

 APPROXIMATE DISASSEMBLY

USING DYNAMIC PROGRAMMING

A Research Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Abhishek Shah

Fall 2010

© 2010

Abhishek Shah

ALL RIGHTS RESERVED

SAN JOSÉ STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Project Titled

APPROXIMATE DISASSEMBLY

USING DYNAMIC PROGRAMMING

by

Abhishek Shah

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp, Department of Computer Science Date

Dr. Sami Khuri, Department of Computer Science Date

 Dr. Robert Chun, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

 Associate Dean Office of Graduate Studies and Research Date

i

Abstract

APPROXIMATE DISASSEMBLY USING DYNAMIC PROGRAMMING
by Abhishek Shah

Most commercial anti-virus software uses signature based techniques to detect whether a file

is infected by a virus or not. However, signature based detection systems are unable to detect

metamorphic viruses, since such viruses change their internal structure from generation to

generation. Previous work has shown that hidden Markov models (HMMs) can be used to

detect metamorphic viruses. In this technique, the code is disassembled and the resulting

opcode sequences are used for training and detection. Due to the disassembly step, this

process is not efficient enough to use when a decision has to be made in real time.

In this project, we explore whether dynamic programming can be used to speed up the process

of disassembling, with minimal loss of accuracy. Dynamic programming is generally used to

solve problems having two key attributes: optimal substructure and overlapping sub problems.

During each iteration our algorithm reads part of the input stream from the executable file and

determines assembly instructions, thus dividing problems into sub problems.

We have created a score matrix representing digraphs of the most common opcode

instructions and we have implanted a dynamic program based on this scoring matrix. For

various file sizes, we determine the time taken by our dynamic program and we show that our

approach is significantly faster than a standard disassembler (OllyDbg). Finally, we analyze the

accuracy of our results.

ii

Acknowledgements

I would like to thank Dr. Mark Stamp for guiding and encouraging me throughout the project. I

would also like to thank my committee members, Dr. Sami Khuri and Dr. Robert Chun for

helping me during the project.

iii

Table of Contents

1. Introduction ... 1

2. Computer Viruses .. 3

2.1. Simple Viruses .. 3

2.2. Encrypted Viruses ... 3

2.3. Oligomorphic Viruses ... 4

2.4. Polymorphic Viruses ... 4

2.5. Metamorphic Viruses ... 5

2.5.1. Different Techniques of Metamorphism .. 6

2.5.1.1. Garbage Code Insertion ... 6

2.5.1.2. Register Usage Exchange ... 7

2.5.1.3. Permutation Technique ... 7

2.5.1.4. Insertion of Jump Instruction .. 7

2.5.1.5. Instruction Replacement ... 8

2.5.1.6. Host Code Mutation .. 8

2.5.1.7. Code Integration .. 8

3. Hidden Markov Model (HMM) .. 9

4. HMM for Metamorphic Virus Detection ... 11

5. Technical Details of Disassembly ... 13

5.1. Compilation .. 13

5.2. Disassembly .. 14

5.2.1. Types of Static Disassembly ... 14

5.2.1.1. Linear Sweep ... 15

5.2.1.2. Recursive Traversal .. 15

5.2.1.3. Hybrid Disassembly ... 15

5.3. Intel Architecture Instruction Format .. 16

6. Dynamic Programming .. 19

6.1. Top Down Approach ... 19

6.2. Bottom Up Approach ... 20

iv

6.3. Example .. 20

7. Our Algorithm .. 23

7.1. Sample Input Stream .. 28

8. Test and Results ... 32

8.1. Speed Test .. 32

8.2. Accuracy Test ... 37

9. Conclusions and Future Work ... 42

10. References ... 43

11. Appendix .. 46

11.1. Appendix A: Table Containing Count for Pair of Instructions 46

11.2. Appendix B: Table Containing Log Odds for Pair of Instructions 48

11.3. Appendix C: Chi-square Distribution Table .. 49

v

List of Figures

Figure 1: Generations of Polymorphic Virus [2] ... 5

Figure 2: Virus Body of Different Metamorphic Virus [2] ... 6

Figure 3: Hidden Markov Model [7] .. 10

Figure 4: Process for Detecting Metamorphic Virus ... 11

Figure 5: Compilation and Reverse Engineering [5] ... 13

Figure 6: Intel 64 and IA-32 Architectures Instruction Format [10] ... 16

Figure 7: Finding Fibonacci Numbers Recursively .. 20

Figure 8: Solution Tree for Fibonacci Series ... 21

Figure 9: Finding Fibonacci Numbers by Dynamic Programming ... 21

Figure 10: Process Used for Matrix Generation ... 25

Figure 11: Example .text Section of an Executable File .. 26

Figure 12: Using Our Algorithm for Generating Assembly Code from Executable File 27

Figure 13: Solution by Our Algorithm ... 30

Figure 14: Solution Path .. 31

Figure 15: Time Comparison (250KB to 1050KB) .. 33

Figure 16: Time Comparison (1210KB to 1850KB) .. 34

Figure 17: Time Comparison (2455KB to 3670KB) .. 35

Figure 18: Average Time Comparison ... 36

Figure 19: Accuracy Test ... 38

vi

List of Tables

Table 1: Binary Representation of OR Instruction .. 18

Table 2: Matrix of Instruction Occurrences .. 23

Table 3: Tabulated results calculating chi-square statistic ... 40

Table 4: Tabulated results calculating chi-square statistic ignoring low frequency 41

Table 5: Count for Pair of Instructions (Part 1) ... 46

Table 6: Count for Pair of Instructions (Part 2) ... 47

Table 7: Log Odds for Pair of Instructions (Part 1) .. 48

Table 8: Log Odds for Pair of Instructions (Part 2) .. 48

Table 9: Chi-square Distribution Table ... 49

1

APPROXIMATE DISASSEMBLY

USING DYNAMIC PROGRAMMING

1. Introduction

Viruses are among the most challenging problems in computer security. According to

Cohen [12], a computer virus is a program that disrupts the normal functioning of a system

by modifying the underlying programs or by using resources without the consent of the

user. A virus can cause harm to a host machine or a system. The effect of malware can be as

simple as displaying a threatening message, or as complex as subtlety changing the

functionality of an important program. For example, a recent virus named Stuxnet was

identified as code that could reprogram programmable logic control software to give an

attached nuclear controller new instructions [13].

To detect viruses, most anti-virus software uses signature based techniques. A signature

generally consists of binary data that represent the file [18]. To avoid signature based

detection, virus writers have developed sophisticated methods, including polymorphic

viruses, oligomorphic viruses, and metamorphic viruses [2]. Metamorphic viruses, which

are, arguably, the most dangerous of all, change their structure or signature each time they

propagate, without changing the functionality of the virus.

