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Abstract 
 

APPROXIMATE DISASSEMBLY USING DYNAMIC PROGRAMMING 
by Abhishek Shah 

 

Most commercial anti-virus software uses signature based techniques to detect whether a file 

is infected by a virus or not. However, signature based detection systems are unable to detect 

metamorphic viruses, since such viruses change their internal structure from generation to 

generation.  Previous work has shown that hidden Markov models (HMMs) can be used to 

detect metamorphic viruses. In this technique, the code is disassembled and the resulting 

opcode sequences are used for training and detection. Due to the disassembly step, this 

process is not efficient enough to use when a decision has to be made in real time. 

 

In this project, we explore whether dynamic programming can be used to speed up the process 

of disassembling, with minimal loss of accuracy. Dynamic programming is generally used to 

solve problems having two key attributes: optimal substructure and overlapping sub problems. 

During each iteration our algorithm reads part of the input stream from the executable file and 

determines assembly instructions, thus dividing problems into sub problems.  

 

We have created a score matrix representing digraphs of the most common opcode 

instructions and we have implanted a dynamic program based on this scoring matrix. For 

various file sizes, we determine the time taken by our dynamic program and we show that our 

approach is significantly faster than a standard disassembler (OllyDbg). Finally, we analyze the 

accuracy of our results.   
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APPROXIMATE DISASSEMBLY  

USING DYNAMIC PROGRAMMING 
 

1. Introduction 
 

Viruses are among the most challenging problems in computer security.  According to 

Cohen [12], a computer virus is a program that disrupts the normal functioning of a system 

by modifying the underlying programs or by using resources without the consent of the 

user. A virus can cause harm to a host machine or a system. The effect of malware can be as 

simple as displaying a threatening message, or as complex as subtlety changing the 

functionality of an important program.  For example, a recent virus named Stuxnet was 

identified as code that could reprogram programmable logic control software to give an 

attached nuclear controller new instructions [13].  

 

To detect viruses, most anti-virus software uses signature based techniques. A signature 

generally consists of binary data that represent the file [18]. To avoid signature based 

detection, virus writers have developed sophisticated methods, including polymorphic 

viruses, oligomorphic viruses, and metamorphic viruses [2].  Metamorphic viruses, which 

are, arguably, the most dangerous of all, change their structure or signature each time they 

propagate, without changing the functionality of the virus.  

 

Research currently being conducted in the field of metamorphic virus detection includes:  

[1]. Hidden Markov models (HMMs) have proved to be an effective technique for detecting 
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metamorphic viruses [4] and [19]. One disadvantage of using HMMs is that an executable 

file has to be disassembled and its opcode sequence extracted before it can be scored, and 

this process of disassembling can be time consuming [16]. In this paper, we present a fast 

approach to disassembly, using dynamic programming. In dynamic programming a complex 

problem is divided into smaller problems in recursive manner [8].   The results of the solved 

smaller problems are stored for later reference.  

 

The aim of this project is to use dynamic programming to reduce the time required to 

disassemble executable files. First, the .text section, which contains program code, is 

extracted from the executable file. We then determine an opcode sequence by scoring 

possible paths based on pre-computed statistics obtained by disassembling a large number 

of executable files.   

 

This paper is organized as follows. In Section 2, we provide background information about 

viruses and their types and we discuss the techniques used to generate metamorphic 

viruses. Section 3 describes the Hidden Markov Model. Section 4 describes how HMMs can 

be used to detect metamorphic viruses. Section 5 describes different methods for 

disassembling an executable file and discusses Intel Architecture instruction format. Section 

6 discusses dynamic programming in general. Section 7 explains our algorithm and how it 

can be used to accurately determine assembly code from an executable file. Section 8 

provides test results for the speed and accuracy of our technique, for a wide variety of file 

sizes. Section 9 presents our conclusions and suggestions for future work.  
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2. Computer Viruses 
 

A computer virus is a malicious program which infects a host system without the consent of 

the user. It is responsible for altering the default system behavior. Computer viruses find 

executable files and infect them by copying code known as payload into them. Finally the 

virus will determine if the desired condition, like number of infections, is met [1]. Anti-virus 

software detects the presence of viruses in the system and removes them. Most anti-virus 

programs use signature based detection. Various methods are used to avoid signature 

based detection, which we will discuss in the next section.   

 

According to [2] and [3], there are five types of viruses: simple, encrypted, oligomorphic, 

polymorphic, and metamorphic. 

 

2.1. Simple Viruses 

 

A simple virus replicates itself while infecting files and does not use sophisticated methods 

to hide itself from detection. When a program infected by this type of virus is opened; the 

virus alters the default behavior of the computer and replicates itself to other files. Each 

virus of this type has a specific signature. This makes it very easy for anti-virus software to 

detect and remove them.   

 

2.2. Encrypted Viruses 

 

Encrypted viruses were invented to hide the malicious functionality. The body of this virus 

consists of constant decryptor and encrypted virus body. The malicious intent is hidden in 
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the encrypted body of the virus. During infection, the decryptor first decrypts the encrypted 

body and thereafter spreads the infection. These viruses can be easily detected because 

they use common decryptors. The anti-virus software can check the signature of the 

decryptor to detect these types of viruses. 

