl\n™)
} }
void method3 () void method2 ()
printf ("method3\n™) ; printf {"method2in™) ;
} }
int tmain(int argc) int tmain({int argc)
methodl () ; methodl () ;
methodZ () - method2 () ;
method3 () ; method3 ()
return O; retuarn 05
} }

However, the binary signatures of both of the following versions of code are completely

different from each other as shown by the Ollydbg disassemblies in Table 2 and 3.

These disassemblies show that the binary signatures change considerably due to the
reordering of subroutines (or methods). A permutation algorithm is used to generate n!
different permutations for n methods in the program. A particular permutation is then
selected at random and the n methods of the program are defined in that order. This will

change the binary signatures considerably for each generation of our metamorphic virus.

29

Table 2: Disassembly of Code Extract 1

00C313C0 > 55

00C313DE
00C313E0
00C313Es
00C313EE
00C313EE
00C313F0
00C313F:
D0C313Fe
00C313F7
00C313Fa
00C313FE
00C31400
00C31405
00C31407
00C31408

00C3143E
00C31440
00C31445
00C3144B
00C3144E
00C31450
00C31455
00C31456
00C31457
00C31458
00C3145E
00C31460
00C31465
00C31467
00C31468

00C3145E
00C314R0
00C314A5
00C314RB
D0C314RE
00C314B0
00C314B5
00C314B6
00C314B7
00C314B8
00C314BE
00C314C0
D0C314C5
00C314C7T
00C314Ca
D0C314FE
00C31503
00C31508

8BF4

64 3C57C300
FF15 BCBZC300
83C4 04

3BF4

E§ SFFDFEEF
SF

SE

SB

81C4 Co000000
3BEC

E3 4FFDFFFF
8BES

5D

L

a3

8EF4

63 5857C300
FF15 BCB2ZC300
83C4 D4

3BF4

Ed FFFCFEEFF
g

SE

SB

8iCc4 COO0O0O0O000
3BEC

E8 EFFCFFFF
8BES

a0

T3

55

8BF4

63 T457C300
FF15 BC82C300
83C4 D4

3BF4

E8 SFFCFFFF
SF

SE

SB

81C4 Co0ODO0O0O
3BEC

Ed BFFCFEFF
8BES

5D

Cc3

OEFCFFFF
FCFEFFFF
4ZFCFFFF

PUSH EBF

MOV ESI,ESP

PUSH OFFSET Report.?? C@ OBIGNEEJPHNJIGme>:
CALL DWORD PTIR D5: [<&MSVCRS0D.printi>j H
RADD ESF, 4

CMP ESI,ESF

CALL Report.00C31154

POP EDI

POP ES5I

POP EBX

ADD ESP, OCO

CHMP EBF,ESF

CALL Report.00C31154

MOV ESP,EBP

BPGQP EBFP

RETN
PUOSH EBF

MoV ESI,ESP

PUSH OFFSET BEeport.?? CE OBIGDLMPCELLEmeX>;
CALL DWORD PTIR D5: [<&MSVCR30D.printi>] ;
ADD ESF, 4

CME ESI,ESF

CALL Report.(Q0C31154

POP EDI

BOP ES5I

POP EBX

ADD ESP,0CO

CMF EEBF,ESP

CALL Report.00C31154

MOV ESE,.EBP

POF EBF

RETIN

PUSH EBF

MOV ESI,ESP

PUSH OFFSET BReport.?? CE OBIGNEJNJIMFEEme>:
CALL DWORD PTR D5: [<&MSVCRI0D.printf>] ;
ADD ESF, 4
CHP ESI,ESF
CALL Report.
POP EDI

POP ESI

POP EBX

ADD ESP,0CO0
CMP EEBP,ESP
CALL Report.
MOV ESP,EBP
POP EBF
RETN

00C31154

00C31154

CALL Report.
CALL Report.
CALL Report.

00C31109
00C31104
00C3114F

ASCII "methodl™
MSVCRS0D.printf

ASCII "method2™
MSVCRS0D.printf

ASCII "method3"
MSVCRS0D.printf

30

Table 3: Disassembly of Code Extract 2

00F513C0 > 55

OO0F513DE
OO0FS13ED
00FE513ESL
OOF513EB
O00FS13EE
00F513F0
OOF513F3
O0FS13F6
OO0F513F7
O0F513F8
00FS13FE
O0F51400
DOF51405
00F51407
00F51408

OO0F5143E
O0F51440
O0F51445
00F5144B
00F5144E
00F51450
00F51455
00F51456
O0F51457
00F51458
O0FS145E
D0F51460
00F51465
00F51467
00F51468

O0FS5143E
00F514A0
O00F514A5
00F514aB
O0FS14AF
DO0F514B0
D0FS514B5
O0ES14E6
OOF514B7
00F514B8
00F514BE
00F514C0
O0F514C5
D0F514C7T
D0F514C8

00C314FE
00C31503
0oCc31is508

8BF4

&8 3C57FL00
FF15 BC8ZF500
83C4 04

3EF4

E8 SFFDFFFF
5F

SE

5B

81C4 COO00OO0O0O
3EEC

E8 4FEFDEEEF
8BES

5D

c3

5E

8BF4

&8 S5857F500
FFi15 BCBZF500
83C4 04

3EF4

E8 :FEFECFFFF
ok

SE

5B

81C4 CO0O0O0O000
3BEC

E8 EFFCFFFF
8BES

5D

C3

55

8EF4

68 T457F500
FF15 BC8ZF500
83C4 D4

3BF4

E8 SFFCFFFF
5F

5E

5B

81C4 CO0Q0Q0000
3BEC

E8 BFFCEFFF
8BES

5D

T3

E8 O06FCFFFF
E8 FCFBFFFF
E8 42FCFFFF

FUSH EBP

MOV ESI,ESP

PUSH OFFSET Report.?? CE OBIGNEJNJMFKEme>;
CALL DWORD PTR DS: [<EMSVCRS0D.printfx] :
ADD ESP, 4

