
i

JShield: A Java Anti-Reversing Tool

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Deepti Kundu

May 2011

ii

© 2011

Deepti Kundu

ALL RIGHTS RESERVED

iii

The Designated Thesis Committee Approves the Thesis Titled

JShield: A Java Anti-Reversing Tool

by

Deepti Kundu

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2011

Dr. Mark Stamp Department of Computer Science

Dr. Robert Chun Department of Computer Science

 Mr. Ronald Mak Department of Computer Science

iv

ABSTRACT

JShield : A Java Anti-Reversing Tool

by Deepti Kundu

Java is a platform independent language. Java programs can be executed on any

machine, irrespective of its hardware or the operating system, as long as a Java virtual

machine for that platform is available. A Java compiler converts the source code into

„bytecode‟ instead of native binary machine code. This bytecode contains a lot of

information from and about the source code, which makes it easy to decompile, and

hence, vulnerable to „reverse engineering attacks‟. In addition to the obvious security

implications, businesses and the wider software engineering community also risk

widespread IP theft - proprietary algorithms, for example, that might be implemented in

Java could be easily reverse-engineered and copied.

This thesis addresses the problem of reverse engineering attacks on software

written in Java. It analyzes the present defense techniques used to protect software from

such attacks, examines their limitations and provides a new tool that implements several

anti-reversing techniques.

v

ACKNOWLEDGEMENT

 With great satisfaction, I can call this thesis complete today. The accompanying

research and hard work that went with it, however, are just a beginning, as much remains

to be explored further in this field.

 It gives me immense pleasure to thank the many people who helped and guided

me during my research. Special thanks are due to my advisor, Dr. Mark Stamp, who

made this work possible. His timely guidance, encouragement, patience, enthusiasm and

immense knowledge helped me push further and produce some quality work. I could not

have asked for a more knowledgeable person as my advisor and mentor.

 I would like to thank members of the committee, Dr. Robert Chun and Dr. Ronald

Mak, for their valuable feedback, encouragement and advice. I am grateful to Dr. Sigurd

Meldal for his support during my research. Mr. Naveen Roperia deserves a special

mention for his guidance all through my work.

 I am indebted to my family, my sister Anupam Singh and my brother Rahul

Kundu for their emotional support and care. I wish to thank my parents, Dr. Ram Niwas

Kundu and Ms. Santosh Kundu, for their unconditional love and endless support. They

believed in me when I was in self-doubt. I dedicate this thesis to my beloved parents.

vi

TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

1.1 Reverse Engineering ... 1

1.2 Process of Reverse Engineering.. 2

1.3 Anti-Reverse Engineering ... 3

1.4 Anti-Reversing Tools .. 4

1.5 Threat to Java Software .. 5

1.6 Organization of this Thesis ... 7

2.0 LITERATURE REVIEW ... 8

2.1 History... 8

2.2 Relation to Reengineering ... 9

2.3 Decade of Achievements .. 12

2.3.1 Program Analysis ... 12

2.3.2 Architecture and Design Recovery .. 13

2.3.3 Visualization... 14

2.4 Future Trend.. 15

3.0 ANTI-REVERSING TECHNIQUES ... 16

3.1 Protecting Java Code... 16

3.1.1 Compilation Flags .. 17

3.1.2 Implementing Two Versions of the Application .. 17

3.1.3 Applying Obfuscation .. 17

3.1.4 Using Web Services and Server-Side Execution ... 18

3.1.5 Encryption .. 18

3.1.6 Digital Rights Management ... 18

3.1.7 Fingerprinting the Code ... 19

3.1.8 Selling Source Code ... 19

3.1.9 Employing Native Methods ... 19

3.2 Obfuscation Techniques .. 19

3.2.1 Layout Obfuscation .. 21

vii

3.2.2 Control Obfuscation ... 22

3.2.2.1 Computation .. 22

3.2.2.2 Aggregation ... 27

3.2.2.3 Ordering .. 30

3.2.3 Data Obfuscation ... 30

3.2.3.1 Storage and Encoding ... 31

3.2.3.2 Aggregation ... 32

3.2.3.3 Ordering .. 33

3.3 Some Terminology.. 33

4.0 EXISTING OBFUSCATORS .. 36

4.1 Tool Support ... 36

4.2 Brief Analysis of Existing Tools... 37

4.2.1 ProGuard .. 37

4.2.3 Zelix KlassMaster .. 42

4.2.4 Semantic Designs Java Obfuscator .. 44

4.3 Summary ... 46

5.0 PROPOSED TOOL - JShield ... 47

5.1 Introduction ... 47

5.2 JShield Functionality .. 47

5.4 Design and Implementation .. 49

5.4.1 Implementation Platform ... 49

5.4.2 Control Flow .. 50

5.4.3 Algorithm and Result ... 53

5.4.3.1 Scramble Identifiers .. 53

5.4.3.2 Insert Dead or Irrelevant Code .. 57

5.4.3.3 Extend Loop Condition ... 59

5.4.3.4 Insert Bogus Class... 61

5.4.3.5 Reorder Methods ... 64

5.4.3.6 Convert Static to Procedural Data ... 66

viii

5.4.3.7 Add Redundant Operands ... 67

5.4.4 Result Validation .. 70

5.4.4.1 Observations ... 70

5.4.4.2 User Test Statistics .. 73

6.0 CONCLUSION AND FUTURE WORK ... 79

6.1 Conclusion .. 79

6.2 Future Work .. 80

References ... 83

APPENDIX A: ANTLR Parser .. 90

APPENDIX B: Terminology .. 93

APPENDIX C: JShield Example .. 95

ix

LIST OF FIGURES

Figure 1 Process of Reverse Engineering ... 3

Figure 2 Machine Codes ... 6

Figure 3 Bytecodes ... 6

Figure 4 Objectives of Reverse Engineering .. 9

Figure 5 Reengineering ... 10

Figure 6 Architecture Reengineering .. 11

Figure 7 Relationship of terms .. 12

Figure 8 Ways of Protecting Java Code .. 16

Figure 9 Obfuscation – A Classification ... 21

Figure 10 ProGuard... 38

Figure 11 Jshrink... 41

Figure 12 Zelix KlassMaster ... 43

Figure 13 Semantic Designs Java Obfuscators – Output .. 45

Figure 14 JShield .. 48

Figure 15 JShield: Control Flow ... 52

Figure 16 Scramble Variable Names: Before ... 55

Figure 17 Scramble Variable Names: After .. 55

Figure 18 Scramble Method Names: Before .. 56

Figure 19 Scramble Method Names: After ... 57

Figure 20 Inserting Dead Code: Before .. 58

Figure 21 Inserting Dead Code: After .. 59

x

Figure 22 Extend Loop Condition: Before ... 60

Figure 23 Extend Loop Condition: After .. 61

Figure 24 Bogus Class Example ... 63

Figure 25 Eclipse Workspace: After Bogus Class Insertion ... 64

Figure 26 Reorder Methods: Before ... 65

Figure 27 Reorder Methods: After .. 65

Figure 28 Before String Obfuscation .. 67

Figure 29 After String Obfuscation .. 67

Figure 30 Redundant Operand: Example 1 ... 69

Figure 31 Redundant Operand: Example 2 ... 69

Figure 32 User Statistics for Complex1 .. 75

Figure 33 User Statistics for Complex2 .. 76

Figure 34 User Statistics for Complex3 .. 76

Figure 35 User Statistics for Complex4 .. 77

Figure 36 User Groups Statistics .. 78

Figure 37 ANTLRWorks Interface ... 91

Figure 38 Code Snippet .. 92

Figure 39 Simple Calculator Output ... 99

Figure 40 Obfuscated Calculator Program Output ... 103

xi

LIST OF TABLES

Table 1 Java Obfuscators .. 36

Table 2 Comparison of Java Obfuscators ... 37

Table 3 ProGuard Obfuscation Observations ... 40

Table 4 Jshrink Obfuscation Observations ... 42

Table 5 Zelix KlassMaster Obfuscation Observations .. 44

Table 6 Data Structures used in JShield .. 50

Table 7 Comparison of Tools .. 72

Table 8 Test Programs ... 73

Table 9 User Statistics: Before Obfuscation ... 74

Table 10 User Statistics: After Obfuscation .. 75

Table 11 Average time taken by users .. 77

Table 12 Simple Calculator: Before Obfuscation ... 95

Table 13 Simple Calculator: After Obfuscation ... 99

1

1.0 INTRODUCTION

"Any sufficiently advanced technology is indistinguishable from magic."

 (Arthur C. Clarke)

1.1 Reverse Engineering

 The process of extracting knowledge or design blueprints from anything man-

made is known as reverse engineering (Eilam, 2005). In other words, reverse engineering

may be understood as a systematic methodology for analyzing the design of an existing

device or system, either as an approach to study the design or as a

prerequisite for re-design. “Reverse engineering is the process of analyzing a subject

system to (i) identify the system‟s components and inter-relationships and (ii) create

representations of the system in another form or at a higher level of abstraction”

(Chikofsky & Cross, 1990).

 In the field of software, developers sometimes do need to understand how existing

software works. The concept of reverse engineering, when applied to software leads to

many interesting consequences. Various problem areas where reverse engineering has

been successfully applied are recovery of design patterns (Antoniol et al., 2001), code

smell detection (Emden & Moonen, 2002), redocumentation of programs (Benedusi et

al., 1992), renewal of user interfaces (Merlo et al., 1995, Moore, 1998), migration of

legacy code (Canfora et al., 2000), translation of program from one language to another

(Byrne, 1991), and architecture recovery (Koschke, 2000).

Reverse engineering has proved very helpful in many ways. But on the contrary,

it has lead to many serious problems. “Each year software piracy results in billions of

2

dollars in lost revenue” (Chen et al., 2006). Hacking is one of the challenges that reverse

engineering has brought into picture (The terms „hacking‟ and „reverse engineering

attacks‟ are used interchangeably in this paper. It refers to the hacking attacks that are

based on reverse engineering). “Stealing or replicating someone else‟s ideas has always

been the easiest way of creating competitive products” (Kalinovsky, 2004). The process

of reverse engineering helps in understanding the logic of software which makes it easy

to alter its behavior or copy the algorithms. The removal of usage restrictions from

software, exploitation of software flaws, cheating in the games and breaking the digital

rights of a system are some such reasons for which the hackers resort to reverse

engineering (Stamp, 2006).

1.2 Process of Reverse Engineering

 “To reverse engineer a software application it is first necessary to gain physical

access to it” (Low, 1998). The process of reverse engineering consists of three steps: (i)

Parsing and semantic analysis of code, (ii) Extracting information from the code, and (iii)

Dividing the product into components, as indicated by Figure 1 (Chikofsky & Cross,

1990). The software code is parsed and semantic analysis is performed on the parsed

code. The information thus obtained is stored in an information base and then this

information is used to understand the basic functionality and algorithms of the software.

This knowledge can be used for legitimate reasons like creating a new system with better

design and functionality or it can be misused.

3

Figure 1 Process of Reverse Engineering

1.3 Anti-Reverse Engineering

 The defense techniques implemented in software in order to protect it from

malicious attacks are referred to anti-reversing techniques. It has become a challenge for

the software community to protect software from attackers and to prevent its misuse. The

patent system is not quite as effective with software as it is with traditionally engineered

tangible artifacts. While a patent mandates IP protection – it is next to impossible to

prove or even suspect any IP theft in a software product that might have been the result of

a malicious reverse engineering attack on a patented competitor. After all, such a

product, implemented slightly differently from the original, yet using the same core ides

and algorithms could simply be deemed as an inventive step over „prior art‟ (Kalinovsky,

2004).

(Eilam, 2005) states in his book “It is never possible to entirely prevent reversing”

and (Chen et al., 2006) states “The goal of any “anti” reverse engineering technique is to

substantially increase the amount of work that a reverse engineering attempt entails,

4

hopefully beyond the useful lifetime of a software application (or a particular version of

the application)”. This indicates that it is possible to evaluate the effectiveness of an anti-

reversing technique using empirical metrics.

It is not easy to define criteria for evaluating the different reversing techniques.

The criteria that can be used for examining the effectiveness of a reversing technique are

(Nolan, 2004):

 Potency – How confused the decompiler is?

 Resilience – Can it rebuff the decompilation attempts?

 Cost – How much overhead does it cause?