Research currently being conducted in the field of metamorphic virus detection includes:

[1]. Hidden Markov models (HMMs) have proved to be an effective technique for detecting

2

metamorphic viruses [4] and [19]. One disadvantage of using HMMs is that an executable

file has to be disassembled and its opcode sequence extracted before it can be scored, and

this process of disassembling can be time consuming [16]. In this paper, we present a fast

approach to disassembly, using dynamic programming. In dynamic programming a complex

problem is divided into smaller problems in recursive manner [8]. The results of the solved

smaller problems are stored for later reference.

The aim of this project is to use dynamic programming to reduce the time required to

disassemble executable files. First, the .text section, which contains program code, is

extracted from the executable file. We then determine an opcode sequence by scoring

possible paths based on pre-computed statistics obtained by disassembling a large number

of executable files.

This paper is organized as follows. In Section 2, we provide background information about

viruses and their types and we discuss the techniques used to generate metamorphic

viruses. Section 3 describes the Hidden Markov Model. Section 4 describes how HMMs can

be used to detect metamorphic viruses. Section 5 describes different methods for

disassembling an executable file and discusses Intel Architecture instruction format. Section

6 discusses dynamic programming in general. Section 7 explains our algorithm and how it

can be used to accurately determine assembly code from an executable file. Section 8

provides test results for the speed and accuracy of our technique, for a wide variety of file

sizes. Section 9 presents our conclusions and suggestions for future work.

3

2. Computer Viruses

A computer virus is a malicious program which infects a host system without the consent of

the user. It is responsible for altering the default system behavior. Computer viruses find

executable files and infect them by copying code known as payload into them. Finally the

virus will determine if the desired condition, like number of infections, is met [1]. Anti-virus

software detects the presence of viruses in the system and removes them. Most anti-virus

programs use signature based detection. Various methods are used to avoid signature

based detection, which we will discuss in the next section.

According to [2] and [3], there are five types of viruses: simple, encrypted, oligomorphic,

polymorphic, and metamorphic.

2.1. Simple Viruses

A simple virus replicates itself while infecting files and does not use sophisticated methods

to hide itself from detection. When a program infected by this type of virus is opened; the

virus alters the default behavior of the computer and replicates itself to other files. Each

virus of this type has a specific signature. This makes it very easy for anti-virus software to

detect and remove them.

2.2. Encrypted Viruses

Encrypted viruses were invented to hide the malicious functionality. The body of this virus

consists of constant decryptor and encrypted virus body. The malicious intent is hidden in

4

the encrypted body of the virus. During infection, the decryptor first decrypts the encrypted

body and thereafter spreads the infection. These viruses can be easily detected because

they use common decryptors. The anti-virus software can check the signature of the

decryptor to detect these types of viruses.

2.3. Oligomorphic Viruses

Oligomorphic virus is an improved version of the encrypted virus. In this type of virus the

decryptor is changed each time during propagation. However, there is a limited number of

forms in which the decryptor can exist. According to [2], Win95/Memorial had the ability to

build 96 different decryptor patterns. Thus, signature based detection technique can still be

used if all of the different flavors of decryptor are included. Another technique used to

detect these viruses is dynamic decryption of encrypted virus, after which signature based

detection techniques can be used.

2.4. Polymorphic Viruses

Polymorphic virus is capable of creating an infinite number of decryptors after each

infection. It consists of a decryptor, a mutation engine, and a virus body. The mutation

engine changes the decryptor, which thwarts detection by signature based antivirus

software. However, polymorphic viruses can be detected by first using dynamic decryption

and then using signature based techniques on the unencrypted body. Figure 1 shows

different body structures of same polymorphic virus.

5

Figure 1: Generations of Polymorphic Virus [2]

2.5. Metamorphic Viruses

Unlike other kinds of viruses, metamorphic viruses do not have a decryptor, a mutation

engine, or an encrypted virus body. Metamorphic viruses change their form each time they

spread infection while keeping their functionality intact. In this way they avoid detection

using signature based techniques commonly employed by anti-virus software. Code

obfuscation techniques are used by metamorphic viruses to change body structure as

shown in Figure 2.

6

Figure 2: Virus Body of Different Metamorphic Virus [2]

2.5.1. Different Techniques of Metamorphism

According to [1], various types of techniques are used by metamorphic viruses in order to

avoid detection. Metamorphic virus might use one or more of the following techniques.

2.5.1.1. Garbage Code Insertion

Garbage code insertion technique is a simple technique used to generate metamorphic

virus. In this technique some code is inserted that does not change the default functionality

of the virus. A simple example is to insert a for loop which does not do anything. The code

7

inserted is called garbage since it does not do anything useful. The use of this technique

avoids signature based detection used by the anti-virus software.

2.5.1.2. Register Usage Exchange

The register usage exchange technique uses different registers in different generations of

virus. The code and functionality remain unchanged in this technique. Here the complexity

of code is not very high. Anti-virus software which does not support wild card string

matching cannot detect virus generated by this technique.

2.5.1.3. Permutation Technique

The permutation technique divides the code into many fragments and then rearranges it in

different permutations from generation to generation. Jump instructions are used to

connect these fragments. However, the control flow during each generation remains the

same. If the code is divided into n fragments, then there is a possibility of generating n!

metamorphic virus.

2.5.1.4. Insertion of Jump Instruction

Metamorphic viruses sometimes use jump instructions to generate different body

structures. The jump instruction is removed or inserted at random locations, and it points to

the next instruction within the virus code. This type of virus does not generate a constant

body, even in memory, and they are not possible to detect using wild card string matching.

8

2.5.1.5. Instruction Replacement

Another method used by metamorphic virus is the replacement of the instructions which

match the functionality. If there are two instructions which have the same functionality but

different opcode, then this technique can be used by metamorphic viruses to avoid

detection. For example “AND ESI, ESI” can be replaced by “TEST ESI, ESI” or vice versa, since

both have the same functionality. Another example is to use different versions of

conditional jump instructions and modify the code accordingly.

2.5.1.6. Host Code Mutation

The host code mutation technique targets different executable files on the host computer

during each generation. This produces new viruses during each generation. Since it infects

different executable files, it is impossible to have a common disinfection technique [20].

2.5.1.7. Code Integration

Code integration is a sophisticated technique used by metamorphic virus to generate new

body structure during each generation. In this technique, the virus first decompiles the

executable file, divides the code into different fragments, inserts virus code, and compiles

the entire code again to generate new executable code. This makes it hard to detect the

virus, and even more difficult to repair the executable [2].