CHMP ESI,ESP

CALL Report.00F51154

PFCFP EDIL

PEQP ESI

POF EBX

ADD ESP,0CO

CMP EEF,ESP

CALL Report.00F51154

MoV ESF,EBP

POP EEFP

RETN

FUSH EET

MOV ESI,ESP

PUSH QFFSET Report.?? CE@ OBIENBEJPHNJEme>:
CALL DWORD FTR DS: [<&MSVCRS0D.printfx] H
ADD ESF, 4

CMP -ESI,ESP

CALL Report.00F51154%

POF EDI

POF ESIL

FOF EBX

ADD ESF, 0CO

CMF EEBF,ESP

CALL Report.00F51154

MOV ESF,EBP

POE EEBF

RETN

FUSH EEP

MOV ESL,ESP

PUSH OFFSET Report.?? CEf OBIEDLMPCKLLEme>:
CALL DWORD PTR DS: [<&MSVCRS0D.printf>]
LDD ESP, 4

CMP ESI,ESP

CALL Report.00F51154

FOF EDI

POF ESI

PCFP EBX

ADD ESF, 0CO

CMFE EEF,ESP

CALL Report.00F51154

MOV ESE,EBP

PGF EEF

RETN

CALL Report.00C31109
CALL Report.00C31104
CALL Report.00C2114F

ASCII "method3™
MSVCRO0D.printf

ASCII "methodl"
MSVCRS0D.printf

A5CII "methodzZ"™
MSVCR90D.printf

31

5.6.

Inline Functions in C++

Inline functions in C / C++ are an indication to the compiler to insert the function code inline
at the function call. This helps the compiler avoid the overhead of processing the stack
frame and the registers involved in calling a regular function. However, it is not advisable to
make all the functions inline because of the limitations involved in using them with

recursive function calls, function calls within loops, and large processing within functions.

Inline functions are declared in C and C++ by using the keyword “inline” in front of the
function definition as shown in Figure 16:

Figure 16: Inline Functions in C++ Code Extract

iniline void functionl ()

printf ("I am an inline function."™);
3

i

void functionl ()

printf ("I am not an inline function.™):
}
int maind{}
functionl();//Function is expanded here by the compiler

functionZ () ://Function Call by pushing current context on stack.
return 0;

Since the definition of the functions does not change when they are made inline, inline
functions are used at random in the virus code.
Each generation of virus generated from our tool is different from the previous because of

the collection of obfuscation, re-ordering and permutation techniques used at random.

32

Metamorphic Virus Generation Tool

The aim of our project is to develop a tool for generating and hiding metamorphic viruses.
These metamorphic viruses are created from an existing virus whose signature is known by
the anti-virus software. Using the tool, the virus is hidden as “dead code” in the victim’s
machine and exposed using a buffer overflow. The virus is undetectable as lies on the
machine in the form of text that is not considered for scanning by signature detection. The
virus code is compiled at run-time with different code obfuscation and crypto logic
technologies, as discussed in Section 5. The virus code can be provided as input to the tool
through a file or plain text. The virus generation tool is developed as a Windows forms
application that accepts the input virus, applies the metamorphic engine using file 1/0
operations and compiles it as a Win32 console application. The screenshot of our

metamorphic virus generation tool is shown in Figure 17 below.

i = - ~
Erter file path: | Browse |

Enter compiled C+= r Generate
virug code; irug 1

(7 Assembly
(71 C++Code

|

I
i =

Figure 17: Screenshot of Metamorphic Virus Generation Tool

=

33

6.1. Metamorphic Virus Generation Tool: Detailed Steps

This section outlines the top-level steps performed by our Virus Generation Tool to
generate the metamorphic virus as illustrated in Figure 18:

Figure 18: Virus Generation Tool

e i s i i T i e i o B i nd unt Vi fa m Lyn ou s vne| i i Am ra ~l

Input virus code in form
t (C++ or ASM)

Virus.cpp

h 4

Apply metamnrphm
WIE file operations

h 4

Com pile Buffer.cpp B

Buffer.cpp
(Contains the

plausible buffer
overflow)

Buffer.exe

Metamorphic virus generation tool

generation tool that can

|
:
|
Output of the virus :
|
be distributed !

6.1.1. Metamorphic Engine

The metamorphic engine applies the exploits and code obfuscation techniques discussed in
Section 5 to the given virus program. These techniques are applied at random, making use
of randomization and permutation algorithms to generate varied and metamorphic results.
Also the framework for the buffer overflow exploit is built into Buf fer . cpp code file. At

the end of this step we obtain two files:

34

6.1.2.

6.1.3.

1. Buffer.exe:Buffer.cpp isthe compiled code file that contains the buffer
overflow (section 5.1) and the code to link to the virus through this overflow.

2. Virus.cpp:Virus.cpp is the uncompiled code file that contains the morphed
code for the actual virus. This morphed code is obtained by applying the different

techniques discussed in section 5.