 

2.3. Oligomorphic Viruses 

 

Oligomorphic virus is an improved version of the encrypted virus. In this type of virus the 

decryptor is changed each time during propagation. However, there is a limited number of 

forms in which the decryptor can exist. According to [2], Win95/Memorial had the ability to 

build 96 different decryptor patterns. Thus, signature based detection technique can still be 

used if all of the different flavors of decryptor are included. Another technique used to 

detect these viruses is dynamic decryption of encrypted virus, after which signature based 

detection techniques can be used.  

 

2.4. Polymorphic Viruses 

 

Polymorphic virus is capable of creating an infinite number of decryptors after each 

infection. It consists of a decryptor, a mutation engine, and a virus body. The mutation 

engine changes the decryptor, which thwarts detection by signature based antivirus 

software. However, polymorphic viruses can be detected by first using dynamic decryption 

and then using signature based techniques on the unencrypted body. Figure 1 shows 

different body structures of same polymorphic virus.  

 



5 
 

 

 

Figure 1: Generations of Polymorphic Virus [2] 

 

 

2.5. Metamorphic Viruses 

 

Unlike other kinds of viruses, metamorphic viruses do not have a decryptor, a mutation 

engine, or an encrypted virus body. Metamorphic viruses change their form each time they 

spread infection while keeping their functionality intact. In this way they avoid detection 

using signature based techniques commonly employed by anti-virus software. Code 

obfuscation techniques are used by metamorphic viruses to change body structure as 

shown in Figure 2.  
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Figure 2: Virus Body of Different Metamorphic Virus [2] 

 

2.5.1. Different Techniques of Metamorphism 

 

According to [1], various types of techniques are used by metamorphic viruses in order to 

avoid detection. Metamorphic virus might use one or more of the following techniques.  

 

2.5.1.1. Garbage Code Insertion 

 

Garbage code insertion technique is a simple technique used to generate metamorphic 

virus. In this technique some code is inserted that does not change the default functionality 

of the virus. A simple example is to insert a for loop which does not do anything. The code 
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inserted is called garbage since it does not do anything useful. The use of this technique 

avoids signature based detection used by the anti-virus software. 

 

2.5.1.2. Register Usage Exchange 

 

The register usage exchange technique uses different registers in different generations of 

virus. The code and functionality remain unchanged in this technique. Here the complexity 

of code is not very high. Anti-virus software which does not support wild card string 

matching cannot detect virus generated by this technique.  

 

2.5.1.3. Permutation Technique  

 

The permutation technique divides the code into many fragments and then rearranges it in 

different permutations from generation to generation. Jump instructions are used to 

connect these fragments. However, the control flow during each generation remains the 

same. If the code is divided into n fragments, then there is a possibility of generating n! 

metamorphic virus.  

 

2.5.1.4. Insertion of Jump Instruction 

 

Metamorphic viruses sometimes use jump instructions to generate different body 

structures. The jump instruction is removed or inserted at random locations, and it points to 

the next instruction within the virus code. This type of virus does not generate a constant 

body, even in memory, and they are not possible to detect using wild card string matching.  
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2.5.1.5. Instruction Replacement 

 

Another method used by metamorphic virus is the replacement of the instructions which 

match the functionality. If there are two instructions which have the same functionality but 

different opcode, then this technique can be used by metamorphic viruses to avoid 

detection. For example “AND ESI, ESI” can be replaced by “TEST ESI, ESI” or vice versa, since 

both have the same functionality. Another example is to use different versions of 

conditional jump instructions and modify the code accordingly.  

 

2.5.1.6. Host Code Mutation 

 

The host code mutation technique targets different executable files on the host computer 

during each generation. This produces new viruses during each generation. Since it infects 

different executable files, it is impossible to have a common disinfection technique [20].  

 

2.5.1.7. Code Integration 

 

Code integration is a sophisticated technique used by metamorphic virus to generate new 

body structure during each generation. In this technique, the virus first decompiles the 

executable file, divides the code into different fragments, inserts virus code, and compiles 

the entire code again to generate new executable code. This makes it hard to detect the 

virus, and even more difficult to repair the executable [2].  

 

  



9 
 

3. Hidden Markov Model (HMM) 
 

A Hidden Markov Model is a statistical Markov model in which the hidden states are used to 

produce the observation state. A Markov model determines the current state on the basis 

of the previous state. In a Hidden Markov Model the states are invisible to the user.  

However, observation states are visible. Each observation state depends on the hidden 

states. According to [7], we can use the following notation to represent HMM 

Let 

T = length of the observation sequence 

N =number of states in the model 

M =number of observation symbols 

Q = {q0, q1, . . . , qN−1} = states of the Markov process 

V = {0, 1, . . . , M − 1} = all possible observations 

A = state transition probabilities 

B = observation probability matrix 

π = initial state distribution 

O = (O0, O1, . . . , OT−1) = observation sequence 

Figure 3 shows a Hidden Markov Model where each Markov process Xi [except X0] is 

generated by taking into consideration the previous Markov process and A matrix, which 

represents state transition probabilities. The user can only see the observation sequence O. 

Each observation state is produced by Hidden Markov Process Xi and B matrix, which 

represents the observation probability matrix. 
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Figure 3: Hidden Markov Model [7] 

 

HMM is used in applications such as speech recognition, cryptanalysis, gene prediction, etc. 

where the output depends on states which are not observable. 
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4. HMM for Metamorphic Virus Detection 
 

According to [4], the HMM model can be used to detect metamorphic viruses that belong to 

the same family. In this method, HMM is first trained by giving assembly code of various 

metamorphic virus files as input. All the executable files of the same metamorphic virus 

family are disassembled, and opcode are extracted. A disassembler, such as OllyDbg, is used 

for disassembling the exe file. These opcode are concatenated to form a long sequence. 