9

3. Hidden Markov Model (HMM)

A Hidden Markov Model is a statistical Markov model in which the hidden states are used to

produce the observation state. A Markov model determines the current state on the basis

of the previous state. In a Hidden Markov Model the states are invisible to the user.

However, observation states are visible. Each observation state depends on the hidden

states. According to [7], we can use the following notation to represent HMM

Let

T = length of the observation sequence

N =number of states in the model

M =number of observation symbols

Q = {q0, q1, . . . , qN−1} = states of the Markov process

V = {0, 1, . . . , M − 1} = all possible observations

A = state transition probabilities

B = observation probability matrix

π = initial state distribution

O = (O0, O1, . . . , OT−1) = observation sequence

Figure 3 shows a Hidden Markov Model where each Markov process Xi [except X0] is

generated by taking into consideration the previous Markov process and A matrix, which

represents state transition probabilities. The user can only see the observation sequence O.

Each observation state is produced by Hidden Markov Process Xi and B matrix, which

represents the observation probability matrix.

10

Figure 3: Hidden Markov Model [7]

HMM is used in applications such as speech recognition, cryptanalysis, gene prediction, etc.

where the output depends on states which are not observable.

11

4. HMM for Metamorphic Virus Detection

According to [4], the HMM model can be used to detect metamorphic viruses that belong to

the same family. In this method, HMM is first trained by giving assembly code of various

metamorphic virus files as input. All the executable files of the same metamorphic virus

family are disassembled, and opcode are extracted. A disassembler, such as OllyDbg, is used

for disassembling the exe file. These opcode are concatenated to form a long sequence.

Each of these sequences is given as input to the HMM model and thus, at the end of the

process, the HMM model represents a statistical model of the virus family. Figure 4 shows

the entire process of detecting metamorphic viruses with the help of HMM model.

Dissassembler
(OllyDbg)

Unknown.exe file Assembly-code file

Trained HMM
Model

(determines whether
virus file or not)

Figure 4: Process for Detecting Metamorphic Virus

The HMM is tested against two types of files: one type belongs to the same metamorphic

virus family and other type is a non-virus program or a virus file of some other family. The

HMM should give a high score for files that belong to the same metamorphic virus family

for which we trained our HMM. However, the HMM should give a low score for any non-

virus program or virus file of some other family [4].

12

However, there is one problem with the above method. One has to disassemble the entire

executable file in order to determine whether it is a virus file or not. The process of

disassembly takes a long time. For example, it would take 18 sec on average to disassemble

a 3.6MB executable file. This can be optimized by using dynamic programming, which is

faster than disassemblers such as OllyDbg. Later, we present our algorithm, which produces

assembly code at a faster rate than OllyDbg and with a great deal of accuracy. The following

section explains the compilation and reverse engineering process.

13

5. Technical Details of Disassembly

In this section, we discuss the process of converting source code into executable and the

process of converting executable file into assembly code. We also discuss the types of

disassembly and Intel instruction format.

5.1. Compilation

A computer programmer writes a program in high level language like C, C++, etc. The source

code is converted into assembly code and finally to machine code (executable file) which is

platform-dependent. This process is known as compilation. Disassembly is the process of

converting machine code into assembly code. The process of converting assembly code

back to source code is known as decompilation. Figure 5 shows the entire process.

Figure 5: Compilation and Reverse Engineering [5]

14

5.2. Disassembly

The executable file contains a header, a section table, and different sections such as text,

data, relocation section, etc. [6]. In addition, it contains information about the size of the

executable file, location and size of each section, a stub program that will be executed if the

program is run on MS-DOS (without Windows), etc. Converting this executable file (which

the machine understands) into a file containing assembly code that a human being can

understand is called disassembly.

There are two types of disassembly: static disassembly and dynamic disassembly. In static

disassembly, the disassembler analyses the entire executable file and converts it into

assembly code. In dynamic disassembly, the disassembler analyses only a few of the

instructions which are to be executed and converted into assembly code. OllyDbg, when

used without a debugger, is an example of static disassembly, however when it is used with

debugger it is an example of dynamic disassembly. In static disassembly, the speed of

disassembly is directly proportional to the size of executable file. However, in dynamic

disassembly the size of the executable file does not affect the speed of disassembly. In this

project we focus on static disassembly.

5.2.1. Types of Static Disassembly

There are three approaches used in static disassembly. They are linear sweep, recursive

traversal, and hybrid disassembly.

15

5.2.1.1. Linear Sweep

In linear sweep the disassembler first finds the starting address of the program. After

finding that address, the disassembler starts converting machine code into assembly code

one by one. The linear sweep method does not take into consideration the control flow of

executable program. objdump, part of GNU Binutils, is an example of a linear sweep

disassembler [21]. The problem with this approach is that errors are not detected until an

unknown machine code is encountered. Many viruses use special techniques to confuse

linear sweep disassemblers.

5.2.1.2. Recursive Traversal

Unlike linear sweep, recursive traversal takes into account control flow of the program

during disassembly of machine code into assembly code. This method starts disassembling

the executable file and whenever it encounters jump instructions it follows that address and

continues the process. When a conditional jump is encountered it takes into consideration

both possible paths and generates assembly code. The main advantage of this method is

that it is able to bypass the junk code in the executable code. According to [14] and [22],

OllyDbg and IDA Pro use recursive traversal method for disassembling executable files.

5.2.1.3. Hybrid Disassembly

Both the linear sweep and recursive traversal methods described above sometimes do not

disassemble the executable file correctly. This problem can be overcome by using a hybrid

disassembly method. In hybrid disassembly method first the executable file is disassembled

16

using linear sweep and then this disassembled code is verified using recursive traversal. If

the verification passes then no change is made but if verification fails then that code is

removed from subsequent optimization. The problematic code is inserted in the program

after optimization has been applied to the remaining part of program. This approach will

require updating the addresses within the machine code [11].

5.3. Intel Architecture Instruction Format

Figure 6 shows Intel 64 and IA-32 Architectures Instruction Format. Each instruction consists

of optional instruction prefixes, opcode bytes, the ModR/M byte and the SIB (Scale-Index-

Base) byte, a displacement, and an immediate data field.

Figure 6: Intel 64 and IA-32 Architectures Instruction Format [10]

Instruction Prefixes

The instruction prefix is an optional part of instruction format and is divided into four

groups. Each instruction can have at the most one prefix code from each group.

Group 1

F0H is used as lock prefix, F2H is used for encoding REPNE/REPNZ and F3 is used for

encoding REP/REPE/REPZ

17

Group 2

2EH is used as CS segment override prefix, 36H is used as SS segment override prefix, 3EH is

used as DS segment override prefix, 26H is used as ES segment override prefix, 64H is used

as FS segment override prefix, 65H is used as GS segment override prefix. 2EH is used for

branch not taken; 3EH is used for branch taken.