1.4 Anti-Reversing Tools

“Reversing is impossible without the right tools” (Eilam, 2005). There are

various software tools available on market, free as well as those costing hundreds of

dollars. The tools available for reverse engineering include disassemblers available for

extracting assembly code from the executables, debuggers for dynamic analysis of code

during execution, and decompilers for generating high-level source code from the

executables (Chen et al., 2006).

The most popular disassembling and debugging tools available include OllyDbg

(Yuschuk, 2000), IDA Pro (Guilfanov, n.d.), SoftICE (SoftICE, n.d.), WinDbg, etc.

These tools not only extract the assembly code but also help in viewing many other

details of the software. They help in analyzing and patching the code as well.

Java programs are more prone to reversing attacks as “It is more feasible to

recover Java source code from Java bytecode than it is to recover C/C++ code from

http://en.wikipedia.org/wiki/Ilfak_Guilfanov

5

machine code” (Cipresso, 2009). Just a few of the various decompilers available include

Jad (Kouznetsov, 1997), JODE (Hoenicke, 2002), and Jdec (Belur & Bettadapura, 2006).

A lot of research is being done in the software field in order to find out successful

ways of protecting software from reverse engineering attacks. The techniques proposed

to make reverse engineering difficult include obfuscating the code (Collberg et al., 1997),

protecting the computing platform physically (Doorn et al., 2003), encryption of

executables (Chen et al., 2006), and watermarking (Collberg & Thomborson, 2002).

1.5 Threat to Java Software

The threat of reverse engineering attacks has been taken more seriously since the

advent of Java, because the applications written in Java are easier to reverse engineer

(Cipresso, 2009). To understand why, we have to know the difference between Java

bytecode and machine code.

 “Machine code or processor instructions are a system of instructions and data

executed directly by a computer‟s central processing unit” (Machine code, 2010).

These instructions are specific to the processor on which they are generated.

Figure 2 illustrates this scenario.

 “Bytecode is a set of instructions that looks a lot like some machine code, but is

not specific to any one processor” (Lemay & Perkins, 1996). “It is the

intermediate representation of Java programs just as assembler is the intermediate

representation of C/C++ programs” (Haggar, 2001). Figure 3 illustrates the

generation of bytecode.

6

Figure 2 Machine Codes

Figure 3 Bytecodes

Java was designed for supporting platform-independent development. This was

done by converting the source code into platform-independent bytecode for compilation.

“Java bytecode is standardized and well documented” (Kalinovsky, 2004). It contains a

lot of information about the code and thus it can be easily decompiled to the source code.

7

Another characteristic of Java that proves beneficial to the reverse engineering attackers

is the use of standard library routines which keeps the size of the application small.

The design of Java language itself, thus, makes it highly prone to reverse

engineering attacks. This has become a big problem, as a number of mission critical

applications in industries like banking, or simply closed-sourced proprietary applications

and games are being developed in the Java language. The purpose of this thesis is to

analyze the existing anti-reversing techniques that can be implemented to make Java code

immune to reversing attacks and suggest a tool that automates the process of

implementing anti-reversing techniques for Java software.

1.6 Organization of this Thesis

The work done by various researchers is discussed in Section 2.0. Section 3.0

introduces the various anti-reversing techniques and Section 4.0 discusses the tools

available for obfuscation. Section 5.0 explains the functionality provided by JShield,

along with the approaches applied in the prototype tool. It also presents validation of the

tool and verification of the results. Section 6.0 concludes the thesis and proposes the

related future work to be done in this field. In the next section, we will discuss research

done in past years.

8

2.0 LITERATURE REVIEW

“Men are only as good as their technical development allows them to be.”

(George Orwell)

There is a significant body of literature documenting the work done so far in the

field of reverse engineering and anti-reverse engineering. This section cites some prior

research in the field of reverse engineering and then describes the importance of anti-

reverse engineering and how and why it came into picture.

2.1 History

A lot has been done in the field of reverse engineering over the past 20 years

(Canfora & Penta, 2007). Research in the field of reverse engineering had started in the

early nineties. Initially, the research was mainly focused on the analysis of procedural

software for understanding it and to deal with the Y2K problem (Low, 1998).

Architecture recovery was another focus area that was facilitated by reverse engineering.

A number of techniques were proposed for component recovery.

In short, most research during the nineties was focused on three main problems

(Canfora & Penta, 2007):

 Program Analysis

 Design Recovery

 Software Visualization

 The origin of reverse engineering can be traced to software maintenance

processes and techniques. The definition of reverse engineering is quite broad today as it

encompasses a number of fields like aiding software test by creating representations of

9

code (Memon et al., 2003), evaluating software design or examining software security

(DaCosta et al., 2003). (Chikofsky & Cross, 1990) states that the objective of reverse

engineering in software is “most often to gain a sufficient design-level understanding to

aid maintenance, strengthen enhancements, or support replacement”.

2.2 Relation to Reengineering

 Reverse engineering is sometimes understood to be a restructuring technique used

for redevelopment of software, which is not precisely what reverse engineering is all

about. The objective of the reverse engineering techniques can be broadly classified into

two categories: redocumentation and design recovery (Canfora & Penta, 2007), as shown

in Figure 4. “Redocumentation is the creation or revision of a semantically equivalent

representation within the same relative abstraction level” (Chikofsky & Cross, 1990) and

“Design Recovery recreates design abstractions from a combination of code, existing

design documentation (if available), personal experience, and general knowledge about

problem and application domains” (Biggerstaff, 1989).

Figure 4 Objectives of Reverse Engineering

10

The argument given in support of this theory is that by definition reverse

engineering does not include restructuring or reengineering. Instead, the process of

reverse engineering is just a phase of reengineering. Reengineering can be understood as

a process with three phases - reverse engineering, architecture transformation and

forward engineering. As Figure 5 shows, the reverse engineering phase aims at obtaining

an abstraction of the target software and the forward engineering phase aims at the

restructuring part.

Figure 5 Reengineering

 Figure 6 presents the Architecture Reengineering process (Kazman et al., 1998). It

indicates that architecture recovery is the reverse process of Architecture Development.

For the transformation of software architecture from one form to another, we have to

recover the coding approach followed and the architectural plan of the given software.

This in turn helps us in figuring out the design patterns implemented in the software.

11

Figure 6 Architecture Reengineering

 (Chikofsky & Cross, 1990) give a clear definition and distinction between the

terms reverse engineering, forward engineering, restructuring and reengineering using

three software life-cycle stages. The three life-cycle stages that they use are –

requirement analysis, design, and implementation. Figure 7 pictures the relationship

between the aforesaid terms.

12

Figure 7 Relationship of terms

2.3 Decade of Achievements

 A lot has been done in the field of reverse engineering over the past 20 years

(Canfora & Penta, 2007). We see significant advancements made over the past decade.

The work done in the field of software reverse engineering has been disseminated in

multiple software engineering conferences and journals. As discussed earlier, the

research work was focused on the problems of program analysis and its applications,

architecture and design recovery, and visualization. The following sections discuss the

advancements made in these fields over the past 10 years.

2.3.1 Program Analysis

A number of tools have been developed to help in the analysis of computer

programs. Initially these tools used static analysis, but eventually this approach was

found lacking for many programs where dynamic analysis was required (Systä, 2000).

Dynamic analysis is necessary in many situations and is widely used despite being

expensive and incomplete (Ernst, 2003). A number of new analysis techniques have been

developed to address the different challenges faced by the software community. For

13

example, the complexity of program analysis increases with program size. So, techniques

like island parsing and lake parsing are employed to analyze only small fragments of

code at a time instead of entire programs in one go (Moonen, 2001).

Another event that inspired the research effort in the field of program analysis is

the presence of clones in software systems (Canfora & Penta, 2007). The different

techniques developed as an outcome include token-based (Baker, 1995), AST-based

(Baxter et al., 1998), and metrics-based (Leblanc et al., 1996) techniques.

2.3.2 Architecture and Design Recovery

Initially, the role of reverse engineering in the field of architecture and design

recovery was focused on recovering high level architectures from procedural code. With

the diffusion of object oriented languages and Unified Model Language (UML), it

became important to recover UML models as well from source code.

 (Potrich & Tonella, 2005) proposed the static approach for recovering class

diagrams and also demonstrated that static analysis was insufficient as it did not contain

any information about flow propagation. They successfully extracted sequence diagrams

using static analysis on data flow. (Systä, 2000) recovered the UML diagrams by using a

combination of static and dynamic analysis techniques.

Another concept that had become very popular along with object-oriented

development was design patterns. Recovering the design pattern from the code was

helpful in code reuse and assessing code quality. Both static (Antoniol et al., 2001) and

dynamic analysis techniques (Heuzeroth et al., 2003) were used to recover design

patterns.

14

2.3.3 Visualization

 Software visualization is a blessing to the reverse engineers. A pictorial

representation of information greatly benefits both the analyzer and the developer. The

proper visualization of the program and the information extracted from its analysis is

very important for gaining clearer understanding the code. The code flow becomes much

easier to understand with a tool that is capable of presenting relevant information at the

right level of detail (Canfora & Penta, 2007). A number of such tools are available, like

Rigi (Muller et al., 1995), CodeCrawler (Marziali, n.d.), Seesoft (Easterbrook et al.,

2003), and sv3D (Feng et al., 2003). All these tools provide useful visualization of the

software using various techniques. One of these tools, Rigi, can show architectural views,

while sv3D can render software architecture metrics in a 3D visual representation. “Code

Crawler combines the capability of showing software entities and their relationships, with

the capability of visualizing software metrics using polymetric views, which show

different metrics using the width, the length, and the color of the boxes” (Canfora &

Penta, 2007).

 These advancements in the field of reverse engineering not only indicate the

progress made, but also portray the potentials of reverse engineering. With the tools

developed for the purpose of helping the software community, another set of people have

been benefitted – the hacker community. With so many tools at hand, they can misuse or

reuse a lot of licensed software and the algorithms, without paying a dime to the owners.

15

2.4 Future Trend

While researchers are working on development of more advanced tools to

facilitate the process of reverse engineering, in doing so, they are also making the job of

hackers much easier. With the advancement in the field of dynamic analysis of programs,

hackers can not only analyze their target software statically but can also uncover the

exact implementations of its underlying algorithms. The availability of a wide range of

efficient decompilers for high level languages like Java makes it all the more difficult to

protect software as it is now possible to recover an almost exact copy of the source code

from a class file. We have already discussed (Section 1.3) that copyrights and patents are

not very effective. So it is a big challenge for IP owners to protect their code by

incorporating anti-reversing techniques into their code.

In the next section, we will discuss about various anti-reversing techniques used

to protect java programs from malicious attacks.

16

3.0 ANTI-REVERSING TECHNIQUES

"A lock only ever stopped an honest man."

 (Ancient Egyptian Proverb)

3.1 Protecting Java Code

 The software development community has been working on this problem of

protecting Java software for many years. The techniques that can currently be used to

protect Java source code are given in Figure 8 (Nolan, 2004). These techniques are

briefly discussed here:

Figure 8 Ways of Protecting Java Code

17

3.1.1 Compilation Flags

The bytecode generated by the compiler is affected by different types of

compilation flags (Nolan, 2004). Use of the –g flag during compilation generates

debugging tables that contain information about line numbers and local variables (javac,

n.d.). This information is very useful for the decompiler to retrieve the source code. So,

compilation with –g:none keeps information like lines, vars, and the source file

attributes out of the classfile (Nolan, 2004).

3.1.2 Implementing Two Versions of the Application

It is a popular trend in the software industry to let users download a fully

functional evaluation copy of the software that can be used up to a predefined period of

time or a certain number of usages. This introduces the potential threat of malicious

users removing these limitations to activate a functional copy of the software without

having paid for it after their trial period expired. A possible solution is to implement two

versions of the software; with a cut-down trial version that does not reveal all its

functionality. Thus the user is forced to buy the original software if they like the trial

version. (Nolan, 2004)

3.1.3 Applying Obfuscation

“Obfuscated code is source or machine code that has been made difficult to

understand for humans” (Obfuscated code, 2010). There are a number of techniques used

to obfuscate code and it is the method used in this thesis. The different techniques for

obfuscation have been discussed in detail in the next section (3.2 Obfuscation

Techniques).

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Machine_code

18

3.1.4 Using Web Services and Server-Side Execution

Most modern software applications have multi-tier architectures as a best practice

– mainly to keep them maintainable, to keep different layers decoupled, accessible

through browsers, and to facilitate ease of enhancements etc. But, as a positive side

effect, splitting applications into presentation and business tiers also protects the code

from inquisitive eyes. By keeping the business layer (which contains the actual business

logic/code) on a remote server, the client side applet or application presents just the user

interface which does not contain much information, apart from, maybe remote URI‟s and

top level API‟s (Nolan, 2004).