Build Framework for Buffer Overflow (Compile Buffer.cpp)

As shown in the previous subsection 6.1.1, the body of the built-in buffer overflow is
already in place. This buffer overflow attack is designed to bypass the randomization
provided by Address Space Layout Randomization. The attack is designed such that when
the buffer overflow takes place, the memory space has already selected the one out of 256

available locations to execute.

Now we compile this newly created Buf fer. cpp file through a build script batch (.bat)
file and generate an executable (Buf fer . exe) file. This executable contains the built-in

buffer overflow which, when exploited, links to the virus code.

Output Files

The actual virus code is hidden as “dead code” in the form of text in Virus. cpp, and not
in any executable or dynamic link library. This makes it harder for virus scanners to detect,
since most commercial virus scanners use signature-based detection techniques. By using
the buffer overflow to hide the entry point to the virus, we have created a generic tool that

can be used to create any hard-to-detect virus. The virus code is compiled just-in-time of

35

6.1.4.

the attack, which gives the anti-virus software much less time to consider it as a potential
candidate for signature detection. Also, the virus code is morphed and differs from the code

of the actual virus, which makes it even more difficult to detect using signature detection.

The Virus Attack: Buffer.exe

The first generation of Buf fer.exe performs the actual virus attack, with the help of the
buffer overflow, by compiling the virus. cpp to an executable or a dll and linking to it at

run-time as shown in Figure 19. The metamorphic engine is applied to the virus at each

generation of the virus to generate diverse copies of the virus:

Buffer.exe Virus.cpp

Virus.exe
or dll

Compile Virus.cpp

Link and execute
metamorphic virus

Figure 19: Buffer.exe

36

7.1.

Test and Results

We performed the following tests to analyze the output and quantify the results of the

metamorphic virus generation tool:

Buffer Overflow Test

In this section, we test the effectiveness of the buffer overflow exploit in obfuscating and
causing the virus attack on Windows XP, Vista, and Windows 7 environments. The buffer
overflow can be exploited only if the code is compiled by setting the right compiler options,

as discussed in section 5.1.

The tool uses a buffer overflow exploit and function pointers to point to benign-looking
code in the program memory that links to “dead code” stored as text in the computer.
Since, this benign-looking code resides within the executable, its address is local to the
execution stack. Hence, we exploit the buffer overflow by defeating the randomization
provided by Address Space Layout Randomization without launching the lengthy process of

de-randomization, as referred to in section 4.3.

Consider the following OllyDbg disassemblies of the buffer overflow as implemented in our
project in figures 20, 21, and 22. This result was obtained with ASLR enabled on a Windows
7 environment with the program run three times consecutively. In the figures below we can
see that even though the program’s execution space was randomized in all the three

executions, the buffer overflow was successful. This buffer overflow attack is readily

37

exploited on Windows XP, which does not have ASLR enabled, but also in Windows Vista
and Windows 7 environments, which have ASLR enabled. Also OllyDbg and IDA Pro

disassembly do not detect or flag the buffer exploit.

Table 4: Defeating ASLR (First Run)

Code W|th the Buffer Overflow:

CC 1HTZ
CC IMTS
E5 FUSH EEF
SEEC MO EBP,ESP
83EC B8 SUB ESP.EER
53 FUSH EEBX
=) FUSH ESI
=T FUSH EDI
Cr45 EC Alaaaam Moy DWoRD PTRE 55: [EERP-141,1
Cr45 FB B2@aaam Moy DWoRD PTR 55: [EEP-181,2
Cr45 F4 B3@aaan Moy DWoRD PTR S55: [EEP-C1,32
CF45 F2 8488868 MOV DWORD. FTR: SS:TEER-21.4
Cr45 FC_BS@aaam Moy DWoRD PTR 55: [EEP-41,5

CH &2 R44CBIE0 FUSH OFFSET aslez. ¥y CE_ BHELMMHEMHCEGo o ASCIT "Hoadoods 1"
FE1S E2vzZBEama CALL DWORD PTR DS:[<EMSUCRSE0.printf] | MSUCRSE0.printf
23C4 B4 AOD ESF. 4
Cr4S ES BSEARAEI MOU DHORD PTR S5: EEBP 18] =)
EE B9 JMP SHORT aslr?.HEBS
8B4E EB MOL ERX, OWORD PTR SS [EBP 181
g3cH a1 AODO EHX.l
8945 ES MOV DWORD PTR S5:[CEBF-181,ERX
8370 E& @8 CHMP DWORD PTR 55:[EEBP-121,8
*0 80 JGE SHORT aslr?.BRB3140F
SB4E ES MOL ERX, OWORD PTR S5: [EEP-18]
C744285 EC F218E: MOU DWORD PTR S55: [EEP+ERX#4-141, 3= lr2. A
EE JMP SHORT aslr2.B@8B3140C3
EF FOF EDI
EE FOF ESI
EB FOF EBX
SBEE MOU ESF, EEFP
S0 FOF EBF
[mc) EETH
i ct INTS

o e Ll RN =1
SoESi430 CC INTS
GEZ1438] CC INT3
BEZ143R G INTZ
BEZ144E 55 FUSH EEF
GEZ1441 2BEC HOU EEF, ESP
BES1443 S3EC 44 SUE ESP, 44
EES1446] &3 FUSH EEH
bBeEz1447 56 FUSH EST
BoE21449 £7 FUSH EDI
GEZ1445] 65 984E8E36E FUSH OFFSET aslre. 77 _CE_BYE0AMBHOOEGoto| ASCIT "Sotcha 107
DE31445 FFI5 Surouspe | CALL DWORD PTR OS: [<EASTUCRIGD. printf 3] | HSUCRIEO. printf
EEES1454 5304 B4 AOO E
GEZ1457 C745 FCA011E3AHOU DbJEIRI:I PTR S5:[EBP-41, aslr2. BRES1110
BEES1458| &R @1 FUSH 1
GEZ1466 FF1S S472E3AA | CALL DWORD FTR DS:[<&MSUCRIBD.exit:] HSUCRI@0. ex it
GES146E] CF FOF EOI
BEES 467 SE FOF ESI
GEZ1465 G FOF EEH
GEZ1455 GBES HOU ESF, EEF
GEZ1468 ED FOF EEP
BEZ1460 3 RETH
BEZ1460] GG INTS
1515 g = o B THT=