Group 3

66H is used as operand-size override prefix.

Group 4

67H is used as address-size override prefix.

Opcode

The opcode can be 1, 2 or 3 bytes in length. Opcode specifies the operation to be

performed by the instruction. Sometimes 3 extra bits of opcode field are stored in ModR/M

byte. The opcode field contains mandatory prefix, sign extension, displacement size, and

register encoding.

ModR/M and SIB Bytes

ModR/M is of one byte. It contains information about the addressing mode and the

registers used by the instruction. It consists of mod field, reg/opcode field and r/m field.

SIB byte which follows ModR/M byte stands for Scale Index Base. It contains scale field

which specifies factor, index field which specify particular index register and base field

which specify particular base register. Following formula is used for calculating SIB value.

SIB value = (INDEX * 2^SCALE) + BASE

Displacement and Immediate Bytes

18

A displacement which follows optional SIB byte can be of 1, 2 or 4 bytes in length. The size

of displacement is decided by Mod field.

Immediate field which follows displacement byte can be 1, 2 or 4 bytes in length. For

instruction ADD BX, 0xFFFF the immediate field value is 0xFFFF.

Example

OR EAX, [ECX + EDX*2 + 508090B0h]

The above instruction does OR operation and is represented in the assembly code. In Table

1, we represent the same in the binary form.

Opcode ModM/R SIB Displacement

00001011 10000100 01010001 10110000 10010000 10000000

01010000

Table 1: Binary Representation of OR Instruction

In the next section we discuss in detail dynamic programming and two different ways in

which it can be implemented.

19

6. Dynamic Programming

Dynamic programming is an efficient method for solving problems that can be divided into

smaller problems and which exhibit properties of overlapping sub problems. This method is

usually used to solve search and optimization problems. Like divide and conquer method,

the highly complex problems are divided into sub problems. However unlike divide and

conquer, the dynamic programming takes advantage of overlapping sub problems. The

method first solves the sub problems; stores the results of the sub problems, and use the

results to solve more complex problems. For overlapping sub problems, dynamic

programming is much better than divide and conquer since it only needs to solve each

problem once.

Dynamic programming can be implemented in either of two ways: top down approach or

bottom up approach [23].

6.1. Top Down Approach

This approach is used when we can apply recursion to solve the bigger problem. In top

down approach we first try to look up and see if the problem is already solved. If it is not

solved; we first solve it and store the result. If the problem is already solved we use the pre-

computed result and solve the problem.

20

6.2. Bottom Up Approach

In this approach, we first divide the problem into sub problems recursively. Then we try to

solve sub problems and store results into a table. We use the solutions of these sub

problems to solve the bigger problem.

In the next section, we explain a simple problem and how it can be solved using dynamic

programming.

6.3. Example

Consider the problem of finding the nth Fibonacci number where n is a whole number. The

initial condition of the algorithm is fibo(0)=0 and fibo(1)=1. For any n, Fibonacci number is

found by using equation fibo(n)=fibo(n-1)+fibo(n-2). The simple recursive implementation is

shown in Figure 7.

Figure 7: Finding Fibonacci Numbers Recursively

Here the problem at each stage is divided into smaller sub problems until it can no longer

be divided. Smaller sub problems are solved and combined together to get solutions to the

21

bigger problem. In general, the problem of calculating fib(n) depends on solving 2 sub

problems: fib(n-1) and fib(n-2). The general solution tree for fibo(4) is shown in Figure 8.

Figure 8: Solution Tree for Fibonacci Series

As shown in Figure 8, there is one sub problem that is calculated more than once. For

example fibo(2) is calculated 2 times. We can optimize this problem by using dynamic

programming. Consider the algorithm shown in Figure 9.

Figure 9: Finding Fibonacci Numbers by Dynamic Programming

22

As shown in Figure 9, the same problem can be solved using dynamic programming. Since

this problem exhibits the property of optimal substructure, first we divide the bigger

problem into smaller problems. If we solve the smaller sub problem; we store the result.

This result is later used if the same problem is encountered again. Since the problem of

finding fibonacci number exhibits properties of optimal substructure and overlapping sub

problems, we can use dynamic programming to solve it efficiently. In Big O notation, the

naive recursion implementation takes exponential time while dynamic programming takes

O(n) time. We use dynamic programming in our algorithm which is discussed in the next

section.

23

7. Our Algorithm

The aim of our project is to develop a program that can accurately predict assembly code

from executable files. We use dynamic programming to predict assembly code from

executable files. We took 50 .exe files from Cygwin folder, which had a size range from

300KB to 662KB. The size range was selected randomly. All these files were opened in

OllyDbg individually and the .text section of each .exe file was extracted. We take only the

.text section since it contains the program code. The text section was saved individually into

50 different .txt files. The name of the text file was kept the same as the exe file name. Each

of the files was given as an input to the program, which generated a 2-dimensional table

representing the count of pair of instructions. The first row and first column consisted of 14

instructions. All the other cells consisted of integer values representing the number of times

instructions in row followed by instructions in column appeared.

 MOV NOP . . .

MOV 1344183 1765

NOP 7582 111344

. .
 .

Table 2: Matrix of Instruction Occurrences

As shown in Table 2, the number of times MOV instruction occurs and a consecutive MOV

instruction occurs is 1344183. Similarly the number of times NOP instruction occurs and

another MOV instruction occurs is 7582. The most frequently occurring instructions in the

.text section of the executable file were MOV, NOP, CAL, LEA, PUS, POP, JMP, TES, SUB,

24

CMP, JE, JNZ, ADD and RET. Hence this project only takes these 14 instructions in

consideration. Appendix A shows the matrix. Another program took a matrix of 50 files as

input and added them all; giving a single large matrix. After addition, probability of each cell

in the matrix was calculated and a new matrix was generated. The formula used was (value

of a particular cell) / (Total value of all cells). It was then converted into odds using formula

(p) / (1-p). The logarithmic odd for each cell was calculated. The reason we decided to take

logarithmic odd instead of probability was that we can sum the log odds instead of trying to

multiply probabilities, which might give underflow. Appendix B shows the final log odd

matrix. The process described above is shown in Figure 10. It is important to notice that this

process is performed only once for the generation of statistical data. Later we use the

output of this process to determine assembly code instructions from executable file.