3.1.5 Encryption

“Throughout the ages, mankind has turned to encryption when trying to protect

secret transmissions” (Nolan, 2004). A common solution suggested for preventing the

code from decompilation is to encrypt the class files. These class files are not decrypted

until before they are executed.

3.1.6 Digital Rights Management

It is clear from our discussion so far that the bytecode needs to be kept out of

reach of the end user in order to prevent them from decompiling the code. Ultimately, it

would be wiser to protect the code by simply securing the browser and class loader using

a trusted browser. The browser should not let the end user access the cache which

contains code. (Nolan, 2004)

19

3.1.7 Fingerprinting the Code

Digital fingerprinting is a string of binary digits that uniquely identifies a file

(Digital Fingerprint, n.d.). It is usually in the form of a copyright notice that helps you to

identify your code. Inserting a fingerprint does not provide any protection but it helps in

protecting the copyright by providing a way for the developer to prove that the code was

originally written by him. (Nolan, 2004)

3.1.8 Selling Source Code

“If source code is so readily available, then why not just sell it at a higher price?”

(Nolan, 2004). The decompiler can be discouraged to decompile if you sell the source

code directly to him. It will bring in some more revenue for the programmer and the

programmer will not have to worry about protecting the code.

3.1.9 Employing Native Methods

We discussed in Section 1.5 that code written in Java is more difficult to protect

than that written in C/C++. (Nolan, 2004) suggests that we can protect our Java code by

compiling it in C or C++. It is possible to do this in Java by using the Java Native

Interface (JNI). It might cause portability issues but is useful if portability is not an issue.

3.2 Obfuscation Techniques

 There are a number of techniques that can be used to make software immune to

reversing attacks. Many of these techniques are used by the obfuscators available in the

market. This section discusses various obfuscation techniques that can prove beneficial

in protecting Java software from reversing attacks. Before we discuss the different

techniques of obfuscation, it is important to know that obfuscation techniques can also be

20

classified based upon the stage at which the obfuscation is applied. Obfuscation can be

classified into three classes (Sogiros, n.d.):

 Source code obfuscation: The obfuscation is performed on the source code.

 Bytecode obfuscation: The transformations are performed on the bytecode of the

compiled software.

 Binary code obfuscation: The obfuscation is achieved by rewriting the

instructions at machine code level.

 Figure 9 gives another classification of the obfuscation techniques (Nolan, 2004,

Collberg et al., 1997) based upon how the code is obfuscated.

21

Figure 9 Obfuscation – A Classification

3.2.1 Layout Obfuscation

Obfuscators available on the market work by scrambling the identifiers in the

classfile to make the decompiled source useless. The variables are renamed with

automatically generated garbage variables which do not affect the code functionality as

the classfile uses pointers to methods and variables instead of actual names. It becomes

difficult to understand the code but it is not impossible. A disassembler can be used to

rename the variables in order to generate more meaningful names. (Nolan, 2004)

22

3.2.2 Control Obfuscation

The idea behind control obfuscation is to disguise the real control flow (Low,

1998). The control flow of the source code is altered to confuse anyone looking at the

decompiled code (Nolan, 2004). (Kalinovsky, 2004) states, “The best obfuscators are

capable of transforming the execution flow of bytecode by inserting bogus conditional

and goto statements”. (Collberg et al., 1997) classifies control obfuscation into three

different categories – computation, aggregation, and ordering.

3.2.2.1 Computation

Computation techniques alter the control flow in a program. It is a type of control

obfuscation which can be broken down into following techniques (Nolan, 2004):

 Insert Dead or Irrelevant Code

 The insertion of dead code or junk code confuses the attacker. You insert

code that will never be executed and/or will never contribute to the functionality

of the program. “This code can include extra methods or simply a few lines of

irrelevant code” (Nolan, 2004). It is important to note here that this dead code is

to confuse the decompiler and the attacker. Unless the size of program is too

small, it will take some effort and time for the attacker to figure out that those

chunks of code are actually doing nothing.

 (Nolan, 2004) states, “Don‟t just limit yourself to thinking about inserting

Java code, there‟s no reason why you can‟t insert irrelevant bytecode”. The

reason why incorrect bytecode can be inserted into the class file without affecting

the functionality of the program is that the rules of bytecode format verification

23

are not strictly enforced by the JRE. This corrupted code does not affect the

functionality of the original code but crashes on a decompilation effort.

(Kalinovsky, 2004)

 Extend Loop Condition

 Complicating the loop conditions introduces obfuscation in the code. This

can be done by extending the loop condition with a second or third condition that

doesn‟t do anything (Nolan, 2004). For example, in the following example we

have a simple if condition.

Before: After:

int x = 1;

if (x > 200)

{

 …

 x ++;

 // call function

abc(x)

 }

int x = 1;

while (x> 200 ||

x%200==0)

{

 …

 x ++;

 // call function

abc(x)

}

 This condition is easy to understand as it has no calculation involved. But

if we replace this code with condition that does the same job but looks complex, it

might make it a little more time consuming for an attacker to understand the logic.

 Reducible to Nonreducible

 “The Holy Grail of obfuscation is to create obfuscated code that cannot be

converted back into its original format” (Nolan, 2004). We can devise some

transformations that make the code nonreducible to its original form. For

example, the Java bytecode has goto instruction while no equivalent statement

24

exists in the Java language. So, the flow graphs produced from Java programs are

always reducible, while those from Java bytecode may express non-reducible

flow graphs. Expressing non-reducible flow graphs is inconvenient in Java due to

unavailability of goto statements, so we need to do some transformation for

converting the reducible flow graph into a non-reducible one. We can achieve

this by converting a structured loop into a loop with multiple headers (Collberg et

al., 1997). For example, see the code below:

Before: After:

Statement 1;

while (condition1)

{

 Statement2;

 }

Statement 1;

if(condition2)

{

Statement2';

while (condition1){

 Statement2;

}

else {

while (condition1){

 Statement2;

}}

 In this example, we had a simple while condition. We split the statement

to make it appear more complicated than it actually is.

 Add Redundant Operands

 Adding some insignificant terms to the code, in the basic calculations

confuses the reverse engineer. For example, let‟s assume that there is an integer

variable, „p‟ that stores the product of two integer variables – „a‟ and „b‟. The

code below shows we can make the calculations look complex to the attacker.

(Nolan, 2004)

25

Before: After:

public int sum{

 int a = 5;

 int b = 7;

 int p;

 p = a * b;

System.out.println(“

Product =” + p);

}

public int sum{

 int a = 5, b = 7;

 double i = 0.0005;

 double j = 0.0007;

 double p;

 p = (a * b) + (i*j);

 System.out.println(“

Product =” + (int) p);

}

 Both of these code snippets will generate exactly the same output, just that

the second one looks more complex than the original one. (Nolan, 2004) warns

that using this technique all through the application has the potential to degrade its

performance.

 Remove Programming Idioms

 Most programmers reuse the code that they have written for some

previous application. In other words, they reuse the components, methods, and

classes they had written for a previous application in a slightly different manner.

The book Refactoring: Improving the Design of Existing Code (Addison-Wesley,

1999) written by Martin Fowler has created a standard for programming in Java

by presenting how to refactor some existing code into shape. Such

standardization created a series of programming idioms which prove helpful to

the hacker in reversing the code. (Collberg et al., 1997) states, “An experienced

reverse engineer will search for such patterns to jump-start his understanding of

an unfamiliar program”. So, in order to prevent such hints the programmer

26

should write sloppy code. It is not good for the performance and long-term

maintenance of code but ensures that the hacker does not gather much knowledge

about your code without even reversing it. (Nolan, 2004)

 According to (Collberg et al., 1997), “Most programs written in Java rely

heavily on calls to standard libraries”. This also provides a lot of information to

the reverse engineers. These calls are made to the library artifacts by name and

hence these names cannot be obfuscated. The solution to this problem is to make

your own version of standard libraries and then calling them instead. (Collberg et

al., 1997)

 Parallelize Code

 One thing that can staggeringly increase the complexity of your program

is the introduction of threads (Nolan, 2004). The parallelization process is usually

done to increase the performance, but the motive of introduction of threads is to

hide the actual flow of code from the hacker (Collberg et al., 1997). The two

suggested methods of doing this by (Collberg et al., 1997) are:

1. Create dummy processes which do not actually perform anything useful.

2. Split a sequential section of the program into multiple sections executing

in parallel.

(Nolan, 2004) points out that there is a programming overhead to ensure

that the threads are in proper order and is not interfering with the proper

functioning of the program.

27

3.2.2.2 Aggregation

Aggregation obfuscation alters how statements are grouped together (Gupta,

2005). (Collberg et al., 1997) has included following techniques in this category:

 Inline and Outline Methods

 In Java, inlining (replacing a method call with the actual body of method)

results in ballooning of code which makes it difficult to understand the code. It

makes inlining an excellent technique to obfuscate the code. It should be noted

that this is a one way transformation. Once the method call has been replaced by

the actual code, the function is removed and all traces of abstraction are removed

from the code. (Collberg et al., 1997)

 “You can also balloon the code by taking some of the inlined methods and

outlining them into a dummy method that looks like it‟s being called but doesn‟t

actually do anything” (Nolan, 2004).

 Interleave Methods

 It is an important and difficult task in reverse engineering to detect

interleaved code (Collberg et al., 1997). (Rugaber, 2000) writes:

 “Subcomponents interact with each other. If the interactions are limited

and occur through explicit interfaces, the component is said to be encapsulated.

If, usually for reasons of efficiency, two or more design ideas are realized in the

same section of code or by the same data structure, then the components

corresponding to those ideas are said to be interleaved.”

28

 Two methods of a class can be interleaved by merging their parameter lists

and adding an extra parameter that will differentiate between the calls to

individual methods (Collberg et al., 1997). It is a significantly more difficult task

to separate out the interleaved methods as compared to interleaving them (Nolan,

2004). For illustration of this technique we consider the following example where

we have combined two methods, calTax and emailSalDetails into one method

calTaxEmailSalDetails just to confuse the hacker.

Before:

void calTax (int employeeGrade, double salary){

if(employeeId < 4){

 printSalaryStub (salary*0.3);

} else{

 printSalaryStub (salary*0.4);

}

void emailSalDetails (int employeeId){

 printHeader();

 printSalDetails(employeeId);

 printFooter();

}

After:

void calTaxEmailSalDetails(int choice, int

employeeId, int employeeGrade, double salary){

 printHeader();

if (choice == 1){

 if(employeeId < 4){

 printSalaryStub (salary*0.3);

 } else{

 printSalaryStub (salary*0.4);

 }

else{

 printHeader();

 printSalDetails(employeeId);

29

 printFooter();

}}}

 Clone Methods

It is important for a reverse engineer to understand the purpose of a

function and it is equally important to understand the different conditions under

which the function is called (Collberg et al., 1997). We can create clones of a

function and make calls to these functions under identical circumstances. We can

call the function depending on any external factor, which appears to be a deciding

factor but is actually not. One good example would be to call a different function

based on the day of the week. (Nolan, 2004)

 Loop Transformations

In order to improve the performance of numerical applications, a number

of loop transformations have been designed. Some of these transformations tend

to increase the complexity of the code and hence are of interest to us (Collberg et

al., 1997). Some of these transformations are – loop blocking (“breaks up the

iteration space so that the inner loop fits in cache thus improving the cache

behavior” (Collberg et al., 1997)), loop unrolling (“replicates the body of the loop

one or more times. If the loop bounds are known at compile time, the loop can be

enrolled in its entirety” (Collberg et al., 1997)), and loop fission (“turns a loop

with compound body into several loops with the same iteration space” (Collberg

et al., 1997)).

30

3.2.2.3 Ordering

Ordering transformations relate to altering the order in which the statements will

be executed in the application (Gupta, 2005).