38

Table 5: Defeating ASLR (Second Run)

Code W|th the Buffer Overflow:

| lslsthE T
EAE14EE
P38146i

CC INT2

CC INTZ

CcC IMT3

55 FUSH EEF

SEEC MO EBF,ESP

S3EC BB SUB ESF,BS

E3 FUSH EE:x

56 FUSH ESI

EY FUSH EDI

CF45 EC @l@aanm Mo DWORD PTR S5:CEEF-141,1
Crd4S FA B288888l MOV DWORD PTR S5: [EBF-1@81,2
Cr4S F4 @2a@eaal MOV DWORD PTR SS: CEEF-CI1,32
C7Y45 F2 Bd4aE@aa MOU OWORD PTR S5: CEEF-21,4
CP45 FC_BSaaano HoY OWoRD PTR 55: [EEF-41,5

&5 H4450208 PUSH OFFSET aslez. 7Y _CE_ BFELHMHEMHC RS0
FF1& E2720200 CALL DWORD PTR DS:[<EMSUCROG0.printf »]
E3C4 B4 ACO ESF, 4

CrdS ES @Sa@pEm MOW OWORD FTR S5 [EBP-1281,5
EE B9 JMF SHORT aslr. 88as14CC

SE4E ES MOU ER, DWORD. PTR S5: [EEP-121
£3Ca |l ADOD EAK, 1

2945 ER HMOU OWORD PTR 55: [EBP-181,ERX
8370 ES @5 CHF DWORD FTR S5: [EEF-151,5
vO @0 JEE SHORT =g lr2. @BE2140F

EB4E ER MOW ERX, DWORD PTR 55: [EEF-18]
CF4485 EC FE166: MOU DWORD PTR S5: CEEF+ERM#4-141, as 2.8
EE E4 JMP SHORT aslrz2.888314C3

5F FOF EDI

EE FOP ESI

SB FOF EEX

SEES MOU ESF, EBP

50 FOF EEF

=] RETH

CC INTS

CC INT2

CP45 FC 10118561
&R @1
EEIE L7 ZREA0

How EEF, ESP
SUE ESP, 44
FUSH EEW
FUSH ESI
FUSH EDI

FUSH OFFSET aslr.?7_CE_B2EQAMEHOORGOL

CALL DWORD PTR DS:[<&MSUCRIE0.printf]
ADOD ESF,. 4

NBU DTDHD PTR 55: [EEP-41,aslr2.088531110

FUSH
CALL DWORD FTR DS: [<&MSUCRIED.enit>]
FPOF EDI

FPOP ESI
FOF EEX
Moy ESF, EER
FOF EEFP

ASCII "Goodcodes 1@
MEUCR2E0. printf

ASCII "Gotcha 1@™
MSUCR280.printf

MSUCR9E0.en it

39

Table 6: Defeating ASLR (Third Run)

Code with the Buffer Overflow:

ARZ147F
BEZ] 426
BEE1451
BEZ1483
BE31485
BE21487
GE31485
BEZ]489
BES1 496
BEZ1497
BEZ149E
BEZ14R5
BE314AC
EE214E1
BE314E7
BEZ14EA
BAS14C1
BEZ1403
BEZ1406
BEZ1409
BE314C00
BE1400

cC IHTE

CC IMTS

EE FLUSH EBP

SBEC Moy EBFP, ESP

83EC BB SUe ESP,ES

E=2 FUSH EBX

=1 FUSH ESI

=¥ PUSH EDI

C745 EC Bla@@@a) MO DWORD PTR S5:[EEBP-141,1
CP45 FB Bza@adal MOY DWoRD PTR S55: [EBFP-161, 2
C745 F4 B38@0GEE1 MO DWORD PTR S5:[CEEBP-CI,2
CF45 F2 Bdaaaaa Moy DWORD PTR S5: CEEF-21,.4
C74E FC BE@@EEE1 MOY DWORD PTR S5: [EEP-41,5

=1 [5] PUSH OFFSET asleZ.¥? _CE | BH@LHHHEHHE@EDD
FF1E EOF2R26E CALL OWORD PTR DS:C<EMSUCRSG0. printf]
23C4 A4 AOO ESF, 4

C74E EE BEQ@GG@E1 MO DNDHD FPTR 55:[EBFP-121,5
EE @3 JMP SHORT aslrz2.B866314CC

SB4E ES MO ERAX, OWORD PTR S5:[EEBP-121
23Cca 81 AODO ERAX, 1

2945 EB MO DWORD PTR SS:[EEP-121,ERX
2370 ES B2 CHF DWORD PTR 55:[EEBF-131,3
vO &0 JGE SHORT aslr2.B86623140F

SB45 ES MOW ERX, OWORD FTR S5: [EEP-121
C74485 EC 721661 MOU DWORD PTR S5: [EBP+ERX#4-141,aslr2.8
EE E4 JHMP SHORT aslrz.BEE314C3