Each of these sequences is given as input to the HMM model and thus, at the end of the 

process, the HMM model represents a statistical model of the virus family. Figure 4 shows 

the entire process of detecting metamorphic viruses with the help of HMM model. 

Dissassembler
(OllyDbg)

Unknown.exe file Assembly-code file

Trained HMM
Model

(determines whether 
virus file or not)

 

Figure 4: Process for Detecting Metamorphic Virus  

 

The HMM is tested against two types of files: one type belongs to the same metamorphic 

virus family and other type is a non-virus program or a virus file of some other family. The 

HMM should give a high score for files that belong to the same metamorphic virus family 

for which we trained our HMM. However, the HMM should give a low score for any non-

virus program or virus file of some other family [4]. 
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However, there is one problem with the above method. One has to disassemble the entire 

executable file in order to determine whether it is a virus file or not. The process of 

disassembly takes a long time. For example, it would take 18 sec on average to disassemble 

a 3.6MB executable file. This can be optimized by using dynamic programming, which is 

faster than disassemblers such as OllyDbg. Later, we present our algorithm, which produces 

assembly code at a faster rate than OllyDbg and with a great deal of accuracy. The following 

section explains the compilation and reverse engineering process. 
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5. Technical Details of Disassembly 
 

In this section, we discuss the process of converting source code into executable and the 

process of converting executable file into assembly code. We also discuss the types of 

disassembly and Intel instruction format.    

 

5.1. Compilation 
 

A computer programmer writes a program in high level language like C, C++, etc. The source 

code is converted into assembly code and finally to machine code (executable file) which is 

platform-dependent. This process is known as compilation. Disassembly is the process of 

converting machine code into assembly code. The process of converting assembly code 

back to source code is known as decompilation. Figure 5 shows the entire process. 

 

Figure 5: Compilation and Reverse Engineering [5] 

 

 



14 
 

5.2. Disassembly 

 

The executable file contains a header, a section table, and different sections such as text, 

data, relocation section, etc. [6]. In addition, it contains information about the size of the 

executable file, location and size of each section, a stub program that will be executed if the 

program is run on MS-DOS (without Windows), etc.  Converting this executable file (which 

the machine understands) into a file containing assembly code that a human being can 

understand is called disassembly. 

 

There are two types of disassembly: static disassembly and dynamic disassembly. In static 

disassembly, the disassembler analyses the entire executable file and converts it into 

assembly code. In dynamic disassembly, the disassembler analyses only a few of the 

instructions which are to be executed and converted into assembly code. OllyDbg, when 

used without a debugger, is an example of static disassembly, however when it is used with 

debugger it is an example of dynamic disassembly. In static disassembly, the speed of 

disassembly is directly proportional to the size of executable file. However, in dynamic 

disassembly the size of the executable file does not affect the speed of disassembly. In this 

project we focus on static disassembly.  

5.2.1. Types of Static Disassembly 

 

There are three approaches used in static disassembly. They are linear sweep, recursive 

traversal, and hybrid disassembly. 
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5.2.1.1.  Linear Sweep 

 

In linear sweep the disassembler first finds the starting address of the program. After 

finding that address, the disassembler starts converting machine code into assembly code 

one by one. The linear sweep method does not take into consideration the control flow of 

executable program. objdump, part of GNU Binutils, is an example of a linear sweep 

disassembler [21]. The problem with this approach is that errors are not detected until an 

unknown machine code is encountered. Many viruses use special techniques to confuse 

linear sweep disassemblers. 

5.2.1.2.  Recursive Traversal 

 

Unlike linear sweep, recursive traversal takes into account control flow of the program 

during disassembly of machine code into assembly code. This method starts disassembling 

the executable file and whenever it encounters jump instructions it follows that address and 

continues the process. When a conditional jump is encountered it takes into consideration 

both possible paths and generates assembly code. The main advantage of this method is 

that it is able to bypass the junk code in the executable code. According to [14] and [22], 

OllyDbg and IDA Pro use recursive traversal method for disassembling executable files.  

5.2.1.3.  Hybrid Disassembly 

 

Both the linear sweep and recursive traversal methods described above sometimes do not 

disassemble the executable file correctly. This problem can be overcome by using a hybrid 

disassembly method. In hybrid disassembly method first the executable file is disassembled 
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using linear sweep and then this disassembled code is verified using recursive traversal. If 

the verification passes then no change is made but if verification fails then that code is 

removed from subsequent optimization. The problematic code is inserted in the program 

after optimization has been applied to the remaining part of program.  This approach will 

require updating the addresses within the machine code [11]. 

 
5.3. Intel Architecture Instruction Format 

 

Figure 6 shows Intel 64 and IA-32 Architectures Instruction Format. Each instruction consists 

of optional instruction prefixes, opcode bytes, the ModR/M byte and the SIB (Scale-Index-

Base) byte, a displacement, and an immediate data field. 

 

Figure 6: Intel 64 and IA-32 Architectures Instruction Format [10] 

 

Instruction Prefixes 

The instruction prefix is an optional part of instruction format and is divided into four 

groups. Each instruction can have at the most one prefix code from each group.  