 Reorder Statements and Expressions

 The reordering of statements and expressions does not complicate the code

much for the reverse engineer. But reordering the expressions obfuscates the

code significantly if applied at bytecode level as it disrupts the link between the

Java source code and bytecode. (Nolan, 2004)

 Reorder Loops

A simple obfuscation technique is to reorder the loops. For example,

transforming a loop so that it moves backwards. It is shown below:

Before: After:

val = 0;

while (val < maxVal)

{

 arr[val] += res[val];

 val++;

}

val = maxVal;

while (val >0)

{

 val--;

 arr[val] += res[val];

}

3.2.3 Data Obfuscation

Data obfuscation techniques refer to the transformations that obnubilate the data

structures in the source code. These techniques are classified into four categories based

on how they affect data – storage and encoding, aggregation, and order. (Collberg et al.,

1997)

31

3.2.3.1 Storage and Encoding

These techniques target the data structures. They change the way data is stored

and how the stored data in interpreted. For example, changing the type of a variable or

replacing an existing value of a variable with a more complex looking equivalent. We

will now discuss all these techniques in detail here.

 Change Encoding

 (Collberg et al., 1997) show a simple example of encoding in the paper.

An integer variable i = 1 is transformed into i' = x*i+y. If we choose x

= 6 and y = 5, we get transformations shown below:

Before: After:

int i = 1;

while (i <= 100) {

 result = arr[i-1];

 i++;}

int i = 11;

while (i <= 605) {

 result = arr[(i-

5)/6];

 i+=6;}

 Split Variables

 The variables with restricted range like Boolean can be split into two or

more parts in order to make them less obvious to the reverse engineer. (Collberg

et al., 1997) says, “We will write a variable V split into k variables p1, …, pk as V

= [p1, …, pk].” For example, if we have to define the Boolean value of a

variable bool = true, then we can split it into bool1 = 0 and bool2 =1,

and use the following lookup table to change it back to the Boolean value. (Nolan,

2004)

32

bool1 bool2 bool

1 0 false

0 1 true

 Convert Static to Procedural Data

 The strings in the source are used to store very critical information like

copyright information. If this static data is converted to procedural data, the job

of the hacker will become significantly tough. As an example, the copyright

information could be generated programmatically within the code rather than

being stored directly in a string. This kind of transformation is not very practical

as it is not trivial to implement and it cannot be automated. (Nolan, 2004)

3.2.3.2 Aggregation

Aggregation transformations change the grouping of the data. An example is

splitting an array into several sub-arrays. (Gupta, 2005)

 Merge Scalar Variables

 “The variables can be merged together, or converted to a different base

and then merged together. The variables‟ values can be stored in a series of bits

and pulled out using a variety of bitmask operators (Nolan, 2004).”

 Class Transformations

 A series of class transformations can prove helpful in making the program

difficult to understand. As the depth of an application‟s class hierarchy increases,

so does its complexity. One good way of achieving this is to use inheritance and

33

interfaces to the extreme to create deep class hierarchies that will make it more

difficult for the hacker to understand the application. (Nolan, 2004)

 Inserting a bogus class can confuse the reverse engineer. But it is

important that the bogus class should be called by the actual program else

shrinker (Section 3.3) will very easily get rid of the class.

 Array Transformations

 Just like variables, we can split, merge, or interleave arrays in order to

obfuscate the code. We can split the array depending on the index position –

placing all the values on even indices stored in one array and those on odd indices

in another. (Nolan, 2004)

3.2.3.3 Ordering

As noted in the previous section, randomizing computations obfuscates the code.

Similarly, randomizing the order of declarations also confuses the reverse engineer..

(Collberg et al., 1997)

 Reorder Methods, Arrays, and Instance Variables

It is a good idea to just move methods, arrays and data declarations across

the code, so that the reverse engineer spends some time figuring out details of

each. We should ensure that the data elements remain in the appropriate scope

while doing this. (Nolan, 2004)

3.3 Some Terminology

Before we move on to the next section, it will be helpful to understand a few

terms clearly.

34

 Shrinker:

 Shrinking removes all the unused code from the application. It is not

exactly an obfuscation technique but many tools do provide shrinking as an

additional benefit (Kalinovsky, 2004). Eliminating the unused code reduces the

size of the jar file.

 Optimizer:

 An optimizer helps to optimize and verify the compiled Java applications.

It analyses the application for problems like memory leaks, code bottlenecks,

presence of unwanted attributes in classfile, etc. It improves the performance of

the application. (Foley, 2009)

 Obfuscator:

 A tool that applies obfuscation techniques to software in order to protect it

from reverse engineering attacks is called an obfuscator.

 Preverifier:

 “Preverification performs certain checks on the Java bytecode ahead of

runtime. If this first verification pass is OK, the preverifier annotates the classfiles

and then saves the annotated class files” (jGuru, 2000). When Kernel-based

Virtual Machine (KVM) attempts to execute the application, it checks the Java

class files for these preverification annotations. If the proper annotations are

present in the class files, it guarantees that certain compile-time checks were

made. So the verification and the security checks of KVM are passed faster, thus

ensuring faster execution times. (jGuru, 2000)

35

 In the next section, we will examine the functionality and capability of

some existing tools.

36

4.0 EXISTING OBFUSCATORS

“It has become appallingly obvious that our technology has exceeded our humanity.”

 (Albert Einstein)

4.1 Tool Support

 There are a number of tools on the market, both open source and commercial that

claim to obfuscate software, making it immune to reverse engineering attacks. These

include ProGuard (Lafortune, n.d.), Jshrink (Eastridge Technology, n.d.), Zelix

KlassMaster (Zelix KlassMaster, n.d.), and Semantic Designs Java Obfuscator (Semantic

Designs, n.d.). Table below highlights the features of each one of them (Google

directory, n.d.).

Table 1 Java Obfuscators

Tool Works on Feature Type of Tool

ProGuard Bytecode Shrinker, Optimizer, and

Obfuscator

Open Source

Jshrink Bytecode Obfuscator Commercial

Zelix KlassMaster Bytecode Obfuscator Commercial

Semantic Designs

Java Obfuscator

Source code Obfuscator Commercial

 An obfuscator can definitely protect software to a certain extent. But it does not

imply that the software cannot be reverse engineered. With enough time and effort, an

attacker can still retrieve enough information about the software and misuse it. We

37

discussed in Section 1.3 that the level of security that is provided by any obfuscator

depends on three factors – potency, resilience, and cost. (Nolan, 2004)

4.2 Brief Analysis of Existing Tools

 Table 2 compares the popular Java Obfuscators available in market. Different

obfuscators are listed along with the anti-reversing techniques that they use in order to

obfuscate Java programs. It also compares their prices. This comparison is not for all

the techniques that we discussed in Section 3.0; it just verifies if the tool implements at

least one technique from that category.

Table 2 Comparison of Java Obfuscators

PRODUCT ProGuard Jshrink Zelix

KlassMaster

Semantic Designs

Java Obfuscator

Price Free $95 $199-$399 $200-$260

Layout

Obfuscation

Yes Yes Yes Yes

Data

Obfuscation

Yes Yes Yes Yes

Control

Obfuscation

No No Yes No

Shrinking Yes Yes Yes No

Optimization Yes Yes Yes No

4.2.1 ProGuard

 “ProGuard is a free Java class file shrinker, optimizer, obfuscator, and preverifier.

It detects and removes unused classes, fields, methods, and attributes. It optimizes

bytecode and removes unused instructions. It renames the remaining classes, fields, and

38

methods using short meaningless names. Finally, it preverifies the processed code for

Java 6 or for Java Micro Edition.” (Lafortune, n.d.)

Figure 10 ProGuard

We used a simple calculator program to test all these tools. Our program was

packaged in a jar file called calc.jar and this is how we will refer to it hereafter.

Observations:

 ProGuard is available for free use under the GPL (General Public License). We

used ProGuard to obfuscate calc.jar. Here is my list of observations:

 The resultant jar file (referred to as calc_proguard.jar hereafter) did not execute

successfully.

39

 We were able to decompile cal_proguard.jar using Jad (Kouznetsov, 1997).

 After decompiling the cal_proguard.jar, we compared it with the program‟s

original source code. The techniques used by ProGuard to obfuscate code are –

layout obfuscation and data obfuscation.

 ProGuard uses name mangling to implement layout obfuscation. All the methods

and variable names were converted to single alphabets like a, or b, so on. It also

provides an option to generate a mapping file to print the mapping between the

old names and new names for classes and class members.

 Data obfuscation was implemented by reordering the methods. The control flow

was left undisturbed.

 Additionally, debugging information was removed by the tool. It is not exactly an

obfuscation technique but helps improve security by removing any hints for the

reverse engineer in the form of line numbers, vars, etc.

 Table 3 summarizes the obfuscation techniques implemented by ProGuard.

40

Table 3 ProGuard Obfuscation Observations

PROGUARD Yes No

Did the .jar file run after the

obfuscation?
 √

Name Mangling √

String Encryption √

Control Flow Obfuscation √

Reorder Methods √

Remove Debugging

Information
√

4.2.2 Jshrink

Jshrink is a Java obfuscator that shrinks the program size by removing unused

code and data. It obfuscates symbolic names and performs optimization on the code.

Jshrink does produce its results in form of a Java jar file. It comes with an inbuilt

decompiler that is used to validate its results. (Eastridge Technology, n.d.)

41

Figure 11 Jshrink

Observations:

 An evaluation version of Jshrink is available for free, and the cost of getting a

licensed copy of Jshrink is $95. We used Jshrink to obfuscate calc.jar and our

observations are listed below:

 The resultant jar file (referred to as calc_jshrink.jar hereafter) did execute

successfully.

 None of the methods or variables was renamed in my example. The strings were

left without any encryption.

42

 No control flow obfuscation was implemented. The tool successfully removed all

debugging information.

 Table 4 summarizes the obfuscation techniques implemented by Jshrink.

Table 4 Jshrink Obfuscation Observations

JSHRINK Yes No

Did the .jar file run after the

obfuscation?
√

Name Mangling √

String Encryption √

Control Flow Obfuscation √

Reorder Methods √

Remove Debugging

Information
√

4.2.3 Zelix KlassMaster

The various techniques that Zelix KlassMaster uses in order to obfuscate

applications are – name obfuscation, flow obfuscation, line number scrambling, and

string encryption. It also applies some shrinking, which reduces the size of the input file.

Figure 12 shows the user interface provided by the tool.

43

Figure 12 Zelix KlassMaster

Observations:

 An evaluation version of Zelix KlassMaster is available for free, and the cost for

getting a licensed version is $199-$399. We obfuscated calc.jar using Zelix KlassMaster.

Here is a list of observations:

 The resultant jar file (referred to as calc_zelix.jar hereafter) did execute

successfully.

 Zelix KlassMaster successfully mangled the names of the methods and the

variables of the class.

 Strings which were in plain text prior to obfuscation were successfully encrypted.

 It changed the loops thus altering the control flow for functions. It did these

changes to only one function in my example (It is a limitation of the trial version.

44

Zelix KlassMaster claims that the same code obfuscation is implemented to all the

functions in the commercial version of the tool)

 The data was not restructured. It was left unaltered.

 Table 5 summarizes the obfuscation techniques implemented by Zelix

KlassMaster.

Table 5 Zelix KlassMaster Obfuscation Observations

ZELIX KLASSMASTER Yes No

Did the .jar file run after the

obfuscation?
√

Name Mangling √

String Encryption √

Control Flow Obfuscation √

Reorder Methods √

Remove Debugging Information √

4.2.4 Semantic Designs Java Obfuscator

 The Java obfuscator from Semantic Designs is not available for trial. Semantic

Designs claims that the tool scrambles the source code making it difficult to reverse

engineer. The features that the tool provides are as following:

 Name mangling to replace the identifiers with meaningless names.

 Changes the structure of the code and removes all the comments – to preserve

copyright information.

45

 Figure 13 shows a section of code obfuscated by the tool (Semantic Designs, n.d.)

(adopted from the company website, as the tool is not available for trial):

Before:

After:

Figure 13 Semantic Designs Java Obfuscators – Output

 Another fact worthy of being noted here about the commercially available tools is

that each tool itself implements only a subset of the available anti-reversing techniques

46

but none of them implements all the techniques. (Nolan, 2004) states, “Most of the Java

obfuscators you‟ll meet only perform layout obfuscation with some limited data and

control obfuscation.”

 The reason is that the automation of many of these techniques is very complicated

and it has a tendency to alter the logic, and in some cases, affect the portability of the

program. (Nolan, 2004) also verifies this fact, “…the main reason Java obfuscators don‟t

feature more high-level obfuscation techniques is because the obfuscated code has to

work on a variety of Java Virtual Machines (JVMs).”

4.3 Summary

 The availability of so many tools in the market clearly indicates the importance of

the anti-reversing. The software community needs a strong defense against hackers as

current anti-reversing techniques do not make hacking impossible; they just make it

difficult and time-consuming.