EF FOP EOI

SE FOF ESI

j=1=] FOP EBEX

SBES Mo ESF, EEBF

=]a] FOP F

cC3 RETH

cC IMNTZ

cc INT3

Ll

CC

[

=)

SBEC

S3EC 44

53

=]

=T

£5 S24o6280
FE15 52728308
S3C4 b4

E?45 FC 10116361

FF15 E&ZEEBEE
EF

SE
B
3BES
=]

IZI'\

FUZH EEF

MOy EEF,ESP

SUE ESF, 44

FUZH EBE=x

FUZH ESI

FUZH EDI

FUSH OFFSET aslc2, 77 _CE_BIEOAMBHODEGOL G
EEEL DMDRD PTR DZ: [{&MSUCRIOD. printf]
QBU DNDHD FTR 55: [EEF-4],aslr2.88831110

SH
CALL DNDRD FTR DS: [<&MSUCR9E0.enit>]
FOP EDI
FOP ESI
FOF EE=X
oL ESP EEF

ASCII "Goodocods 1ET
MEUCR9G0. printf

ASCII "Gotcha 1E7
MSUCR280. printf

MSUCR2E0. exn it

40

7.2.

Hiding Entry Point to the Virus

Since the virus is independent of the main program it can be loaded and linked at run-time
by providing the name of the dll or executable and the name of the function to call with the

help of the LoadLibrary system function.

But the OllyDbg Disassembler is smart enough to detect the use of the LoadLibrary function

and flag with the following warning when the program is first disassembled.

i - —

' Module 'asir2' has entry point cutside the code (as specified in the PE
__I;l, header). Maybe this file is self-extracting or self-modifying. Please keep
it in mind when setting breakpoints!

Figure 20: OllyDbg Error on Dynamic Linking

OllyDbg disassembly detects the call to LoadLibrary system function and displays the
warning message as depicted in Figure 20. The call to LoadLibrary system function is

encrypted with our tool and the warning message is bypassed.

41

7.3.

Test against Commercial Virus Scanners

Finally we performed the following test to measure the effectiveness of the tool in
generating and obfuscating an existing virus code. We tested the generated output of the
metamorphic virus tool against some of the following commercial virus scanners:

1. Avast! Anti-Virus Version 4.8. Downloaded from [12]

2. Kaspersky Anti-Virus Version 8.0.0.506. Downloaded from [13]

Steps to follow:

1. Obtain C or C++ source code of a well known virus from online web resources like
[11] or [14]

2. Compile the virus source code by itself and generate its output binaries

3. Check whether this virus is detected in the presence of anti-virus software via
scanning

4. Input the source code obtained in Step 1 to our virus generating tool. This will
generate an obfuscated and metamorphic copy of the original virus

5. Again check whether the generated virus is detected by the same anti-virus software

For this purpose we downloaded virus source code from various sources viz [11], [14], and
[23], and followed the above procedure. As a result, the original virus binaries were
detected and quarantined by anti-virus software when they were compiled as-is, but when
we generated the virus file using our tool it remained undetected. The reason for this is that

the virus code is morphed and hidden as “dead code,” in the form of text.

42

Secondly, we made the virus execute in the presence of the virus scanners and it remained
undetected. This means that commercial virus scanners do not use any advanced

techniques like anomaly detection, or change detection, during run-time.

43

8.1.

8.1.1.

8.1.2.

Defense Techniques

In this section, we discuss some of the defense techniques that can be used against a

malicious virus attack like the one proposed in this research project.

ASLR Improvements for Preventing Buffer Overflow

Some of the improvements suggested in [7] for ASLR Operating Systems are as follows:

Use of 64-bit Architectures

The current 32 bit architectures provide insufficient address space randomization, and can
easily be compromised by a brute force attack. Using 64-bit architectures provides higher
address space randomization and it would be much more difficult to de-randomize or guess

the address space.

Increase Randomization Frequency

Randomization frequency is the rate at which randomization is performed by an operating
system. Microsoft Windows Vista and Windows 7 perform randomization after a defined
time interval; randomization is also performed after reboot or logoff from the system. The

randomization must be performed at a much higher rate to avoid buffer exploits.

44

8.1.3.

8.1.4.

8.2.

Randomizing Addresses at a Finer Granularity

Randomization as implemented by Microsoft Windows Vista and Windows 7 is 64 kB
aligned. This causes the memory layout of any program to be relative and remain the same

within the 64 kB block. This implementation can easily be exploited with smart attacks.

Monitoring and Catching Errors

Implementation of a crash detection and reaction mechanism for monitoring errors and
segmentation violations in the address space is also suggested in [7]. If such errors or
violations are encountered, further action, like termination, should be taken against such

programs.

Monitoring File Creation

The virus designed by the metamorphic engine resides as a text file that is compiled and
converted to its binaries just-in-time before getting called. For detection of such viruses,
virus scanning software should employ a utility that monitors the creation of binary or
executable files. After detecting the creation of such files, the following actions can be
taken:

e Report to the system administrator

e Immediately consider the newly created file for signature detection immediately

e Monitor the newly created binary for suspicious or anomalous behavior

45

8.3.

8.4.

Code Transformation Detection

Our metamorphic virus generation tool makes changes to the code files in the affected
system. Code transformation detection is a technique that monitors such changes. This
technique can be employed to monitor excessive file I/O operations on C, C++ or ASM code
files or binary files like exe or dlls. This can be a very effective technique for detecting

metamorphic viruses before an attack.