25

OllyDbg
Disassembler

Parsing
Program

Matrix.txt file containing
instruction pair count

50 .txt files containing text section

50 .exe files from cygwin folder

Logarithmic odd
calculation

program

LogMatrix.txt file containing
logarithmic odd value

Figure 10: Process Used for Matrix Generation

We used dynamic programming to solve the problem of finding assembly instructions from

the executable file without disassembling it. First we extracted the .text section of

executable files. We use the program mentioned in [22] for extraction of .text section

whose output is a text file. The .text section that was originally in binary form is converted

to a hexadecimal representation. Figure 11 shows part of the output of this program.

26

Figure 11: Example .text Section of an Executable File

We then read the file containing hex codes and get the input stream. The input stream is

then supplied to our main program. With the help of the matrix shown in Appendix B, our

main program tries to determine the assembly instruction using dynamic programming. This

process is shown in Figure 12.

27

.text section
extractor

Main
Program

Sample.exe file Sample.txt
containing hex
code stream

Output.txt file
with

approximate
instruction

LogMatrix.txt file containing
logarithmic odd value

Figure 12: Using Our Algorithm for Generating Assembly Code from Executable File

During each iteration, the algorithm parses the input stream of length 2 or 4 and maintains

2 tables with the following information.

 Score – This column contains a decimal value which is updated after parsing each of

the instructions. We use the table shown in Appendix B to update the score.

 Instruction Opcode – This column contains opcode of each instruction. The opcode

are generated by refereeing [10]. The opcode is represented in hexadecimal format.

For example instruction MOV BYTE PTR DS:[EDX],AL in the executable file is

represented as 8802H where 88H is opcode while 02H is operand. The column

keeps track of the opcode of instruction. Thus, for the above example, we store 88H.

 Length of instruction – This column contains all the possible lengths of the

instruction. MOV instruction whose opcode is 89H can be of length 4, 6, 8, 12 or 14.

We determined the length by looking at Intel® 64 and IA-32 Architectures Software

28

Developer's Manual Volume 2A: Instruction Set Reference, A-M and Intel® 64 and IA-

32 Architectures Software Developer's Manual Volume 2B: Instruction Set

Reference, N-Z [10]. For example consider instruction MOV EBP,ESP which is

represented as 89E5 while instruction MOV DWORD PTR SS:[ESP],EAX is

represented as 890424 in the executable file. The first instruction is of length 4 while

later instruction is of length 6. We capture this information in this column.

 Flag to know if set or not-set – We use this flag to track if that opcode has occurred

or not. This will help in building the solution path.

 Pointer for current location of input string – This column is initially set to 0. It keeps

track of the location where next input stream should be parsed.

 Instruction name – This column represents the name of the instruction. We use 3

letters to represent each instruction uniquely. For example move instruction is

represented as “MOV”; push instruction is represented as “PUS”.

7.1. Sample Input Stream

Consider stream 5589E583EC18895DF88B5508....... as input to our algorithm. This is the

beginning part of the .text section of an executable file. The program first reads 55H from

the input stream. It references the lookup table and finds that it is a PUSH instruction and of

length 2. It now moves the pointer and reads the next data. Thus it reads 89H. From the

lookup table the algorithm knows that it can represent opcode of a MOV instruction. The

length can be 2,4,6,10,12 excluding 89H. This is represented in Figure 13 by the value

between each node. The algorithm keeps track of the score between 2 nodes. Moreover the

29

algorithm looks up in the matrix shown in Appendix B and finds that the logarithmic odd

value of instruction MOV occurs after instruction PUSH is -3.91. This value is added to the

path [initial value of the path is assumed to be 0] as shown in the Figure 13. In this way

node numbers 2,3,4,5 and 6 are added to the possible solutions. For node number 2, the

algorithm skips E5H (part of the input 5589E5...) since the operand length is 2 and thus the

next input stream would be 83. Since it is 83H it grabs 2 more from input and hence it is

83EC which is opcode for SUB instruction. From the lookup table in Appendix B the value of

SUB instruction occurring after MOV is -4.17. This value is added to -3.91 and the path value

becomes -8.08. In a similar fashion, the algorithm continues to process the input stream and

builds the possible path. In the end, the algorithm considers all the paths with large

numbers of nodes and finds the value that is closest to 0.

30

55[0]

83EC[2]

89[12]

89[10]

89[6]

89[4]

89[2]

5D[0]

89[2]

89[4]

89[6]

89[10]

89[12]

8B[2]

8B[4]

8B[6]

8B[10]

8B[12]

55[0]

Input Stream = 5589E583EC18895DF88B5508.....

PUSH

MOV

SUB

POP

MOV

MOV

PUSH

-3
.9

1

-3.91

-3.91

-3.91
-3.91 -8.62

-8.08

-1
2.0

7

-12.07

-12.07
-12.07-12.07

-1
2.8

2

-12.82

-12.82

-12.82

-12.82
-16.58

Figure 13: Solution by Our Algorithm

In this example, the nodes in the end i.e. 8BH have value -12.82 while 55H has -16.58. The

algorithm selects the best path that is closest to 0. In our example, the path shown in red in

Figure 14 is selected. Hence the expected instructions are PUSH, MOV, SUB, MOV, MOV.

31

55[0]

83EC[2]

89[12]

89[10]

89[6]

89[4]

89[2]

5D[0]

89[2]

89[4]

89[6]

89[10]

89[12]

8B[2]

8B[4]

8B[6]

8B[10]

8B[12]

55[0]

Input Stream = 5589E583EC18895DF88B5508.....

PUSH

MOV

SUB

POP

MOV

MOV

PUSH

-3
.9

1

-3.91

-3.91

-3.91
-3.91 -8.62

-8.08

-1
2.0

7

-12.07

-12.07
-12.07-12.07

-1
2.8

2

-12.82

-12.82

-12.82

-12.82
-16.58

PUSH MOV SUB MOV MOV

Figure 14: Solution Path

32

8. Test and Results

In this section, we discuss the tests we conducted to determine the speed and accuracy of

our algorithm and its results.

8.1. Speed Test

The tests were performed on a Window 7 Home Premium, 64 bit operating system, Intel

Core 2 Duo T6500 processor, 2.1GHz and 4GB RAM. The tests were conducted on 65

executable files with average file sizes ranging from 250KB to 3670KB. For each file, we

measured the time taken to disassemble by a standard disassembler like OllyDbg v1.10 and

also by our program.

Average File Size Range: 250KB to 1050KB

In this test, the total number of files is 20 and the average file size ranges from 250KB to

1050KB. The average time taken by our program for this file range to generate instructions

is 1500 milliseconds. The average time taken by OllyDbg to disassemble the files is 1775

milliseconds. The time taken by OllyDbg is 18% more than the time taken by our program.