47

5.0 PROPOSED TOOL - JShield

“All perceiving is also thinking, all reasoning is also intuition, all observation is also

invention.” (Rudolf Arnheim)

5.1 Introduction

 Applying anti-reversing techniques is a complex procedure. It involves detailed

scrutiny of the code, extracting information about its design, and making changes to the

data and control flow without altering the program logic. Our tool – JShield, automates a

number of obfuscation techniques discussed earlier in this paper. The automation of all

the techniques is very difficult because of their complexity and limitations of the

implementation language. Manual application of all the techniques is not feasible as it is

time consuming and becomes unmanageable with increase in the program size and

complexity.

5.2 JShield Functionality

 This section outlines the functionality and features provided by JShield. The tool

analyzes Java code and applies various obfuscation techniques to the code to make it

harder to reverse engineer. JShield is a relatively small tool that uses an ANTLR

(ANTLR, n.d.) generated parser to parse the input Java source code. “ANTLR (ANother

Tool for Language Recognition) is a language tool that provides a framework for

generating parser from grammatical descriptions” (ANTLR, n.d.) (See Appendix A for

details). As a proof of concept for our findings, JShield currently works on a single Java

file at a time and generates an obfuscated output that is remarkably difficult to reverse

48

engineer. It can be easily modified and extended to obfuscate an entire project containing

several Java source files. Figure 14 shows a screenshot of the JShield user interface.

Figure 14 JShield

5.3 Techniques Implemented by JShield

 The JShield code itself uses the data structures listed in Section 5.4.1. It then

works based on the information generated by the parser. JShield applies the following

obfuscation techniques to a Java program: (All the obfuscation techniques implemented

by JShield are adopted from Section 3.2 suggested by (Collberg et al., 1997) and (Nolan,

2004)).

 Layout Obfuscation

49

o Scramble identifiers

 Control Obfuscation

o Insert dead or irrelevant code

o Extend loop condition

o Add redundant operands

 Data Obfuscation

o Insert bogus class

o Reorder methods

o Convert static to procedural data

The algorithms for implementing each one of these obfuscation techniques are

discussed in detail in Section 5.4.3.

5.4 Design and Implementation

5.4.1 Implementation Platform

JShield is implemented in C# and uses an ANTLR generated parser (ANTLR,

n.d.) for parsing the program. The IDE used for development is Microsoft Visual Studio

2005. The tool applies all the obfuscation techniques in one step and gives the option of

reviewing the code before it is saved. The input and output are both Java source code.

As mentioned above, the tool uses various data structures for implementing different

obfuscation techniques. The responsibility of these data structures is given in Table 6

below:

50

Table 6 Data Structures used in JShield

Data Structure Name Type Responsibility

importArrayList Array List Stores all the imports of the

program

packageArrayList Array List Stores the package

information of the java class

methodArrayList Array List Stores the list of all the

methods implemented in the

source code

variableArrayList Array List Stores the list of all the

variables used in the

program

calledMethodArrayList Array List Stores the list of reference

objects created in the class

globalVarArrayList Array List This array list stores the

information of all the

globally declared variables

staticStringList Array List The static strings appearing

in the code are stored in this

array list and are obfuscated

mapAlteredCode Hashtable The mapping of the method

names and variable names

to their respective

obfuscated values is stored

in this hashtable.

5.4.2 Control Flow

The control flow of the tool is illustrated in Figure 15. The ANTLR parser is used

to parse the source code. The parser class generated by ANTLR was first altered to

capture information about the source code. We added functions and member variables in

the parser class to capture the target program information dynamically at run time -

51

including method names, variable name, static strings declared in the target code, etc.

The parser class holds the lists of parsed methods, variables and static strings in different

data structures as described in Section 5.4.1. The MD5 hash of the static strings is

generated using an inbuilt function of C#. The method and variable names are

obfuscated using a random function. The mapping of the original values and the

obfuscated values is stored in a hash map. The original values are then replaced with

these obfuscated values in the parsed source code. After the name mangling completes,

other obfuscation techniques are then applied. The examples of all the obfuscation

techniques implemented are given in Section 5.4.3.

52

Figure 15 JShield: Control Flow

53

5.4.3 Algorithm and Result

5.4.3.1 Scramble Identifiers

As introduced in Section 3.2.1, scramble identifiers are used to change the names

of variables and methods to meaningless strings. This makes it difficult for the reverse

engineer to derive meaningful hints from the actual names given by the programmer. It

targets the layout of the code and hence falls under the category of layout obfuscation

(Gupta, 2005).

Intent: To replace the method and variable names with meaningless strings.

Algorithm:

1. Using he ANTLR parser (JShieldGramParser):

a. Read the names of all variables and methods in two separate array lists

(variableArrayList and methodArrayList respectively)

(Roperia, 2009)

2. Create an array list (keyList) to hold Java keywords and library function names

that are not to be renamed

3. Remove the keywords appearing in keyList from methodArrayList and

variableArrayList

4. An inbuilt function is used to generate a random string for each name in the

methodArrayList. The index of the method name in the list is passed to it as

parameter.

54

5. Store the mapping of original and obfuscated names in a hash table

(mapAlteredCode) where the original name is stored as the key and the

obfuscated name is stored as the value

6. All the variable and method names are replaced in the parsed code using the

mapping now present in mapAlteredCode

Input Validation:

 For our proof of concept, the input given to JShield was the simple calculator

program written in Java described earlier in chapter 4, where we documented its use in

evaluating existing tools. Figure 16 shows the constructor of the input program‟s main

java class before obfuscation. The original variable names are very helpful in

understanding the program. For example, the button that clears the contents of the

display is named “clearButton”. After the program has been obfuscated by our tool,

the variable names get converted to meaningless strings, as shown in Figure 17.

55

Figure 16 Scramble Variable Names: Before

 In the screenshot above, we can see the altered variable names. For example,

“_displayfield” got replaced by “k”, “clearButton” to “abcfqc”, and so on.

Figure 17 Scramble Variable Names: After

56

 Similarly, the method names are also converted to meaningless strings. The tool

takes care of not converting the constructor name and other library classes like

ActionListener. The names of accessors and mutators are also obfuscated in order

to make the code look complicated to the reverse engineer. In our simple calculator

program, the method names shown in Figure 18 are obfuscated and result into names

given in Figure 19. A few examples of such conversion from our test runs are presented

here:

Before obfuscation After obfuscation

CalcLogic ljcfhfccdn

getTotalString ljcfhfccden

setTotal ljcfhfccdejn

Subtract ljcfhfccdejln

Figure 18 Scramble Method Names: Before

57

Figure 19 Scramble Method Names: After

5.4.3.2 Insert Dead or Irrelevant Code

As introduced in Section 3.2.2.1, insertion of dead or irrelevant code falls under

the category of control obfuscation. Adding irrelevant code alters the control flow of the

program thus making the program more obscure than the original (Gupta, 2005).

Intent: To insert dead or irrelevant code.

Algorithm:

1. Parse the code using the ANTLR parser (ANTLR, n.d.)

2. Create code templates to be inserted in the source code. The code templates

should be syntactically correct.

3. Search the parsed code for the method signature of main() – the starting and

ending braces. Return index of the method starting point.

58

4. Randomly insert one of the code templates into the target code using the index

position. The junk code is inserted in first position if the class has only one

method and at random position if the class has more than one method.

Input Validation:

 To validate the insertion of junk code, the input given to the tool is a simple

program that displays today‟s date. The code input is given in Figure 20. The output of

the code after obfuscation is given in Figure 21.

 The tool has inserted a new method “getPassword” and instantiated an

arbitrary class “verifyPasswordUserExchange_def()”, which was inserted by

the tool. The simple program now looks complicated and it will be more time consuming

to figure out the control flow of program.

Figure 20 Inserting Dead Code: Before

59

Figure 21 Inserting Dead Code: After

5.4.3.3 Extend Loop Condition

As described in Section 3.2.2.1, the basic idea behind extending the loop

condition is to make the termination condition more complex (Collberg et al., 1997). The

loop condition is extended adding a predicate to the condition. The predicate should not

affect the number of times the loop will execute.

Intent: To add a predicate to the loop condition

Algorithm:

1. Parse the code using ANTLR parser (ANTLR, n.d.)

2. Declare a variable in the code with a constant value:

 v_addIfCondition = 10;

3. Search the parsed code for “if” conditional loop and return the index of “(” that

points to the start of the condition

60

4. Insert predicate “v_addIfCondition%2 == 1” to the loop condition with an

OR operator “||”.

The loop condition will evaluate to the same value as before.

Input Validation:

 For extending the loop condition we parsed the program of simple calculator

using JShield. The code has a code segment with “if” condition that checks if the value

of keyTop variable is empty as shown in Figure 22.

Figure 22 Extend Loop Condition: Before

 After the code was obfuscated by JShield, the output is given in Figure 23. The

if loop conditional statement now has an additional condition that is

v_addIfCondition%2 ==1, which will always evaluate to true. The variable

v_addIfCondition is declared by the tool and inserted with its value set to 10.

61

Figure 23 Extend Loop Condition: After

5.4.3.4 Insert Bogus Class

We discussed in Section 3.2.3.2, inserting a bogus class increases the amount of

effort reverse engineer has to put in order to understand the program. The class should

appear as part of the logic of the program. To ensure this, the bogus class initialized in

the main class and the function calls are made to the member functions of the bogus

class. If it does not appear to be related to the logic of program, the reverse engineer will

ignore it.

Intent: Insert bogus class to the program

Algorithm:

1. Parse the code using ANTLR parser (ANTLR, n.d.)

2. Create a static variable

3. Initialize the variable with a randomly generated string (using inbuilt random

function).

4. Create a template bogus class and use the randomly generated static variable

as its name. For example, “verifyUserPasswordExchange_def” and check if

another class exists with the same name in the target source code:

62

a. If no, save the template class at the location where the target

program is located.

b. If yes, repeat step 3.

5. Search for the starting index of the main function in the target program.

6. Define a static instance of the class and insert it before the given index

position. For example,

7. static verifyUserPasswordExchange_def u_validity = new

verifyUserPasswordExchange_def();

8. Use the instance created (“u_validity” in the example) in the inserted junk

code templates to ensure that the bogus class is not deleted by a shrinker.

Input Validation:

 The code for the inserted bogus class is given in Figure 24. The file is saved at

the location where target program is stored. Figure 25 shows the package structure of the

workspace after insertion of bogus class.

63

Figure 24 Bogus Class Example

64

Figure 25 Eclipse Workspace: After Bogus Class Insertion

5.4.3.5 Reorder Methods

As described in Section 3.2.3.3, reordering of methods does not alter the control

flow but obfuscates the program by hiding the control flow. By convention, most of the

programmers do write functions in an order which makes it easy for the reverse engineer

to understand. By altering the order, we can increase the time to be taken by reverse

engineer to understand the logic.

Intent: Change the order of the methods in class

Algorithm:

1. Parse the code using ANTLR parser (ANTLR, n.d.)

2. Create templates of bogus methods to be inserted in the source code

3. Find out the number of methods present in the class and return starting index of

each function

4. If there is only one function (main()), insert the code template before the main

method, else insert the code template at random position before one of the

functions

65

Input Validation:

 The code segment from the program obfuscated using JShield is shown in Figure

26. The program has just one method i.e. main(), so the code template is added at the

index right before the main method. The output of the code is shown in Figure 27.

Figure 26 Reorder Methods: Before

Figure 27 Reorder Methods: After

66

5.4.3.6 Convert Static to Procedural Data

As discussed in Section 3.2.3.1, strings with important information about the

program can give out a lot of hints about what a section of code is trying to achieve. It

may also contain some copyright information. Such strings should be encrypted in order

to protect integrity of data.

Intent: Encrypt static strings appearing in the program

4. A corresponding decrypt function is created in the bogus class.

5. All static strings are replaced by decrypt function in the input file, passing encrypted

string as parameter.

Algorithm:

1. Extract all static strings present in the code during parsing and store in an array

list staticStringList

2. Apply encryption to all the strings (We used simple Caesar cipher with a shift of

3) using encString (string plainText)

3. Create decryption function to decrypt the strings in the bogus class, named

str_toUpper()

4. For each string in staticStringList, replace all static strings by decrypt

function in the input file, passing encrypted string as parameter

For example:

System.out.println("Enter year"); gets converted to:

System.out.println(OBJ_ANM.str_toUpper("Hqwhu#|hdu"));

67

Input Validation:

Figure 28 Before String Obfuscation

Figure 29 After String Obfuscation

5.4.3.7 Add Redundant Operands

As described in Section 3.2.2.1, adding some insignificant terms to the code, in

the basic calculations confuses the reverse engineer. This type of obfuscation can be

68

done by adding some code with a conditional loop which always returns true and does

not affect the functionality of the code.