Group 1 

F0H is used as lock prefix, F2H is used for encoding REPNE/REPNZ and F3 is used for 

encoding REP/REPE/REPZ  



17 
 

Group 2 

2EH is used as CS segment override prefix, 36H is used as SS segment override prefix, 3EH is 

used as DS segment override prefix, 26H is used as ES segment override prefix, 64H is used 

as FS segment override prefix, 65H is used as GS segment override prefix. 2EH is used for 

branch not taken; 3EH is used for branch taken. 

Group 3 

66H is used as operand-size override prefix. 

Group 4 

67H is used as address-size override prefix. 

Opcode 

The opcode can be 1, 2 or 3 bytes in length. Opcode specifies the operation to be 

performed by the instruction.  Sometimes 3 extra bits of opcode field are stored in ModR/M 

byte. The opcode field contains mandatory prefix, sign extension, displacement size, and 

register encoding. 

ModR/M and SIB Bytes 

ModR/M is of one byte. It contains information about the addressing mode and the 

registers used by the instruction. It consists of mod field, reg/opcode field and r/m field. 

SIB byte which follows ModR/M byte stands for Scale Index Base. It contains scale field 

which specifies factor, index field which specify particular index register and base field 

which specify particular base register. Following formula is used for calculating SIB value.  

SIB value = (INDEX * 2^SCALE) + BASE 

Displacement and Immediate Bytes 
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A displacement which follows optional SIB byte can be of 1, 2 or 4 bytes in length. The size 

of displacement is decided by Mod field.  

Immediate field which follows displacement byte can be 1, 2 or 4 bytes in length. For 

instruction ADD BX, 0xFFFF the immediate field value is 0xFFFF. 

 

Example 

OR EAX, [ECX + EDX*2 + 508090B0h] 

The above instruction does OR operation and is represented in the assembly code. In Table 

1, we represent the same in the binary form.  

 

Opcode ModM/R SIB Displacement 

00001011 10000100 01010001 10110000 10010000 10000000 

01010000 

 

Table 1: Binary Representation of OR Instruction 

 

In the next section we discuss in detail dynamic programming and two different ways in 

which it can be implemented. 
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6. Dynamic Programming 
 

Dynamic programming is an efficient method for solving problems that can be divided into 

smaller problems and which exhibit properties of overlapping sub problems. This method is 

usually used to solve search and optimization problems. Like divide and conquer method, 

the highly complex problems are divided into sub problems. However unlike divide and 

conquer, the dynamic programming takes advantage of overlapping sub problems. The 

method first solves the sub problems; stores the results of the sub problems, and use the 

results to solve more complex problems. For overlapping sub problems, dynamic 

programming is much better than divide and conquer since it only needs to solve each 

problem once. 

 

Dynamic programming can be implemented in either of two ways: top down approach or 

bottom up approach [23].  

 

6.1. Top Down Approach  
 

This approach is used when we can apply recursion to solve the bigger problem. In top 

down approach we first try to look up and see if the problem is already solved. If it is not 

solved; we first solve it and store the result. If the problem is already solved we use the pre-

computed result and solve the problem.  
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6.2. Bottom Up Approach  
 

In this approach, we first divide the problem into sub problems recursively. Then we try to 

solve sub problems and store results into a table. We use the solutions of these sub 

problems to solve the bigger problem.  

 

In the next section, we explain a simple problem and how it can be solved using dynamic 

programming.  

 

6.3. Example  
 

Consider the problem of finding the nth Fibonacci number where n is a whole number.  The 

initial condition of the algorithm is fibo(0)=0 and fibo(1)=1. For any n, Fibonacci number is 

found by using equation fibo(n)=fibo(n-1)+fibo(n-2). The simple recursive implementation is 

shown in Figure 7. 

 

Figure 7: Finding Fibonacci Numbers Recursively 

 

Here the problem at each stage is divided into smaller sub problems until it can no longer 

be divided. Smaller sub problems are solved and combined together to get solutions to the 
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bigger problem. In general, the problem of calculating fib(n) depends on solving 2 sub 

problems: fib(n-1) and fib(n-2). The general solution tree for fibo(4) is shown in Figure 8. 

 

Figure 8: Solution Tree for Fibonacci Series 

 

As shown in Figure 8, there is one sub problem that is calculated more than once. For 

example fibo(2) is calculated 2 times. We can optimize this problem by using dynamic 

programming. Consider the algorithm shown in Figure 9. 

 

Figure 9: Finding Fibonacci Numbers by Dynamic Programming 
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As shown in Figure 9, the same problem can be solved using dynamic programming. Since 

this problem exhibits the property of optimal substructure, first we divide the bigger 

problem into smaller problems. If we solve the smaller sub problem; we store the result. 

This result is later used if the same problem is encountered again. Since the problem of 

finding fibonacci number exhibits properties of optimal substructure and overlapping sub 

problems, we can use dynamic programming to solve it efficiently. In Big O notation, the 

naive recursion implementation takes exponential time while dynamic programming takes 

O(n) time. We use dynamic programming in our algorithm which is discussed in the next 

section.   
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7. Our Algorithm 
 

The aim of our project is to develop a program that can accurately predict assembly code 

from executable files. We use dynamic programming to predict assembly code from 

executable files. We took 50 .exe files from Cygwin folder, which had a size range from 

300KB to 662KB. The size range was selected randomly. All these files were opened in 

OllyDbg individually and the .text section of each .exe file was extracted. We take only the 

.text section since it contains the program code. The text section was saved individually into 

50 different .txt files. The name of the text file was kept the same as the exe file name. Each 

of the files was given as an input to the program, which generated a 2-dimensional table 

representing the count of pair of instructions. The first row and first column consisted of 14 

instructions. All the other cells consisted of integer values representing the number of times 

instructions in row followed by instructions in column appeared.  