For only some files of average size 1050KB the time taken by OllyDbg is slightly less than our

algorithm, which might be due to a slight error in the calculation of time taken to

disassemble through OllyDbg. The results of this test are shown in Figure 15.

33

Figure 15: Time Comparison (250KB to 1050KB)

Average Files Size Range: 1210KB to 1850KB

In this test, the total number of files is 20 and the average file size ranges from 1210KB to

1850KB. The average time taken by our program to generate the instructions is 3963

milliseconds. The average time taken by OllyDbg to disassemble the files is 4750

milliseconds. The time taken by OllyDbg is 20% more than the time taken by our program.

The results of this test are shown in Figure 16.

0

500

1000

1500

2000

2500

3000

250 510 760 1050

Ti
m

e
 (

m
s)

Average File Size (KB)

Our Program

OllyDbg

34

Figure 16: Time Comparison (1210KB to 1850KB)

Average File Size Range: 2455KB to 3670KB

In this test, the total number of files is 25 and the average file size ranges from 2455KB to

3670KB. The average time taken by our program to generate the instructions is 9588

milliseconds. The average time taken by OllyDbg to disassemble the files is 12800

milliseconds. The time taken by OllyDbg is 33% more than the time taken by our program.

The results of this test are shown in Figure 17.

0

1000

2000

3000

4000

5000

6000

1210 1420 1635 1850

Ti
m

e
 (

m
s)

Average File Size (KB)

Our Program

OllyDbg

35

Figure 17: Time Comparison (2455KB to 3670KB)

Considering all the files of different sizes, the average time taken by our program is 5370

milliseconds, while that by OllyDbg is 6930 milliseconds. From Figure 18 it is clear that as

average file size increases, the time taken by our program increases linearly, since we use

dynamic programming in our solution.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2455 2997 3205 3453 3670

Ti
m

e
 (

m
s)

Average File Size (KB)

Our Program

OllyDbg

36

Figure 18: Average Time Comparison

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

250 510 760 1050 1210 1420 1635 1850 2455 2997 3205 3453 3670

Ti
m

e
 (

m
s)

Average File Size (KB)

Our Program

OllyDbg

37

8.2. Accuracy Test

In this section, we measure the accuracy of our program. First the executable file is opened

in OllyDbg. The .text section of the executable file is extracted and copied in the text file.

Later the executable file is supplied to our system, which first extracts the .text section and

then determines the assembly instructions. We then compare the output from our

algorithm to that from OllyDbg. We used Needleman–Wunsch algorithm [27] for the output

comparison. This algorithm is generally used for in bioinformatics to align protein or

nucleotide sequences and calculate the alignment score. We align the instructions first and

at the end calculate the alignment score, which is a summation of the score where a match

is found. If there is match to the instruction given by OllyDbg and our program, then we give

it a score of 1. If there is no match between the instruction given by OllyDbg and our

program, then we give it score of 0. We will not be taking gap penalty into account for our

program. We use the tool described in [25] to generate the alignment score. From this we

calculate accuracy. For example, if the number of instructions is 100 and alignment score is

93, then we conclude that the output given by our program is 93% accurate.

The same process is repeated for 55 executable files of different sizes and average accuracy

is calculated. Figure 19 shows the result of the experiment.

38

Figure 19: Accuracy Test

From Figure 19 it is clear that our algorithm is able to predict the instructions with a high

level of accuracy. The average accuracy of our program is 83.75% when compared to the

output of OllyDbg.

We also tested our results using monographic frequency counts. In this method we first

disassembled the executable file using OllyDbg. Then we calculated the number of times

each of 14 instructions appeared in the executable file and calculated the percentage of

each instruction. Similarly we supplied the executable file to our program and calculated the

frequency of each of 14 instructions and its percentage. We then calculated a chi-square

statistic to determine if the distribution of observed frequencies obtained from our program

0

10

20

30

40

50

60

70

80

90

100

1000 2000 2500 3500

P
e

rc
e

n
ta

ge
 %

Average File Size (KB)

Accuracy Test

Our Program

39

differed from expected frequencies obtained from OllyDbg. The chi-square statistic is

calculated as:

χ
2 = ∑ [(O – E)2 / (E)] ------ (1)

where χ
2 = chi-square statistic

O = Observed frequency

E = Expected frequency

Degree of freedom is given by (number of categories - 1). Using degree of freedom and the

chi-square distribution table given in Appendix C, we determine the chi-square test for

goodness of fit. We establish the null hypothesis, which is that the observed values are

close to the expected values. The alternative hypothesis is that they are not close to the

expected values. These hypotheses hold for all chi-square goodness of fit tests. If the

calculated chi-square is less than the value in the table, then the null hypothesis is accepted

and it is concluded that the predictions made were correct. Table 3 shows the calculation of

chi-square statistics for sample an executable file of size is 17KB.

40

Instructions
% of Instructions

determined by Our Program
(Observed)

% of Instructions
determined by OllyDbg

(Expected) (O — E)2/ E

MOV 39 41 0.097560976

NOP 18 18 0

CAL 10 8 0.5

LEA 5 5 0

PUS 4 4 0

POP 4 4 0

JMP 3 3 0

TES 3 3 0

SUB 4 3 0.333333333

CMP 3 3 0

JE 3 3 0

JNZ 2 2 0

ADD 1 2 0.5

RET 1 1 0

Total 100 100 1.430894309

Table 3: Tabulated results calculating chi-square statistic

From equation (1), chi-square statistic χ2 = 1.4309 and degree of freedom = (14-1) = 13.

Referring to the chi-square distribution table in Appendix C, the critical value for a chi-

square at a probability level (alpha) = 0.05 and degree of freedom = 13 is 22.4. The critical

value is greater than χ2 and hence null hypothesis is accepted. Thus it passes the chi-square

test for goodness of fit.

However, one can argue that the chi-square statistic does not give correct results if the

frequencies are too low. Hence, in the above example we neglect instructions whose

frequencies of occurrence are less than 10%.

41

Instructions
% of Instructions

determined by Our
Program (Observed)

% of Instructions
determined by OllyDbg

(Expected) (O — E)2/ E

MOV 39 41 0.097560976

NOP 18 18 0

CAL 10 8 0.5

Table 4: Tabulated results calculating chi-square statistic ignoring low frequency

From equation (1), chi-square statistic χ2 = (0.0975 + 0 + 0.5) = 0.5975 and degree of

freedom = (3-1) =2.

Referring to the chi-square distribution table in Appendix C, the critical value for a chi-

square at a probability level (alpha) = 0.05 and degree of freedom = 2 is 5.99. The critical

value is greater than χ2 and hence null hypothesis is accepted. Thus it passes the chi-square

test for goodness of fit. Since the test passes with and without considering low frequency,

we can conclude that instructions determined by our program match closely with the

instructions produced by Ollydbg.