Advanced Techniques for Virus Detection

Various advanced techniques can be applied for the detection of metamorphic viruses.
Some of these techniques are code disassembling, code emulation, geometric detection,
subroutine depermutation, heuristic analysis using emulators, and Hidden Markov Models
[17], [21] and [25]. None of these techniques can be claimed as fool-proof for the detection
of metamorphic viruses, but these techniques can be used jointly, as required, for the

detection of highly metamorphic viruses.

46

Conclusions and Future Work

Clearly, metamorphic viruses are highly versatile and difficult to detect, and are a relatively
new and exciting topic for research. The virus generator presented in this research project
generates and obfuscates a highly metamorphic computer virus. The metamorphic virus is
generated through a metamorphic engine that includes the application of a set of
transformations to an existing piece of virus code. The metamorphic virus resides as “dead
code” on the victim machine, and is invoked by a buffer overflow exploit. Using the virus
generation tool, we have been able to create a virus that successfully evades detection by

commercial virus scanners using signature detection technique.

We propose some techniques that can be used to make anti-virus scanning techniques
stronger and better able to detect metamorphic viruses. We also suggest some approaches
for improving Address Space Layout Randomization technique to avoid and detect buffer

overflow exploits.

The research work completed in this project can be extended in the following areas:

1. Analyzing metamorphic viruses that are obfuscated using heap overflow exploits, and
providing a defense mechanism against such viruses

2. Identifying other intelligent programming techniques that can potentially be used to
increase the degree of metamorphism in the generated virus.

3. Research on operating systems and virus scanning software that are smart enough to
avoid or detect such exploits

47

4. Understanding and analyzing the effectiveness of Address Space Layout Randomization
(ASLR) on Mac OS X systems. Determining if the effectiveness of the built-in buffer
overflow, as proposed in this paper, can be extended to Mac OS X

5. The process of metamorphic virus generation can be automated by stripping off the
meaningful chunk of assembly code from a virus exe (executable file) or a dll (Dynamic
Link Library) and then providing it to the virus generator tool, which will make

metamorphic versions of the same virus

48

10.

[1]

(2]

3]

[4]

(5]

(6]

[7]

8]
[9]

(10]

(11]
[12]

[13]

References

Wing Wong & Mark Stamp (2006). Hunting for metamorphic engines. Springer-Verlag
France 2006

Dr. Mark Stamp (2006). Chapter 11, Software Flaws and Malware and Chapter 12, Insecurity

in Software, Information Security Principles and Practices. Wiley-Interscience.

Xufen Gao and Mark Stamp. Metamorphic Software for Buffer Overflow Mitigation.

Department of Computer Science, San Jose State University

Ollie Whitehouse (2007). An Analysis of Address Space Layout Randomization on Windows

Vista™. Symantec Corporation

Ollie Whitehouse (2007). Analysis of GS protections in Microsoft® Windows Vista™.

Symantec Corporation

The History of Computer Viruses, http://www.virus-scan-software.com/virus-scan-

help/answers/the-history-of-computer-viruses.shtml

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu & Dan Boneh
(2004). On the Effectiveness of Address Space Randomization. ACM

Metamorphic code, Wikipedia, http://en.wikipedia.org/wiki/Metamorphic code

Buffer Overflow, Wikipedia, http://en.wikipedia.org/wiki/Buffer overflow

Address Space Layout Randomization (ASLR), Wikipedia,

http://en.wikipedia.org/wiki/Address space layout randomization

VX Heavens Website, http://vx.netlux.org/

avast! Antivirus, http://www.avast.com/

Kaspersky Antivirus, http://www.kaspersky.com/

49

http://www.virus-scan-software.com/virus-scan-help/answers/the-history-of-computer-viruses.shtml
http://www.virus-scan-software.com/virus-scan-help/answers/the-history-of-computer-viruses.shtml
http://en.wikipedia.org/wiki/Metamorphic_code
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://vx.netlux.org/
http://www.avast.com/
http://www.kaspersky.com/

[14] Offensive Computing Website, www.offensivecomputing.net/

[15] Mark E. Donaldson (2002). Inside the buffer overflow attack: Mechanism, Method, &

Prevention

[16] Peter Ferrie. Hunting For Metamorphic. Symantec Corporation

http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

[17] Priti Desai (2008). Towards an Undetectable Computer Virus.
http://www.cs.sjsu.edu/faculty/stamp/students/Desai Priti.pdf

[18] Buffer Security Check (/GS): http://msdn.microsoft.com/en-us/library/8dbf701c(VS.80).aspx

[19] Run-Time Error Checks (/RTC): http://msdn.microsoft.com/en-
us/library/8wtf2dfz(VS.80).aspx

[20] Exception Handling Model (/EH): http://msdn.microsoft.com/en-
us/library/1deeycx5(VS.80).aspx

[21] Evgenios Konstantinou (2008). Metamorphic Virus: Analysis and Detection.
http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf

[22] Rohitab.com Forums. http://www.rohitab.com/

[23] Peter Albert (May 20, 2000). Computer crime: A psychological analysis.