 MOV NOP . . . 

MOV 1344183 1765  

NOP 7582 111344  

. .
 .    

 

Table 2: Matrix of Instruction Occurrences 

As shown in Table 2, the number of times MOV instruction occurs and a consecutive MOV 

instruction occurs is 1344183. Similarly the number of times NOP instruction occurs and 

another MOV instruction occurs is 7582. The most frequently occurring instructions in the 

.text section of the executable file were MOV, NOP, CAL, LEA, PUS, POP, JMP, TES, SUB, 
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CMP, JE, JNZ, ADD and RET.  Hence this project only takes these 14 instructions in 

consideration. Appendix A shows the matrix. Another program took a matrix of 50 files as 

input and added them all; giving a single large matrix. After addition, probability of each cell 

in the matrix was calculated and a new matrix was generated. The formula used was (value 

of a particular cell) / (Total value of all cells). It was then converted into odds using formula 

(p) / (1-p). The logarithmic odd for each cell was calculated. The reason we decided to take 

logarithmic odd instead of probability was that we can sum the log odds instead of trying to 

multiply probabilities, which might give underflow. Appendix B shows the final log odd 

matrix. The process described above is shown in Figure 10. It is important to notice that this 

process is performed only once for the generation of statistical data. Later we use the 

output of this process to determine assembly code instructions from executable file.  

 



25 
 

OllyDbg 
Disassembler

Parsing 
Program

Matrix.txt file containing 
instruction pair count

50 .txt files containing text section

50 .exe files from cygwin folder

Logarithmic odd 
calculation 

program

LogMatrix.txt file containing 
logarithmic odd value

 

Figure 10: Process Used for Matrix Generation 

 

We used dynamic programming to solve the problem of finding assembly instructions from 

the executable file without disassembling it. First we extracted the .text section of 

executable files. We use the program mentioned in [22] for extraction of .text section 

whose output is a text file. The .text section that was originally in binary form is converted 

to a hexadecimal representation. Figure 11 shows part of the output of this program. 
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Figure 11: Example .text Section of an Executable File 

 

We then read the file containing hex codes and get the input stream. The input stream is 

then supplied to our main program. With the help of the matrix shown in Appendix B, our 

main program tries to determine the assembly instruction using dynamic programming. This 

process is shown in Figure 12.  
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Figure 12: Using Our Algorithm for Generating Assembly Code from Executable File 

 

During each iteration, the algorithm parses the input stream of length 2 or 4 and maintains 

2 tables with the following information. 

 Score – This column contains a decimal value which is updated after parsing each of 

the instructions. We use the table shown in Appendix B to update the score. 

 Instruction Opcode – This column contains opcode of each instruction. The opcode 

are generated by refereeing [10]. The opcode is represented in hexadecimal format. 

For example instruction MOV BYTE PTR DS:[EDX],AL in the executable file is 

represented as 8802H where 88H  is opcode while 02H is operand. The column 

keeps track of the opcode of instruction. Thus, for the above example, we store 88H. 

 Length of instruction – This column contains all the possible lengths of the 

instruction. MOV instruction whose opcode is 89H can be of length 4, 6, 8, 12 or 14. 

We determined the length by looking at Intel® 64 and IA-32 Architectures Software 
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Developer's Manual Volume 2A: Instruction Set Reference, A-M and Intel® 64 and IA-

32 Architectures Software Developer's Manual Volume 2B: Instruction Set 

Reference, N-Z [10]. For example consider instruction MOV EBP,ESP which is 

represented as 89E5  while instruction MOV DWORD PTR SS:[ESP],EAX is 

represented as 890424 in the executable file. The first instruction is of length 4 while 

later instruction is of length 6. We capture this information in this column. 

 Flag to know if set or not-set – We use this flag to track if that opcode has occurred 

or not. This will help in building the solution path. 

 Pointer for current location of input string – This column is initially set to 0. It keeps 

track of the location where next input stream should be parsed. 

 Instruction name – This column represents the name of the instruction. We use 3 

letters to represent each instruction uniquely.  For example move instruction is 

represented as “MOV”; push instruction is represented as “PUS”.  