We carried out the process described above i.e. with and without considering low frequency

counts for files of different sizes ranging from 250 KB to 3670 KB. For all the files, it passes

the chi-square test for goodness of fit taking alpha value as 0.05 which means that the

output obtained from OllyDbg is statistically the same as the output obtained from our

program.

42

9. Conclusions and Future Work

We implemented an algorithm to determine assembly instructions from an executable file.

We first collected statistical data of the occurrence of one particular instruction after

another by disassembling executable files from Cygwin folder. We extracted the .text

section from the executable file. We determined the assembly instructions using collected

statistical data, opcode of known instructions and dynamic programming. We also

determined that our algorithm is much faster than OllyDbg. The time taken by our

algorithm linearly increases with the size of the file. Moreover the accuracy of our algorithm

is 83.75% when compared to that of OllyDbg.

We used the 14 most commonly occurring instructions to generate a 2x2 table. This table is

used in the algorithm to score and find the best path and ultimately the instructions. This

can be extended to include all the instructions documented in Intel® 64 and IA-32

Architectures Software Developer's Manual. This can speed up the algorithm and improve

the accuracy of instructions. Moreover, for our experiment we only extracted the .text

section, which holds the program code of an executable file. It can be expanded to include

the .data section, which holds variables.

43

10. References

[1] Konstantinou, E. (2008). Metamorphic Virus: Analysis and Detection.

http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf

[2] Szor, P., & Ferrie, P. (2005). Hunting For Metamorphic.

http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

[3] Nachenberg, C. (1996). Understanding and managing polymorphic virus.

http://www.symantec.com/avcenter/reference/striker.pdf

[4] Wong, W., & Stamp, M. (2006). Hunting for metamorphic engines. Springer-Verlag France

2006

[5] Linn, C., & Debray, S. (2003). Obfuscation of executable code to improve resistance to static

disassembly. In Proceedings of the 10th ACM conference on Computer and Communications

Security (CCS '03). ACM, New York, NY, USA, 290-299.

[6] An In-Depth Look into the Win32 Portable Executable File Format (2002). Retrieved

September 10, 2010, from Microsoft: http://msdn.microsoft.com/en-

us/magazine/cc301805.aspx

[7] Stamp, M. (2004). A Revealing Introduction to Hidden Markov Models.

http://www.cs.sjsu.edu/faculty /stamp/RUA/HMM.pdf

[8] Dasgupta, S., Papadimitriou, C. H., & Vazirani, U.V. (2008). Algorithms. Boston: Mcgraw-Hill

Higher Education.

[9] 20bits by Jesse Farmer (2007). Retrieved August 1, 2010, from

http://20bits.com/articles/introduction-to-dynamic-programming

[10] Intel 64 and IA-32 Architectures Software Developer’s Manual. Retrieved August 3,2010,

from http://www.intel.com/products/processor/manuals/

http://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf
http://www.symantec.com/avcenter/reference/striker.pdf
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx
http://www.cs.sjsu.edu/faculty%20/stamp/RUA/HMM.pdf
http://20bits.com/articles/introduction-to-dynamic-programming
http://www.intel.com/products/processor/manuals/

44

[11] Schwarz, B., Debray, S., & Andrews, G. (2002). Disassembly of Executable Code Revisited. In

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE'02) (WCRE

'02). IEEE Computer Society, Washington, DC, USA, 45-.

[12] Cohen, F. (1987). Computer viruses: theory and experiments. Computers and Security. 6,

1(February 1987), 22-35. DOI=10.1016/0167-4048(87)90122-2

http://dx.doi.org/10.1016/0167-4048(87)90122-2

[13] Stuxnet worm 'targeted high-value Iranian assets'. (2010). Retrieved October 20,2010, from

BBC: http://www.bbc.co.uk/news/technology-11388018

[14] OllyDbg (2010). Retrieved September 7, 2010, from OllyDbg: http://www.ollydbg.de/

[15] Desai, P. (2008). Towards an Undetectable Computer Virus.

http://www.cs.sjsu.edu/faculty/stamp/students/Desai_Priti.pdf

[16] Govindaraj, S. (2008). Practical Detection of Metamorphic Computer Viruses.

http://www.cs.sjsu.edu/faculty/stamp/students/Govindaraj_Sharmidha.pdf

[17] Hidden Markov Models (2010). Retrieved August 17, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Hidden_Markov_model

[18] File Signature (2007). Retrieved July 20, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/File_signature

[19] Attaluri, S. (2007). Detecting Metamorphic Viruses Using Profile Hidden Markov Models.

http://www.cs.sjsu.edu/faculty/stamp/students/Srilatha_cs298Report.pdf

[20] Szor, P. The new 32-bit medusa. Virus Bulletin, pages 8-10, December 2000.

[21] GNU Project – Free Software Foundation, objdump. Retrieved November 26, 2010, from

GNU Manuals Online: http://sourceware.org/binutils/docs-

2.20/binutils/objdump.html#objdump

http://www.bbc.co.uk/news/technology-11388018
http://www.ollydbg.de/
http://www.cs.sjsu.edu/faculty/stamp/students/Desai_Priti.pdf
http://www.cs.sjsu.edu/faculty/stamp/students/Govindaraj_Sharmidha.pdf
http://en.wikipedia.org/wiki/Hidden_Markov_model
http://en.wikipedia.org/wiki/File_signature
http://www.cs.sjsu.edu/faculty/stamp/students/Srilatha_cs298Report.pdf
http://sourceware.org/binutils/docs-2.20/binutils/objdump.html#objdump
http://sourceware.org/binutils/docs-2.20/binutils/objdump.html#objdump

45

[22] IDAPro (2010). Retrieved September 7, 2010, from IDAPro: www.hex-rays.com/idapro/

[23] Dynamic Programming (2002). Retrieved August 27, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Dynamic_Programming

[24] What is the chi-square statistic? (2006). Retrieved November 28, 2010, from Connexions:

http://cnx.org/content/m13487/latest/

[25] Sequences studio. Retrieved November 11, 2010, from sourceforge.net:

http://sstu.sourceforge.net/index_SF.htm

[26] Gusfield, D. (1997). Algorithms on strings, trees and sequences. Cambridge University Press.