Intent: Add redundant operand

Algorithm:

1. Parse the code using ANTLR parser (ANTLR,n.d.)

2. Declare two integer variables x and y in the code and initialize them to any

arbitrary integer values

3. Find the index position of a function call statement and insert “if(7x2 – 1 ==

y
2”
) before the call

4. The statement will be executed as per the control flow of the program

Input Validation:

 The tool adds redundant operands in the form of opaque predicates. For example,

in the code shown in Figure 30 the “if” loop has conditional statement (7x2 – 1 ==

y
2
) which will always be true and hence will not alter the actual control flow of the

program. If there are a lot of redundant operands in the program, the actual control flow

appears more complex than without obfuscation.

69

Figure 30 Redundant Operand: Example 1

 Another example of redundant operand is given in Figure 31. The variable

v_addIfCondition is declared as a global variable with value 10. The condition

inserts an additional statement “v_addIfCondition%2 == 1” which will always

return true and hence the loop remains unaltered.

Figure 31 Redundant Operand: Example 2

70

5.4.4 Result Validation

Table 6 compares different tools with JShield on the basis of the different

obfuscation techniques implemented by each of them. Most of the commercial tools on

the market do not reveal the exact algorithms or techniques that they use in order to make

the program stronger against the reverse engineering attacks. The question marks “?” in

the table indicate that the tool implements at least one of the techniques listed in the

category but does not reveal the details. Based on the information given by the

developers of these tools, it is evident that most of the tools do not apply much of control

flow obfuscation except Zelix KlassMaster.

Also, it is worth noticing that many obfuscators remove the dead code which

contradicts with the basic principle of obfuscation. The data obfuscation techniques

emphasize the importance of inserting bogus class and control obfuscation technique

indicates the usefulness of having dead or irrelevant code. By removing the unused code

from the program, we might make the job of reverse engineer easier.

5.4.4.1 Observations

 JShield implements maximum number of obfuscation techniques as compared to

any other tool on the market.

 All the tools on market implement different set of techniques while JShield

provides a prototype for a tool that implements most of these techniques in one

place.

 JShield makes the Java code difficult to reverse engineer by applying various

71

obfuscation techniques. The techniques that can be implemented to enhance the

tool are mentioned in Section 6.2. It is left as future work to enhance the

capabilities of the tool to make it a commercially useful tool.

72

Table 7 Comparison of Tools

Obfuscation Techniques JShield ProGuard Jshrink Zelix

KlassMaster

Layout Obfuscation √ √ √ √
Scramble Identifiers √ √ ? √

Control Obfuscation √ - - √
Insert dead or

irrelevant code

√
- - ?

Extend loop condition √ - - ?

Reducible to non-

reducible
- - - ?

Add redundant

operands

√
- - ?

Removing

programming idioms
- - - ?

Parallelize code - - - ?

Inline and outline

methods
- - - ?

Interleave methods - - - ?

Clone methods - - - ?

Loop transformations - - - ?

Reorder statements,

loops, expressions
- - - ?

Data Obfuscation √ √ - √
Change encoding - - - -

Split variable - - - -

Convert static to

procedural data
√ - - √

Merge scalar

variables
- - - -

Factor/ Refactor class - - - -

Insert bogus class √ - - -

Split/ Merge/ Fold/

Flatten arrays
- - - -

Reorder methods and

instance variables
√ √ - -

Reorder arrays - - - -

73

5.4.4.2 User Test Statistics

JShield implements obfuscation to a given source code and produces obfuscated

source code which is more difficult to reverse engineer than its original version. To test

the usefulness of the tool, we performed a few usability tests. The tests were performed

with seven Java developers with experience ranging from 3 years to 6 years (this ensured

that they have sufficient knowledge of the language to understand the logic of the

programs). Four programs of different complexity (named Complex1, Complex2,

Complex3, Complex4, with the last one being the most complex) were given to each one

of the users and they were timed for understanding the logic of the program. The details

of the programs are given in Table 8 below and Table 9 shows the recorded times for

understanding the logic of programs prior to obfuscation.

Table 8 Test Programs

Program Level of Complexity

(1-4) 4 being highest

Purpose of the Program

Complex1 1 Simple Hello World application

Complex2 2 A console game application named 21

Sticks

Complex3 3 Temperature Conversion Program with

GUI

Complex4 4 Simple Calculator

After this the programs were obfuscated using JShield and the programs were

given to the same users again. The time taken by each to understand the logic was

recorded again, shown in Table 10.

74

The programs were given to the users in random order. For example, if program

Complex1‟s obfuscated version was given first; next program might be any other

obfuscated program or simply one of the four non-obfuscated versions. This was done to

ensure that the users do not get a hint from the program given to them for understanding

the next code given to them. The understanding of program was timed using a

stopwatch. The time measured for a user for correctly understanding was the time taken

by the user to correctly interpret the business logic of the program.

The user tests could not be statically used to validate the significance of results

because of the small number of users. The statistics do support that the logic of the

program is difficult to understand in terms of time taken to interpret the logic after

obfuscation. Due to limited resources and other constraints, we could not establish any

vital statistics about measurement of difficulty level to interpret the logic after

obfuscation.

Table 9 User Statistics: Before Obfuscation

User Time taken in seconds

Complex1 Complex2 Complex3 Complex4

User1 5 180 152 254

User2 8 129 129 350

User3 4 152 139 308

User4 6 120 180 406

User5 5 141 195 496

User6 5 202 184 581

User7 5 190 202 630

Average time 5.43 159.14 168.71 432.14

75

Table 10 User Statistics: After Obfuscation

User Time taken in seconds

Complex1 Complex2 Complex3 Complex4

User1 60 579 591 1530

User2 78 450 480 1800

User3 40 802 702 1447

User4 98 590 780 1671

User5 46 705 705 1762

User6 67 650 608 1280

User7 44 880 830 1321

Average time 61.86 665.14 670.86 1544.43

The graphs below establish the time difference in understanding the original

program and the obfuscated program. Each graph presents the time difference for one

program.

Figure 32 User Statistics for Complex1

76

Figure 33 User Statistics for Complex2

Figure 34 User Statistics for Complex3

77

Figure 35 User Statistics for Complex4

 To further analyze the statistics derived from these user tests, we divide

the users into three groups depending on the years of experience that they do have. The

categories thus created are 3-4 years of experience, 4-5 years, and 5-6 years. The users

are listed in their respective categories here:

3- 4 years – Group1 4-5 years – Group2 5-6 years – Group3

User1, User3, User7 User2, User4 User5, User6

We do calculate the average time taken by each of the user groups for each one of

the four target programs. The table below shows these calculated timings:

Table 11 Average time taken by users

 Complex1 Complex2 Complex3 Complex4

Group1 48 753.67 707.66 1432.66

Group2 88 520 630 1735.5

Group3 56.5 677.5 656.5 1521

78

The graph shown in Figure 36 indicates experience of the user does not introduce

too much variation in the time taken by users in understanding the logic.

Figure 36 User Groups Statistics

79

6.0 CONCLUSION AND FUTURE WORK

“The future you see is the future you get.”

(Robert G Allen)

6.1 Conclusion

With the availability of so many advanced tools and techniques, Java programs

are vulnerable to reverse engineering attacks. The research described in this thesis has

lead to the creation of a new tool to automate the application of strong anti-reversing

techniques to Java programs. This effort can go a long way in addressing the problems of

unauthorized access to source code and IP theft using reverse engineering attacks that the

industry currently faces. In 2008, the reported loss to the software industry due to

software piracy in general was $47.809 billion (Business Software Alliance, May 2008).

This loss increased to $51.41 billion in May 2010 (Business Software Alliance, May

2010). As such, it might very well be impossible to eradicate it but our tool can surely

make the reverse engineering effort hard and practically worthless.

In this paper, we presented the different techniques that are helpful in protecting

Java software from reverse engineering attacks. We discussed the different obfuscation

techniques previously developed. We identified the techniques that could be automated

and then developed a prototype to demonstrate the automated application of these

techniques. The obfuscation is applied to the java source code files and our tool

generates an obfuscated version of the code as its output. During multiple trials and tests

(Section 5.4.4.2), we verified that the functionality and performance of the program

remained unaffected when compared to the version before the changes were implemented

(Appendix C).

80

Additionally, we analyzed the existing tools on the market that address this

problem - both commercial and open source. After detailed analysis, we found each of

the existing tools lacking in the set of obfuscation techniques they could automate. We

established a genuine gap in the market for a tool that could provide stronger protection

and scope for in depth research in this field.

6.2 Future Work

The current prototype of JShield works on one Java source file at a time. A full

version could be easily created by enhancing the prototype and that would work on an

entire project containing several Java files.

Our proof of concept for this thesis implements seven obfuscation techniques in

total. Further research based on this ground work would lead to automation of even

more techniques and in fact, development of more advanced techniques based on future

needs. Needless to say, if all the known obfuscation techniques could be automated, it

would make this tool even more powerful. At the conclusion of this thesis and the

accompanying research, we found that certain techniques could only be applied by

human intervention while others could not be fit into our proof of concept.

The techniques that have not been implemented are listed here in the order of

increasing difficulty level.

 Clone methods

 Reorder statements, loops, expressions

 Reorder/ Split/ Merge/ Fold/ Flatten arrays

 Loop transformations

81

 Merge scalar variables

 Factor/ Refactor class

 Inline and outline methods

 Parallelize code

 Change encoding

 Split variable

 Interleave methods

 Reducible to non-reducible

 Removing programming idioms

Out of the above listed techniques, we believe it would be most beneficial to

implement clone methods, reorder expressions and loops, change the arrays and loop

transformations. These techniques will make it difficult for the hacker to understand the

logic behind decompiled snippets of code.

The techniques that are most difficult to automate in our opinion are removing

programming idioms, reducible to non-reducible, and interleave methods. The technique

of removing programming idioms (Section 3.2.2.1) is actually impossible to automate as

it deals with changing the way programmers write their code in the first place. The

technique of converting reducible to non-reducible (Section 3.2.2.1) is mostly applicable

in case of bytecode obfuscation. JShield works with obfuscating the source code and

hence it is not possible to add code which is syntactically unacceptable to the compiler.

The difficulty in automating the interleave methods (Section 3.2.2.2) is that it needs

extensive understanding of the business logic to manipulate the code to interleave two

82

methods. If the business logic is altered incorrectly, it might affect the functionality of

the software.

83

References

ANTLR (n.d.) Retrieved from the ANTLR website: http://www.antlr.org/

Antoniol, G., Casazza, G., Penta, M.D., & Fiutem, R. (2001, November 15). Object-

oriented design patterns recovery, Journal of Systems and Software, Volume 59,

Issue 2, Pages 181-196, ISSN 0164-1212, DOI: 10.1016/S0164-1212(01)00061-9.

[Electronic version] http://www.sciencedirect.com/science/article/B6V0N-

449TJ06-J/2/1194eca49fa9a9d8dbafde4af2041130

Baker, B.S. (1995, July). On finding duplication and near-duplication in large software

systems. In proceedings of the Working Conference on Reverse Engineering,

pages 86-95

Baxter, I.D., Bier, L., Moura, L., Sant‟Anna, M., and Yahin, A. (1998). Clone detection

using Abstract Syntax Trees. In Proceedings of the International Conference on

Software Maintenance, pages 368-377

Belur, S. & Bettadapura, K. (2006). Jdec: Java Decompiler. Retrieved November 20,

2010 from: http://jdec.sourceforge.net/

Benedusi, P., Cimitile, A., & Carlini U.D. (1992, November). Reverse engineering

processes, design document production, and structure charts. Journal of Systems

and Software, Volume 19, Issue 3, Pages 225-245, ISSN 0164-1212, DOI:

10.1016/0164-1212(92)90053-M

Biggerstaff, T.J. (1989, July). Design Recovery for Maintenance and Reuse. IEEE

Computer

Business Software Alliance (May 2008). Fifth Annual BSA and IDC Global Software

Piracy Study. Retrieved on February 2, 2011 from BSA website:

 http://portal.bsa.org/idcglobalstudy2007/studies/summaryfindings_globalstudy07.

pdf

Business Software Alliance (May 2010). Seventh Annual BSA and IDC Global Software

Piracy Study. Retrieved on February 2, 2011 from BSA website:

 http://portal.bsa.org/globalpiracy2009/studies/globalpiracystudy2009.pdf

Byrne, E. (1991). Software reverse engineering. Software – Practice and Experience,

21(12):1349-1364.