7.1.  Sample Input Stream 
 

Consider stream 5589E583EC18895DF88B5508....... as input to our algorithm. This is the 

beginning part of the .text section of an executable file. The program first reads 55H from 

the input stream. It references the lookup table and finds that it is a PUSH instruction and of 

length 2. It now moves the pointer and reads the next data. Thus it reads 89H. From the 

lookup table the algorithm knows that it can represent opcode of a MOV instruction. The 

length can be 2,4,6,10,12 excluding 89H. This is represented in Figure 13 by the value 

between each node. The algorithm keeps track of the score between 2 nodes. Moreover the 
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algorithm looks up in the matrix shown in Appendix B and finds that the logarithmic odd 

value of instruction MOV occurs after instruction PUSH is -3.91. This value is added to the 

path [initial value of the path is assumed to be 0] as shown in the Figure 13. In this way 

node numbers 2,3,4,5 and 6 are added to the possible solutions. For node number 2, the 

algorithm skips E5H (part of the input 5589E5...) since the operand length is 2 and thus the 

next input stream would be 83. Since it is 83H it grabs 2 more from input and hence it is 

83EC which is opcode for SUB instruction. From the lookup table in Appendix B the value of 

SUB instruction occurring after MOV is -4.17. This value is added to -3.91 and the path value 

becomes -8.08. In a similar fashion, the algorithm continues to process the input stream and 

builds the possible path. In the end, the algorithm considers all the paths with large 

numbers of nodes and finds the value that is closest to 0.  
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Figure 13: Solution by Our Algorithm 

 

In this example, the nodes in the end i.e. 8BH have value -12.82 while 55H has -16.58. The 

algorithm selects the best path that is closest to 0. In our example, the path shown in red in 

Figure 14 is selected. Hence the expected instructions are PUSH, MOV, SUB, MOV, MOV. 
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Figure 14: Solution Path  
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8. Test and Results 
 

In this section, we discuss the tests we conducted to determine the speed and accuracy of 

our algorithm and its results.  

8.1. Speed Test 

 

The tests were performed on a Window 7 Home Premium, 64 bit operating system, Intel 

Core 2 Duo T6500 processor, 2.1GHz and 4GB RAM. The tests were conducted on 65 

executable files with average file sizes ranging from 250KB to 3670KB. For each file, we 

measured the time taken to disassemble by a standard disassembler like OllyDbg v1.10 and 

also by our program.  

Average File Size Range: 250KB to 1050KB 

In this test, the total number of files is 20 and the average file size ranges from 250KB to 

1050KB. The average time taken by our program for this file range to generate instructions 

is 1500 milliseconds. The average time taken by OllyDbg to disassemble the files is 1775 

milliseconds. The time taken by OllyDbg is 18% more than the time taken by our program.  

For only some files of average size 1050KB the time taken by OllyDbg is slightly less than our 

algorithm, which might be due to a slight error in the calculation of time taken to 

disassemble through OllyDbg. The results of this test are shown in Figure 15. 
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Figure 15: Time Comparison (250KB to 1050KB) 

 

Average Files Size Range: 1210KB to 1850KB 

In this test, the total number of files is 20 and the average file size ranges from 1210KB to 

1850KB. The average time taken by our program to generate the instructions is 3963 

milliseconds. The average time taken by OllyDbg to disassemble the files is 4750 

milliseconds. The time taken by OllyDbg is 20% more than the time taken by our program. 

The results of this test are shown in Figure 16. 
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Figure 16: Time Comparison (1210KB to 1850KB) 

 

Average File Size Range: 2455KB to 3670KB 

In this test, the total number of files is 25 and the average file size ranges from 2455KB to 

3670KB. The average time taken by our program to generate the instructions is 9588 

milliseconds. The average time taken by OllyDbg to disassemble the files is 12800 

milliseconds. The time taken by OllyDbg is 33% more than the time taken by our program. 

The results of this test are shown in Figure 17. 
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Figure 17: Time Comparison (2455KB to 3670KB) 

 

Considering all the files of different sizes, the average time taken by our program is 5370 

milliseconds, while that by OllyDbg is 6930 milliseconds. From Figure 18 it is clear that as 

average file size increases, the time taken by our program increases linearly, since we use 

dynamic programming in our solution.  
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Figure 18: Average Time Comparison 
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8.2. Accuracy Test 

 

In this section, we measure the accuracy of our program. First the executable file is opened 

in OllyDbg. The .text section of the executable file is extracted and copied in the text file. 

Later the executable file is supplied to our system, which first extracts the .text section and 

then determines the assembly instructions. We then compare the output from our 

algorithm to that from OllyDbg. We used Needleman–Wunsch algorithm [27] for the output 

comparison. This algorithm is generally used for in bioinformatics to align protein or 

nucleotide sequences and calculate the alignment score. We align the instructions first and 

at the end calculate the alignment score, which is a summation of the score where a match 

is found. If there is match to the instruction given by OllyDbg and our program, then we give 

it a score of 1. If there is no match between the instruction given by OllyDbg and our 

program, then we give it score of 0. We will not be taking gap penalty into account for our 

program. We use the tool described in [25] to generate the alignment score. From this we 

calculate accuracy. For example, if the number of instructions is 100 and alignment score is 

93, then we conclude that the output given by our program is 93% accurate. 