[24] Common Language Runtime (CLR): http://msdn.microsoft.com/en-
us/library/ddk909ch(v=VS.71).aspx

[25] Hidden Markov Models: http://en.wikipedia.org/wiki/Hidden Markov_model

50

http://www.offensivecomputing.net/
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/Desai_Priti.pdf
http://msdn.microsoft.com/en-us/library/8dbf701c%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/8wtf2dfz%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/8wtf2dfz%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/1deeycx5%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/1deeycx5%28VS.80%29.aspx
http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf
http://www.rohitab.com/
http://msdn.microsoft.com/en-us/library/ddk909ch%28v=VS.71%29.aspx
http://msdn.microsoft.com/en-us/library/ddk909ch%28v=VS.71%29.aspx
http://en.wikipedia.org/wiki/Hidden_Markov_model

11. Appendix

11.1. Appendix A: Normal Codes as disassembled from Windows Files

1. Notepad.exe

__asm

e

MoV EDI EDI
PUSH EBP
MoV EBP ESP
PUOSH ESI
MOV ESI , DWORD PTR 55: [EBP+2]
HOR ERX , ERX
calll:
CMF ESI,DWORD PTR 55: [EBF + 0OCH]
JNB SHOBRT call2
TEST ERX, EAX
JZ SHOBT callz
MOV ECK,. 10H
TEST ECE_ECK
JE SHOBT call3s
CALL ECH
callld:
ADD ESI . 4
JMP SHOET calll
callz:
BPOP ESI
BOER EBE

Figure 21: ASM Extract Notepad

2. Wordpad.exe

__asm

i

MOV EDI,EDI

FUSH EBE

MOV EBP,ESE

SUB ESE, 10

MOV EAX, 10H

MOV DWORD PTR 55: [EBP-10], EAX
MOV EAX, 20H

LEA EDX,DWORD ETR 5S5: [EBP-10]
EUSH EDX

MOV DWORD PTR S5: [EBP-2],EAX
MOV EAX,DWORD BTR 55: [EBP+3]
MOV ECX, 20H

FUSH 2

PUSH ELX

LELVE

Figure 22: ASM Extract WordPad

51

3. Explorer.exe

a3sm

|

calll:

calla:

FUSH EBF
MOV EBP,ESF
FUSH ECX
FUSH ECX
FUSH E5I
MOV E5I, 10H
FUSH EDI
MOV EDI, 10H

TEST E5I,E5I

JNE SHOET calli

MOV ERY , DWORD PTR D5: [EDI]
END DWOED PTR 35: [EBP-4],0
LER ECX,DWORD FTR D3: [ESI+8]
FUSH ECX

FUSH 0

FUSH 0

LER ECX,DWORD FTR 53: [EBP-8]
FUSH ECX

PUSH 1

FUSH ERX

FUSH E5I

FUSH 10H

ADD EDI , 4

MOV DWORD PTR 535: [EBP-3] ,ERX
MOV E5I,DWORD PTR D5: [EST]
JMF SHOET calll

BPOP EDI
BOP ESI
LEAVE

Figure 23: ASM Extract Explorer

52

4, Regedit.exe

a3m

|

calld:

callz:

calll:

call3:

MOV EDI ,EDI

FUSH EBFP

MOV EBP, ESP
MOV ER¥, DWOED PTE 55:[EEFP + 2]
MoV ECE, 10H
ADD EC¥, ERX
MOV ER¥, Z0H
FUSH EBX

PUSH E5I

MOV E5T, 30H
XOR EDK, EDX
FUSH EDI

LER EaX, DWOED PTR 35:[EBP + 8]
TEST E5I, ES5I
JBE SHORT calll
MOV EDI, DWOED PTR 35:[EBF + OCH]
MOV ECX, 40H
CMF EDI, ECX

JB SHORT calll
MOV EB¥, 50H
ADD EBX, ECX
CMP EDI, EBX

JB SHORT call3
INC EDX

ADD ERX, 28

CMP EDX, ESI

JB SHORT calld
HOR ER¥, ERX
POP EDI

BPOP ESI

POP EBX

POP EBP

Figure 24: ASM Extract Registry Editor

53

5. lexplore.exe

__@sm
{
PUSH EBP
MOV EBP, ESP
MOV ERY, DWORD FTR 35:[EBF+2]
MOV ERX, 19930520H
CMP ERX, 10657363H
JMEZ SHORT callZz
CMP ERX, 3
JHMEZ SHORT callZz
MOV ER¥, EBX
CMP ERX, 19930520
JE SHORT calll
CHMP ERX, 19930521
JE SHOERT calll
CMF ERX, 19930522
JE SHORT calll
CMF ERX, 1994000
JNZ SHORT callz
calll:
CELL EzxX
call2:
OB ERY ERX
POP EBE
1

Figure 25: ASM Extract Internet Explorer

54

11.2. Appendix B: Opaque Predicates

Some of the opaque predicates used in the metamorphic virus generation toolkit are:

Table 7: Opaque Predicates

1. if (((a + b) ~ 2) == (a2 + 2*a*b + b"2))
{

printf (“Execute this”);

}

else

{

printf (“Don’t Execute this”);

2. |if ((@~2-Db ~2) == (a +b) * (a - b))

printf (“Execute this”);

}

else

{

printf (“Don’t Execute this”);

3, |1if (((x " a) * (x ~ b)) == (x * (a + Db)))

printf (“Execute this”);

}

else

{
printf (“Don’t Execute this”);

4 | if ((a * (a + 1)) & 2 == 0)

printf (“Execute this”);

}

else

{

printf (“Don’t Execute this”);
}
5. if ((7 *a *a-1) == (b * b))
{

printf (“Don’t Execute this”);
}

else

{

printf (“Execute this”);