Canfora, G., Cimitile, A., Lucia, A. De, & Lucca, G. A. Di (2000). Decomposing legacy

programs: a first step towards migrating to client-server platforms. Journal of

Systems and Software, 54(2):99-110.

http://www.antlr.org/

84

Canfora, G. & Di Penta, M. (2007, May). New Frontiers of Reverse Engineering. In 2007

Future of Software Engineering (May 23 - 25, 2007). International Conference on

Software Engineering. IEEE Computer Society, Washington, DC, 326-341. DOI=

http://dx.doi.org/10.1109/FOSE.2007.15

Chen, Y., Fu, B., & Richard III, G. (2006, March). Some New Approaches For

Preventing Software Tampering. ACM SE’06 March 10-12, Melbourne, Florida,

USA

Chikofsky, E.J.; Cross II, J.H. (1990). Reverse Engineering and Design Recovery: A

Taxonomy in IEEE Software [Electronic version]. IEEE Computer Society: 13–

17.

http://seal.ifi.uzh.ch/fileadmin/User_Filemount/Vorlesungs_Folien/Evolution/SS0

5/chikofsky90.pdf

Cipresso, T. (2009). Software Reverse Engineering Education. Master’s thesis, San Jose

State University, CA. [Electronic version] Retrieved December 3, 2010, from

Software Reverse Engineering (SRE) – Web supplement to Master‟s thesis:

http://reversingproject.info/wp-

content/uploads/2008/10/cipresso_teodoro_cs299_report.pdf

Collberg, C., Low, D., & Thomborson C. (1997). A Taxonomy of Obfuscating

Transformations. Technical Report. Department of Computer Science, University

of Auckland, New Zealand. Retrieved October 21, 2010 from

http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborson

Low97a/A4.pdf

Collberg, C. & Thomborson, C. (2002). Watermarking, Tamper-Proofing, and

Obfuscation – Tools for Software Protection. IEEE traction on software

engineering 8(28), pages 735- 746

Cordy, J.R. & Roy, C.K. (2007, September). A Survey on Software Clone Detection

Research. Retrieved 6 March 2011 from

 http://research.cs.queensu.ca/TechReports/Reports/2007-541.pdf

Cordy, J.R. & Roy, C.K. (n.d.). Scenario-Based Comparison of Clone Detection

Techniques. School of Computing, Queen‟s University, Kingston, ON

DaCosta, D., Dahn, C., Mancoridis, S., & Prevelakis, V. (2003). Characterizing the

„security vulnerability likelihood‟ of software functions. In ICSM, pages 266-275.

IEEE Computer Society

Digital Fingerprint (n.d.). Business Dictionary. Retrieved July 24, 2010 from:

 http://www.businessdictionary.com/definition/digital-fingerprint.html

http://www.businessdictionary.com/definition/digital-fingerprint.html

85

Doorn, L.V., Kravitz, J., & Safford, D., (2003). Take control of TCPA, Linux Journal.

[Electronic version] Volume 2003 Issue 112. Retrieved October 31, 2010 from

http://www.linuxjournal.com/article/6633

Easterbrook, S.M., Holt, R.C., and Elliot Sim, S. (2003). Using benchmarking to advance

research: A challenge to software engineering. In proceedings of the 25th

International Conference on Software Engineering (ICSE 2003), May 3-10,

Portland, Oregon, pages 74-83

Eastridge Technology (n.d.). Jshrink: Java Shrinker and Obfuscator. Retrieved March 20,

2010 from Eastridge Technology website:

 http://www.e-t.com/jshrink.html

Eilam, E. (2005). Reversing: Secrets of Reverse Engineering. Indianapolis, Indiana:

Wiley Publishing, Inc.

Emden, E.V. & Moonen, L. (2002, November). Java quality assurance by detecting code

smells. In Ninth Working Conference on Reverse Engineering (WCRE 2002),

Richmond, VA, USA, pages 97-107. DOI:10.1109/WCRE.2002.1173058

Ernst, M.D. (2003, May). Static and dynamic analysis: synergy and duality.

In Proceedings of WODA 2003, pages 6-9, Portland, Oregon

Feng, L., Maletic, J.I., and Marcus, A. (2003, May). Source Viewer 3D (sv3D) – a

framework for software visualization. In proceedings of the 25th International

Conference on Software Engineering (ICSE 2003), May 3-10, Portland, Oregon,

pages 812-813

Foley, S. (2009). IBM Real Time Application Execution Optimizer for Java. A tool that

operates on compiled Java applications to optimize and verify application

deployment in specialized environments. Retrieved January 4, 2011 from IBM

website:

http://www.alphaworks.ibm.com/tech/javaoptimizer

George, N. & Glafkos, C. (2008) Reverse Engineering: Anti-Cracking Techniques

[Electronic version] Retrieved November 5, 2009, from Net Security website:

 http://www.net-

security.org/dl/articles/Reverse.Engineering.AntiCracking.Techniques.pdf

Google directory (n.d.). List of Java Obfuscators. Retrieved February 14, 2010:

 http://www.google.com/Top/Computers/Programming/Languages/Java/Developm

ent_Tools/Obfuscators/

86

Guilfanov, I. (n.d.). The IDA Pro Disassembler and Debugger. Retrieved November 14,

2010 from http://www.hex-rays.com/idapro/

Gupta, S. (2000). Code Obfuscation. Article published in Palisade - Application Security

Intelligence magazine. August 2005. Retrieved October 20, 2010:

 [Electronic version] http://palisade.plynt.com/issues/2005Aug/code-obfuscation/

Haggar, P. (2001). Java bytecode: Understanding bytecode makes you a better

programmer. [Electronic version] Retrieved October 21, 2010 from

http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode

Heuzeroth, D., Holl, T., Högstorm, G., and Löwe, W. (2003). Automatic design pattern

detection. In 11th International Workshop on Program Comprehension (IWPC

2003), Portland, Oregon, USA, pages 94-103

Hoenicke, J. (2002). JODE – Decompiler and Optimizer for Java. Retrieved November

20, 2010, from http://jode.sourceforge.net/

Inoue, K., Kamiya, T., and Kusumoto, S. (2002, July). CCFinder: A Multilinguistic

Token-Based Code Clone Detection System for Large Scale Source Code.

Retrieved 6 March 2011 from

 http://www.cs.drexel.edu/~spiros/teaching/CS675/papers/clone-kamiya.pdf

javac – The Java Compiler (n.d.). The Java(tm) Tools Reference Pages. Telemedia,

Networks, and Systems Group, MIT Laboratory for Computer Science,

Cambridge, MA. Retrieved December 29, 2010 from Telemedia, Networks, and

Systems Group‟s website:

 http://www.tns.lcs.mit.edu/manuals/java-tools-old/javac.html

jGuru (2000). What is preverification? Forum discussion. Retrieved October 14, 2010:

 http://www.jguru.com/faq/view.jsp?EID=201507

Kalinovsky, A. (2004). Covert Java: Techniques for Decompiling, Patching, and Reverse

Engineering. Bedford, UK: Sam Publications

Kazman, R., Woods, S. S., & Carri`ere, S. J. (1998). Requirements for integrating

software architecture and reengineering models: Corum II. In Proceedings of the

Working Conference on Reverse Engineering, pages 154–163

Koschke, R. (2000). Atomic Architectural Component Recovery for Program

Understanding and Evolution. Ph.D. thesis, University of Stuttgart, Germany.

http://en.wikipedia.org/wiki/Ilfak_Guilfanov
http://www.hex-rays.com/idapro/
http://jode.sourceforge.net/
http://www.tns.lcs.mit.edu/manuals/java-tools-old/javac.html

87

Kouznetsov, P. (1997). Jad – the fast Java decompiler. Retrieved December 3, 2010,

from

http://web.archive.org/web/20080214075546/http://www.kpdus.com/jad.html#em

ail

Lafortune, E. (n.d.). ProGuard. A Java class file Shrinker, optimizer, obfuscator, and

preverifier. Retrieved March 28, 2010:

 http://proguard.sourceforge.net/

Leblanc, C., Mayrand, J., and Merlo, E. (1996, November). Experiment on the automatic

detection of function clones in a software system using metrics. In Proceedings of

the International Conference on Software Maintenance, pages 244-253, Monterey,

CA

Lemay, L. & Perkins C.L. (1996). Teach Yourself JAVA in 21 Days. Indianapolis,

Indiana: Sams.net Publishing, Inc.

Low, D. (1998). Java Control Flow Obfuscation. Master‟s thesis. University of Auckland,

Auckland, New Zealand.

Low, D. (1998). Protecting Java Code Via Code Obfuscation. ACM Crossroads, Spring

1998 issue. Retrieved from The University of Arizona website on June 30, 2010:

 http://www.cs.arizona.edu/~collberg/Research/Students/DouglasLow/obfuscation.

html

Machine code (2010). Wikipedia. Retrieved December 4, 2010, from

http://en.wikipedia.org/wiki/Machine_code

Marziali, A. (n.d.) Code Crawler. A tool for assisting code review practitioners.

Retrieved December 24, 2010, from OWASP Code Crawler website:

http://codecrawler.codeplex.com/

Memon, A.M., Banerjee, I., & Nagarajan, A. (2003, November). GUI ripping: Reverse

engineering of graphical user interfaces for testing. In Tenth Working Conference

on Reverse Engineering (WCRE 2003), 13-16 November, Victoria, Canada,

pages 260-269

Merlo, E., Gagne, P.-Y., Girard, J.-F., Kontogiannis, K., Hendren, L.J., Panangaden, P.,

& Mori, R. de (1995). Reengineering user interfaces. IEEE Software, 12(1):64-73

Moonen, L. (2001). Generating robust parsers using island grammars. In Proceedings of

the Working Conference on Reverse Engineering, pages 13–22

http://en.wikipedia.org/wiki/Machine_code

88

Moore, M. (1998). User Interface Reengineering, Ph.D. thesis, Georgia Institute of

Technology, USA

Muller, H.A., Storey, M.D., Tilley, S., and Wong, K. (1995, January). Structural

redocumentation: A case study. IEEE Software, pages 46-54

Nolan, G. (2004). Decompiling Java. Chapter 4 – Protecting Your Source: Strategies for

Defeating Decompilers, pages 79 – 210. New York, USA: Springer-Verlag New

York, Inc.

Obfuscated code (2010). Wikipedia. Retrieved November 4, 2010, from

 http://en.wikipedia.org/wiki/Code_obfuscation

Parr, T. (2007). The Definitive ANTLR Reference. Building Domain-Specific

Languages. The Pragmatic Programmers, LLC

Potrich, A. and Tonella, P. (2005). Reverse Engineering of Object Oriented Code.

Springer-Verlag, Berlin, New York

Roperia, N. (2009, May). JSMELL: A BAD SMELL DETECTION TOOL FOR JAVA

SYSTEMS. Master‟s thesis – California State University, Long Beach. Retrieved

on August 10, 2010 from:

 http://gradworks.umi.com/1466306.pdf

Rugaber, S. (2000). The use of domain knowledge in program understanding. Reverse

Engineering Group at Georgia Institute of Technology, Atlanta. Retrieved on

August 30, 2010 from:

 http://www.cc.gatech.edu/reverse/papers.html

Semantic Designs (n.d.). Java Source Code Obfuscator. Retrieved June 19, 2010 from

Semantic Designs company website:

 http://www.semanticdesigns.com/Products/Obfuscators/JavaObfuscator.html

SoftICE (n.d.). Wikipedia. Retrieved December 3, 2010, from

http://wiki.laptop. org/go/OLPC_Peru/Arahuay

Sogiros, J. (n.d.). Code Obfuscation Techniques against Strong Software Protection

Techniques. Security article published on sooperarticles.com. Retrieved on

December 30, 2010 from:

 http://www.sooperarticles.com/technology-articles/security-articles/code-

obfuscation-techniques-against-strong-software-protection-techniques-67981.html

Stamp, M. (2006). Information Security: Principles and Practices. New Jersey: John

Wiley & Sons, Inc.

http://en.wikipedia.org/wiki/Code_obfuscation

89

Swartz, F. (2007). Java: Example – Simple Calculator. Retrieved on June 19, 2009 from:

http://leepoint.net/notes-java/examples/components/calculator/calc.html

Systä, T. (2000). Static and Dynamic Reverse Engineering Techniques for Java Software

Systems. PhD thesis, University of Tampere, Finland

The Code Project (n.d.) An Anti-Reverse Engineering Guide.