 

The same process is repeated for 55 executable files of different sizes and average accuracy 

is calculated. Figure 19 shows the result of the experiment.  
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Figure 19: Accuracy Test 
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differed from expected frequencies obtained from OllyDbg. The chi-square statistic is 

calculated as: 

 

χ
2 = ∑ [ (O – E)2 / (E) ] ------ (1) 

 
 

where  χ
2 = chi-square statistic  

O = Observed frequency  

E = Expected frequency 

Degree of freedom is given by (number of categories - 1). Using degree of freedom and the 

chi-square distribution table given in Appendix C, we determine the chi-square test for 

goodness of fit. We establish the null hypothesis, which is that the observed values are 

close to the expected values. The alternative hypothesis is that they are not close to the 

expected values. These hypotheses hold for all chi-square goodness of fit tests. If the 

calculated chi-square is less than the value in the table, then the null hypothesis is accepted 

and it is concluded that the predictions made were correct. Table 3 shows the calculation of 

chi-square statistics for sample an executable file of size is 17KB. 
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Instructions 
% of Instructions 

determined by Our Program 
(Observed) 

% of Instructions 
determined by OllyDbg 

(Expected) (O — E)2/ E 

MOV 39 41 0.097560976 

NOP 18 18 0 

CAL 10 8 0.5 

LEA 5 5 0 

PUS 4 4 0 

POP 4 4 0 

JMP 3 3 0 

TES 3 3 0 

SUB 4 3 0.333333333 

CMP 3 3 0 

JE 3 3 0 

JNZ 2 2 0 

ADD 1 2 0.5 

RET 1 1 0 

Total 100 100 1.430894309 
 

Table 3: Tabulated results calculating chi-square statistic 

 

From equation (1), chi-square statistic χ2 = 1.4309 and degree of freedom = (14-1) = 13. 

Referring to the chi-square distribution table in Appendix C, the critical value for a chi-

square at a probability level (alpha) = 0.05 and degree of freedom = 13 is 22.4. The critical 

value is greater than χ2 and hence null hypothesis is accepted. Thus it passes the chi-square 

test for goodness of fit. 

 

However, one can argue that the chi-square statistic does not give correct results if the 

frequencies are too low. Hence, in the above example we neglect instructions whose 

frequencies of occurrence are less than 10%.  
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Instructions 
% of Instructions 

determined by Our 
Program (Observed) 

% of Instructions 
determined by OllyDbg 

(Expected) (O — E)2/ E 

MOV 39 41 0.097560976 

NOP 18 18 0 

CAL 10 8 0.5 
 

Table 4: Tabulated results calculating chi-square statistic ignoring low frequency 

 

From equation (1), chi-square statistic χ2 = (0.0975 + 0 + 0.5) = 0.5975 and degree of 

freedom = (3-1) =2.  

 

Referring to the chi-square distribution table in Appendix C, the critical value for a chi-

square at a probability level (alpha) = 0.05 and degree of freedom = 2 is 5.99. The critical 

value is greater than χ2 and hence null hypothesis is accepted. Thus it passes the chi-square 

test for goodness of fit. Since the test passes with and without considering low frequency, 

we can conclude that instructions determined by our program match closely with the 

instructions produced by Ollydbg. 

 

We carried out the process described above i.e. with and without considering low frequency 

counts for files of different sizes ranging from 250 KB to 3670 KB. For all the files, it passes 

the chi-square test for goodness of fit taking alpha value as 0.05 which means that the 

output obtained from OllyDbg is statistically the same as the output obtained from our 

program. 
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9. Conclusions and Future Work 
 

We implemented an algorithm to determine assembly instructions from an executable file. 

We first collected statistical data of the occurrence of one particular instruction after 

another by disassembling executable files from Cygwin folder.  We extracted the .text 

section from the executable file. We determined the assembly instructions using collected 

statistical data, opcode of known instructions and dynamic programming. We also 

determined that our algorithm is much faster than OllyDbg. The time taken by our 

algorithm linearly increases with the size of the file. Moreover the accuracy of our algorithm 

is 83.75% when compared to that of OllyDbg.  

 

We used the 14 most commonly occurring instructions to generate a 2x2 table. This table is 

used in the algorithm to score and find the best path and ultimately the instructions. This 

can be extended to include all the instructions documented in Intel® 64 and IA-32 

Architectures Software Developer's Manual.  This can speed up the algorithm and improve 

the accuracy of instructions. Moreover, for our experiment we only extracted the .text 

section, which holds the program code of an executable file. It can be expanded to include 

the .data section, which holds variables.  
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11. Appendix 
 

11.1. Appendix A: Table Containing Count for Pair of Instructions 

 

 MOV NOP CAL LEA PUS POP 

MOV 1344183 1765 262700 77861 45236 37350 

NOP 7582 111344 262 14888 13883 130 

CAL 171233 2782 8854 14109 1070 2734 

LEA 100565 182 8065 31677 37937 4595 

PUS 82778 3 11135 1941 32341 52 

POP 6281 9 2 237 1093 71716 

JMP 79697 24909 4548 23823 1725 250 

TES 25762 41 1 775 98 33 

SUB 76733 44 2455 5073 4888 203 

CMP 20877 278 1 1261 288 152 

JE 112722 1359 2192 7614 395 1003 

JNZ 66501 1162 1677 5029 140 1211 

ADD 55716 257 1383 5775 4713 18093 

RET 16894 14386 1453 21017 13329 868 

 

Table 5: Count for Pair of Instructions (Part 1) 
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 TES SUB CMP JE JNZ ADD RET 

MOV 95626 63262 80791 23981 9410 68926 4346 

NOP 428 365 799 141 77 5201 27 

CAL 34269 2742 12309 0 3 15469 55 

LEA 3175 6540 10575 711 483 5555 151 

PUS 124 22292 70 39 6 1555 44 

POP 53 132 62 324 28 1256 52414 

JMP 2451 2376 8442 14 17 2235 2 

TES 3 0 6 86572 55127 142 3 

SUB 1359 1797 9970 177 88 2796 130 

CMP 4 12 113 64708 34448 226 0 

JE 7997 2652 22705 66 35 3806 3 

JNZ 5201 740 7248 20 16 3002 2 

ADD 4170 4539 10677 474 205 40876 1631 

RET 544 338 1578 20 9 892 2 

 