[27] Needleman-Wunsch algorithm (2004). Retrieved November 7, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm

http://www.hex-rays.com/idapro/
http://en.wikipedia.org/wiki/Dynamic_Programming
http://cnx.org/content/m13487/latest/
http://sstu.sourceforge.net/index_SF.htm
http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm

46

11. Appendix

11.1. Appendix A: Table Containing Count for Pair of Instructions

 MOV NOP CAL LEA PUS POP

MOV 1344183 1765 262700 77861 45236 37350

NOP 7582 111344 262 14888 13883 130

CAL 171233 2782 8854 14109 1070 2734

LEA 100565 182 8065 31677 37937 4595

PUS 82778 3 11135 1941 32341 52

POP 6281 9 2 237 1093 71716

JMP 79697 24909 4548 23823 1725 250

TES 25762 41 1 775 98 33

SUB 76733 44 2455 5073 4888 203

CMP 20877 278 1 1261 288 152

JE 112722 1359 2192 7614 395 1003

JNZ 66501 1162 1677 5029 140 1211

ADD 55716 257 1383 5775 4713 18093

RET 16894 14386 1453 21017 13329 868

Table 5: Count for Pair of Instructions (Part 1)

47

 TES SUB CMP JE JNZ ADD RET

MOV 95626 63262 80791 23981 9410 68926 4346

NOP 428 365 799 141 77 5201 27

CAL 34269 2742 12309 0 3 15469 55

LEA 3175 6540 10575 711 483 5555 151

PUS 124 22292 70 39 6 1555 44

POP 53 132 62 324 28 1256 52414

JMP 2451 2376 8442 14 17 2235 2

TES 3 0 6 86572 55127 142 3

SUB 1359 1797 9970 177 88 2796 130

CMP 4 12 113 64708 34448 226 0

JE 7997 2652 22705 66 35 3806 3

JNZ 5201 740 7248 20 16 3002 2

ADD 4170 4539 10677 474 205 40876 1631

RET 544 338 1578 20 9 892 2

Table 6: Count for Pair of Instructions (Part 2)

48

11.2. Appendix B: Table Containing Log Odds for Pair of Instructions

 MOV NOP CAL LEA PUS POP JMP

MOV -0.75129151904491 -7.77271836370932 -2.7055845321917 -3.96762322902811 -4.51855101818601 -4.71201056995588 -4.00039294771691

NOP -6.31370334102804 -3.60175507122273 -9.68063832813251 -5.63717793636319 -5.70730886744794 -10.3814798602256 -7.1839649844503

CAL -3.15657475640606 -7.31745631062545 -6.15830710134644 -5.69110697241581 -8.27337619450129 -7.33487211965479 -5.2063471980019

LEA -3.70621233369479 -10.0449952229882 -6.25183125290145 -4.87811665180808 -4.69627534578186 -6.81522493153474 -7.45117344685566

PUS -3.90519066249299 -14.1504323074871 -5.9285378978875 -7.67762376159906 -4.85721218381966 -11.2977891927358 -9.97599925132316

POP -6.50226191064342 -13.0518185880298 -14.5558976540599 -9.78092865272613 -8.25210314768194 -4.05132651314344 -6.34879577748766

JMP -3.94387026752639 -5.12010322450171 -6.82551733151786 -5.16494139387068 -7.7956515461628 -9.72752477578027 -8.21262564687862

TES -5.08622722384502 -11.5354634677517 -15.2490450730844 -8.59599745511516 -10.6640544630826 -11.7525298807225 -9.06684498134488

SUB -3.98249059036235 -11.4648451851369 -7.44257766949879 -6.71614721117076 -6.75334051627934 -9.93579092303844 -8.47118932414622

CMP -5.29765110067038 -9.62135790252502 -15.2490450730844 -8.10908422660714 -9.5860161512736 -10.2251285434391 -7.3095741852385

JE -3.58911734477546 -8.03421677159556 -7.55595281259616 -6.30948405544621 -9.270065348727 -8.33805531506799 -7.10412547764447

JNZ -4.12808783307532 -8.19087023996975 -7.82388356474672 -6.72486891765747 -10.30736950335 -8.14955474576016 -6.35911103163553

ADD -4.30764733228578 -9.69990793939476 -8.01670512906182 -6.58637369445226 -6.78984086932419 -5.44144103643568 -5.95056867787705

RET -5.51029474695566 -5.67159807274295 -7.96731309899371 -5.29093398852419 -5.74816436425196 -8.4826465882627 -8.03127679988243

Table 7: Log Odds for Pair of Instructions (Part 1)

 TES SUB CMP JE JNZ ADD RET

MOV -3.7577778558957 -4.17880451001309 -3.92997066867103 -5.1582931509265 -6.09727060642954 -4.09168358558255 -6.87099724654045

NOP -9.18982004794497 -9.34906091462947 -8.56549381447954 -10.3002517971086 -10.9052215277589 -6.69119809406928 -11.953202006982

CAL -4.79884336326152 -7.3319483678539 -5.82801975437029 0 -14.1504323074871 -5.59875638326331 -11.2416990106821

LEA -7.18522498861558 -6.46179209177736 -5.98027236036451 -8.68220331909892 -9.06891347290096 -6.62526606092949 -10.2317294659436

PUS -10.4287341759066 -5.23173213242814 -11.0005333768441 -11.5854743652599 -13.4572844115328 -7.89944360584315 -11.4648451851369

POP -11.2787407592976 -10.3662119111509 -11.1218961415945 -9.46822453026811 -11.916834124345 -8.11305840822444 -4.36953865411523

JMP -7.44420928061565 -7.4753048787993 -6.20605563870583 -12.6099846434249 -12.4158279135878 -7.53651569422682 -14.5558976540599

TES -14.1504323074871 0 -13.4572844115328 -3.85945317114158 -4.31841741355554 -10.2931843914129 -14.1504323074871

SUB -8.03421677159556 -7.75474281218635 -6.03932912663443 -10.0728533698648 -10.7716875119731 -7.31243323903005 -10.3814798602256

CMP -13.8627499965706 -12.7641358001827 -10.5216305459831 -4.15585433894936 -4.79359054029018 -9.82845641784348 0

JE -6.26031473983025 -7.36534335228878 -5.21327582050379 -11.0593748307406 -11.6936889037666 -7.00380325562496 -14.1504323074871

JNZ -6.69119809406928 -8.64221864603631 -6.35883457761307 -12.2533082686933 -12.4764527738696 -7.24129517251662 -14.5558976540599

ADD -6.9123791049777 -6.82750033244031 -5.97064880492973 -9.08772495128403 -9.92598644598958 -4.620951645574 -7.85170769764496

RET -8.94996633158059 -9.42591881181064 -7.88475544231717 -12.2533082686933 -13.0518185880298 -8.45536644599337 -14.5558976540599

Table 8: Log Odds for Pair of Instructions (Part 2)

49

11.3. Appendix C: Chi-square Distribution Table

Table 9: Chi-square Distribution Table