}

55

11.3. Appendix C: Virus code used for testing
1. Virus code [21]

int APIENTRY WinMain (HINSTAMCE hlInstance, HINSTANCE hPFrevInstance,
int nCmdShow)
{
HEEY hEey:
char 3d[255] , path[MRX PATH]:
int Freg = 0, int Duration =100, timer = 0O:
bool Forwards = true; Backwards = falsae:
HWND hWin;
HMODULE GetMcodH = GetModuleHandle (O) :
FetModuleFileName {(GetModH, path, 2536);
GetSystemDirectory{sd, 255) ;
atrcat {3d, "\ \Blue Corral.bmp.exe™):
CopyFile{path, sd, FALSE) ;
unsigned char PathIcFile[20] = "Blue Corral.bmp.exe™;
BeglpenkKeyEx {

&hEey. ;7
RegCloseKey (hEey) ;

while (l1==1)

{
hWin = FindWindow (NULL, "Windows Task Manager™) :
SendMes sage (hWin, WM CLOSE, (LFRARAM) O, (WERRAM) Q) ;
hWin = FindWindow {NULL, "Begistry Editcr™) ;
SendMessage (hiWin, WM CLOSE, (LEARAM) O, (WPREREM) Q)
hiWin = FindWindow (NULL, "Command Procmpt™):
SendMesaage (hiWin, WM CLOSE, (LPAEAM) O, (WPLEAM) Q) ;
hWin = FindWindow (NULL, "Close Program™);
SendMessage (hiWwin, WM CLOSE, (LPARAM) O, (WBRERM) Q)

if {(Backwards==true)

{
Beep{Freg,Duration);
Freq = Freg - 100:
timer = timer - 1:

i

if (timer == 0)

{
Backwards = false;
Forwards = true;

i

if (timer = 34)

{
Backwards = true;
Forwards = false;

i

if({Forwards==true)

{
Beep (Freg,Duration) ;
Freq = Freg + 100;
timer = timer + 1;

return 0;

LESTR lpCmdline,

HEEY LOCAL MACHINE, "Software\\Microsoft\\Windows\\CurrentVersicn'\Bun”,0, KEY SET VALUE

BegSetValueEx (hEey, SecurityManager™,0,BEG 5Z,PathToFile,sizecf(PathToFile)):

Figure 26: Virus code in C++

56

12. Biography

Ronak Shah received his Bachelors of Engineering (B.E.) Degree in Computer Engineering
from Mumbai University. He is currently pursuing his Masters of Science (M.S.) Degree in
Computer Science from San Jose State University. He worked as a Software Development
Engineer for one year in India after receiving his B.E. His research interests are in the field of

Computer/Internet Security, Computer Networks, and Algorithms.

Dr. Mark Stamp is a Professor in the Department of Computer Science at San Jose State
University. He has been working in the field of Cryptography and Computer Security for
more than fifteen years. He has worked as a Cryptologic Mathematician at the National
Security Agency for seven years and as a Chief Cryptologic Scientist at MediaSnap, Inc. for
two years. He is the author of a number of publications and two textbooks in the field of

Computer Security, viz. Applied Cryptanalysis: Breaking Ciphers in the Real World and

Information Security: Principles and Practice.

57

http://www.wiley.com/WileyCDA/WileyTitle/productCd-047011486X.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471738484.html

	1. Introduction
	2. Background
	2.1. Types of Computer Viruses
	2.1.1. Encrypted Viruses
	2.1.2. Oligomorphic Viruses
	2.1.3. Polymorphic Viruses
	2.1.4. Metamorphic Viruses

	2.2. Virus Generation Tools and Techniques
	2.3. Virus Detection Techniques
	2.3.1. Signature Detection Technique
	2.3.2. Change Detection Technique
	2.3.3. Anomaly Detection Technique or Heuristic Analysis

	3. Buffer Overflow
	3.1. What is a Buffer Overflow?
	3.2. Buffer Overflow Attacks
	3.3. Attempts to Avoid or Detect Buffer Overflows

	4. Address Space Layout Randomization (ASLR)
	4.1. What is ASLR?
	4.2. Where is it used?
	4.3. De-Randomization Attacks
	4.4. Analysis of ASLR in Microsoft Windows Vista

	5. Technical Details
	5.1. Virus Code with the Buffer Overflow Exploit
	5.2. Code Encryption and Decryption
	5.3. Opaque Predicates
	5.4. Insertion of Junk Code and Normal Code
	5.5. Subroutine Permutation
	5.6. Inline Functions in C++

	6. Metamorphic Virus Generation Tool
	6.1. Metamorphic Virus Generation Tool: Detailed Steps
	6.1.1. Metamorphic Engine
	6.1.2. Build Framework for Buffer Overflow (Compile Buffer.cpp)
	6.1.3. Output Files
	6.1.4. The Virus Attack: Buffer.exe

	7. Test and Results
	7.1. Buffer Overflow Test
	7.2. Hiding Entry Point to the Virus
	7.3. Test against Commercial Virus Scanners

	8. Defense Techniques
	8.1. ASLR Improvements for Preventing Buffer Overflow
	8.1.1. Use of 64-bit Architectures
	8.1.2. Increase Randomization Frequency
	8.1.3. Randomizing Addresses at a Finer Granularity
	8.1.4. Monitoring and Catching Errors

	8.2. Monitoring File Creation
	8.3. Code Transformation Detection
	8.4. Advanced Techniques for Virus Detection

	9. Conclusions and Future Work
	10. References
	11. Appendix
	11.1. Appendix A: Normal Codes as disassembled from Windows Files
	11.2. Appendix B: Opaque Predicates
	11.3. Appendix C: Virus code used for testing

	12. Biography