Table 6: Count for Pair of Instructions (Part 2) 
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11.2. Appendix B: Table Containing Log Odds for Pair of Instructions  

 

 MOV NOP CAL LEA PUS POP JMP 

MOV -0.75129151904491 -7.77271836370932 -2.7055845321917 -3.96762322902811 -4.51855101818601 -4.71201056995588 -4.00039294771691 

NOP -6.31370334102804 -3.60175507122273 -9.68063832813251 -5.63717793636319 -5.70730886744794 -10.3814798602256 -7.1839649844503 

CAL -3.15657475640606 -7.31745631062545 -6.15830710134644 -5.69110697241581 -8.27337619450129 -7.33487211965479 -5.2063471980019 

LEA -3.70621233369479 -10.0449952229882 -6.25183125290145 -4.87811665180808 -4.69627534578186 -6.81522493153474 -7.45117344685566 

PUS -3.90519066249299 -14.1504323074871 -5.9285378978875 -7.67762376159906 -4.85721218381966 -11.2977891927358 -9.97599925132316 

POP -6.50226191064342 -13.0518185880298 -14.5558976540599 -9.78092865272613 -8.25210314768194 -4.05132651314344 -6.34879577748766 

JMP -3.94387026752639 -5.12010322450171 -6.82551733151786 -5.16494139387068 -7.7956515461628 -9.72752477578027 -8.21262564687862 

TES -5.08622722384502 -11.5354634677517 -15.2490450730844 -8.59599745511516 -10.6640544630826 -11.7525298807225 -9.06684498134488 

SUB -3.98249059036235 -11.4648451851369 -7.44257766949879 -6.71614721117076 -6.75334051627934 -9.93579092303844 -8.47118932414622 

CMP -5.29765110067038 -9.62135790252502 -15.2490450730844 -8.10908422660714 -9.5860161512736 -10.2251285434391 -7.3095741852385 

JE -3.58911734477546 -8.03421677159556 -7.55595281259616 -6.30948405544621 -9.270065348727 -8.33805531506799 -7.10412547764447 

JNZ -4.12808783307532 -8.19087023996975 -7.82388356474672 -6.72486891765747 -10.30736950335 -8.14955474576016 -6.35911103163553 

ADD -4.30764733228578 -9.69990793939476 -8.01670512906182 -6.58637369445226 -6.78984086932419 -5.44144103643568 -5.95056867787705 

RET -5.51029474695566 -5.67159807274295 -7.96731309899371 -5.29093398852419 -5.74816436425196 -8.4826465882627 -8.03127679988243 

 

Table 7: Log Odds for Pair of Instructions (Part 1) 

 
 
 
 TES SUB CMP JE JNZ ADD RET 

MOV -3.7577778558957 -4.17880451001309 -3.92997066867103 -5.1582931509265 -6.09727060642954 -4.09168358558255 -6.87099724654045 

NOP -9.18982004794497 -9.34906091462947 -8.56549381447954 -10.3002517971086 -10.9052215277589 -6.69119809406928 -11.953202006982 

CAL -4.79884336326152 -7.3319483678539 -5.82801975437029 0 -14.1504323074871 -5.59875638326331 -11.2416990106821 

LEA -7.18522498861558 -6.46179209177736 -5.98027236036451 -8.68220331909892 -9.06891347290096 -6.62526606092949 -10.2317294659436 

PUS -10.4287341759066 -5.23173213242814 -11.0005333768441 -11.5854743652599 -13.4572844115328 -7.89944360584315 -11.4648451851369 

POP -11.2787407592976 -10.3662119111509 -11.1218961415945 -9.46822453026811 -11.916834124345 -8.11305840822444 -4.36953865411523 

JMP -7.44420928061565 -7.4753048787993 -6.20605563870583 -12.6099846434249 -12.4158279135878 -7.53651569422682 -14.5558976540599 

TES -14.1504323074871 0 -13.4572844115328 -3.85945317114158 -4.31841741355554 -10.2931843914129 -14.1504323074871 

SUB -8.03421677159556 -7.75474281218635 -6.03932912663443 -10.0728533698648 -10.7716875119731 -7.31243323903005 -10.3814798602256 

CMP -13.8627499965706 -12.7641358001827 -10.5216305459831 -4.15585433894936 -4.79359054029018 -9.82845641784348 0 

JE -6.26031473983025 -7.36534335228878 -5.21327582050379 -11.0593748307406 -11.6936889037666 -7.00380325562496 -14.1504323074871 

JNZ -6.69119809406928 -8.64221864603631 -6.35883457761307 -12.2533082686933 -12.4764527738696 -7.24129517251662 -14.5558976540599 

ADD -6.9123791049777 -6.82750033244031 -5.97064880492973 -9.08772495128403 -9.92598644598958 -4.620951645574 -7.85170769764496 

RET -8.94996633158059 -9.42591881181064 -7.88475544231717 -12.2533082686933 -13.0518185880298 -8.45536644599337 -14.5558976540599 

 

Table 8: Log Odds for Pair of Instructions (Part 2) 
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11.3. Appendix C: Chi-square Distribution Table 

 

 

Table 9: Chi-square Distribution Table 