 Retrieved October 10, 2009, from The Code Project website:

 http://www.codeproject.com/KB/security/AntiReverseEngineering.aspx

Yuschuk, O. (2000). OllyDbg. Retrieved December 3, 2010, from

 http://www.ollydbg.de/

Zelix KlassMaster: HEAVY DUTY PROTECTION (n.d.). Java Bytecode Obfuscator.

Retrieved April 20, 2010:

 http://www.zelix.com/klassmaster/features.html

90

APPENDIX A: ANTLR Parser

What is ANTLR?

 “ANTLR, ANother Tool for Language Recognition, is a language tool that

provides a framework for constructing recognizers, interpreters, compilers, and

translators from grammatical descriptions containing actions in a variety of target

languages. ANTLR provides excellent support for tree construction, tree walking,

translation, error recovery, and error reporting.” (ANTLR, n.d.)

How ANTLR works?

 ANTLR provides a grammar development environment, developed by Jean

Bovet, called ANTLRWorks (The ANTLR GUI Development Environment).

ANTLRWorks combines an editor and an interpreter which helps in rapid prototyping

(Parr, 2007). ANTLRWorks needs Java 1.5 or later to execute. We used version 1.1.3 of

ANTLRWorks.

 Figure 37 shows the high level interface of ANTLRWorks. ANTLRWorks helps

in understanding the rules of grammar by providing syntax diagrams of the grammar

rules. ANTLRWorks can generate parsers for multiple target languages like Java, C#,

C++, and Python (ANTLR, n.d.).

91

Figure 37 ANTLRWorks Interface

 We used ANTLRWorks to generate a parser in C#. The code generated by

ANTLRWorks is integrated into Microsoft Visual Studio 2005. ANTLRWorks takes

Java grammar as input and generates parser and lexer classes in C# thus making it easy to

integrate the parser.

 We declare data structures in the grammar to capture information about the target

class. Figure 38 shows a code snippet of one such addition. The code added to the parser

is to capture the required information about the code at runtime. When the Java code is

92

parsed, we capture information about the methods, variables, etc. and store it in data

structures, as explained in Section 5.4.1.

Figure 38 Code Snippet

93

APPENDIX B: Terminology

AST-based clone detection:

 The AST-based clone detection technique was suggested by (Baxter et al., 1998).

In this technique, the source code is parsed to build an abstract syntax tree (AST) and the

subtrees are compared to detect clones.

Clones (in software systems):

 “Copying code fragments and then reuse by pasting with or without minor

modifications or adaptations are common activities in software development. This type of

reuse approach of existing code is called code cloning and the pasted code fragment (with

or without modifications) is called a clone of the original.” (Cordy & Roy, 2007)

Code Smell:

 The software undergoes a lot of changes during its life cycle. This may introduce

some undesirable design flaws in the code. These design flaws which are introduced in

the system during the maintenance phase of life cycle are called code smells. (Roperia,

2009)

Metrics-based clone detection:

 “Metrics-based techniques gather a number of metrics for code fragments and

then compare metrics vectors rather than code or ASTs directly. One popular technique

involves fingerprinting functions, metrics calculated for syntactic units such as a class,

function, method or statement that yield values that can be compared to find clones of

these syntactic units.” (Cordy & Roy, n.d.)

94

Reducible & Nonreducible:

 The bytecode that cannot be converted back to its original code is termed as

nonreducible. For example inserting a goto statement in bytecode shall make the

bytecode nonreducible as the equivalent of goto statement is not available in Java

language. The reducible code is the bytecode that is converted back to its original source

code with the help of a decompiler.

Token-based clone detection:

 “A clone detection technique, which consists of the transformation of input source

text and a token-by-token comparison.” (Inoue et al., 2002) The source code is converted

into a sequence of tokens using lexical analyzer and then these sequences are matched to

detect clone.

95

APPENDIX C: JShield Example

 We use a java program of simple calculator that we use here to demonstrate the

functionality of JShield and to verify that the logic of the target program remains

unaltered after obfuscation using JShield. The original code of simple calculator is given

in Table 12 (Program adopted from (Swartz, 2007) under MIT License).

Table 12 Simple Calculator: Before Obfuscation

import java.awt.BorderLayout;

import java.awt.FlowLayout;

import java.awt.Font;

import java.awt.GridLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.BorderFactory;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JTextField;

import javax.swing.UIManager;

class Calculator extends JFrame {

 private static final Font BIGGER_FONT = new Font("monspaced",

Font.PLAIN, 20);

 private JTextField _displayField;

 private boolean _startNumber = true;

 private String _previousOp = "=";

 private CalcLogic _logic = new CalcLogic();

 public static void main(String[] args) {

 try {

 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName(

));

 } catch (Exception unused) {

 ;

 }

 Calculator window = new Calculator();

 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 window.setVisible(true);

 }

96

 public Calculator() {

 _displayField = new JTextField("0", 12);

 _displayField.setHorizontalAlignment(JTextField.RIGHT);

 _displayField.setFont(BIGGER_FONT);

 JButton clearButton = new JButton("Clear");

 clearButton.setFont(BIGGER_FONT);

 clearButton.addActionListener(new ClearListener());

 ActionListener numListener = new NumListener();

 String buttonOrder = "789456123 0 ";

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new GridLayout(5, 3, 2, 2));

 for (int i = 0; i < buttonOrder.length(); i++) {

 String keyTop = buttonOrder.substring(i, i+1);

 JButton b = new JButton(keyTop);

 if (keyTop.equals(" ")) {

 b.setEnabled(false);

 } else {

 b.addActionListener(numListener);

 b.setFont(BIGGER_FONT);

 }

 buttonPanel.add(b);

 }

 ActionListener opListener = new OpListener();

 JPanel opPanel = new JPanel();

 opPanel.setLayout(new GridLayout(5, 1, 2, 2));

 String[] opOrder = {"+", "-", "*", "/", "="};

 for (int i = 0; i < opOrder.length; i++) {

 JButton b = new JButton(opOrder[i]);

 b.addActionListener(opListener);

 b.setFont(BIGGER_FONT);

 opPanel.add(b);

 }

 JPanel clearPanel = new JPanel();

 clearPanel.setLayout(new FlowLayout());

 clearPanel.add(clearButton);

 JPanel content = new JPanel();

 content.setLayout(new BorderLayout(5, 5));

 content.add(_displayField, BorderLayout.NORTH);

 content.add(buttonPanel , BorderLayout.CENTER);

 content.add(opPanel , BorderLayout.EAST);

 content.add(clearPanel , BorderLayout.SOUTH);

 content.setBorder(BorderFactory.createEmptyBorder(10,10,10,10));

 this.setContentPane(content);

 this.pack();

 this.setTitle("Simple Calc");

 this.setResizable(false);

 this.setLocationRelativeTo(null);

 }

97

 private void actionClear() {

 _startNumber = true;

 _displayField.setText("0");

 _previousOp = "=";

 _logic.setTotal("0");

 }

 class OpListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 if (_startNumber) {

 actionClear();

 _displayField.setText("ERROR - No operator");

 } else {

 _startNumber = true;

 try {

 String displayText =

_displayField.getText();

 if (_previousOp.equals("=")) {

 _logic.setTotal(displayText);

 } else if (_previousOp.equals("+")) {

 _logic.add(displayText);

 } else if (_previousOp.equals("-")) {

 _logic.subtract(displayText);

 } else if (_previousOp.equals("*")) {

 _logic.multiply(displayText);

 } else if (_previousOp.equals("/")) {

 _logic.divide(displayText);

 }

 _displayField.setText("" +

_logic.getTotalString());

 } catch (NumberFormatException ex) {

 actionClear();

 _displayField.setText("Error");

 }

 _previousOp = e.getActionCommand();

 }

 }

 }

 class NumListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 String digit = e.getActionCommand();

 if (_startNumber) {

 _displayField.setText(digit);

 _startNumber = false;

 } else {

 _displayField.setText(_displayField.getText() +

digit);

 }

98

 }

 }

 class ClearListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 actionClear();

 }

 }

 public class CalcLogic {

 private int _currentTotal;

 /** Constructor */

 public CalcLogic() {

 _currentTotal = 0;

 }

 public String getTotalString() {

 return "" + _currentTotal;

 }

 public void setTotal(String n) {

 _currentTotal = convertToNumber(n);

 }

 public void add(String n) {

 _currentTotal += convertToNumber(n);

 }

 public void subtract(String n) {

 _currentTotal -= convertToNumber(n);

 }

 public void multiply(String n) {

 _currentTotal *= convertToNumber(n);

 }

 public void divide(String n) {

 _currentTotal /= convertToNumber(n);

 }

 private int convertToNumber(String n) {

 return Integer.parseInt(n);

 }

 }}

 The execution of the original program yields a simple calculator that performs all

basic mathematical operations. The screenshot for the output I given in Figure 39 below:

99

Figure 39 Simple Calculator Output

 Table 13 shows the code after the program is obfuscated using JShield.

Table 13 Simple Calculator: After Obfuscation

import java.awt.BorderLayout;

import java.awt.FlowLayout;

import java.awt.Font;

import java.awt.GridLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.BorderFactory;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JTextField;

import javax.swing.UIManager;

class Calc extends JFrame {

 static emacglocnds OBJ_AHNAGBBQIB = new emacglocnds();

 static int v_addIfCondition = 10;

 private static final Font BIGGER_FONT = new Font("monspaced",

Font.PLAIN, 20);

 private JTextField _displayField;

 private boolean r = true;

100

 private String te = "=";

 private lldgfn _logic = new lldgfn();

 public static void main(String[] args) {

 try {

 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName(

));

 } catch (Exception unused) {

 ;

 }

 Calc window = new Calc();

 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 window.setVisible(true);

 }

 public Calc() {

 _displayField = new JTextField("0", 12);

 _displayField.setHorizontalAlignment(JTextField.RIGHT);

 _displayField.setFont(BIGGER_FONT);

 JButton clearButton = new JButton("Clear");

 clearButton.setFont(BIGGER_FONT);

 clearButton.addActionListener(new ClearListener());

 ActionListener numListener = new NumListener();

 String tdi = "789456123 0 ";

 JPanel buttonPanel = new JPanel();

 buttonPanel.setLayout(new GridLayout(5, 3, 2, 2));

 for (int i = 0; i < tdi.length(); i++) {

 String tdklt = tdi.substring(i, i+1);

 JButton b = new JButton(tdklt);

 if (v_addIfCondition%2 == 1 || tdklt.equals(" ")) {

 b.setEnabled(false);

 } else {

 b.addActionListener(numListener);

 b.setFont(BIGGER_FONT);

 }

 buttonPanel.add(b);

 }

 ActionListener tdklgbm = new OpListener();

 JPanel tdklgbdn = new JPanel();

 tdklgbdn.setLayout(new GridLayout(5, 1, 2, 2));

 String[] tdklgbdjh = {"+", "-", "*", "/", "="};

 for (int i = 0; i < tdklgbdjh.length; i++) {

 JButton b = new JButton(tdklgbdjh[i]);

 b.addActionListener(tdklgbm);

 b.setFont(BIGGER_FONT);

 tdklgbdn.add(b);

 }

 JPanel tdklgbdjdaaq = new JPanel();

 tdklgbdjdaaq.setLayout(new FlowLayout());

101

 tdklgbdjdaaq.add(clearButton);

 JPanel tdklgbdjdaajf = new JPanel();

 tdklgbdjdaajf.setLayout(new BorderLayout(5, 5));

 tdklgbdjdaajf.add(_displayField, BorderLayout.NORTH);

 tdklgbdjdaajf.add(buttonPanel , BorderLayout.CENTER);

 tdklgbdjdaajf.add(tdklgbdn , BorderLayout.EAST);

 tdklgbdjdaajf.add(tdklgbdjdaaq , BorderLayout.SOUTH);

 tdklgbdjdaajf.setBorder(BorderFactory.createEmptyBorder(10,10,10,

10));

 this.setContentPane(tdklgbdjdaajf);

 this.pack();

 this.setTitle("Simple Calc");

 this.setResizable(false);

 this.setLocationRelativeTo(null);

 }

 private void lldgn() {

 r = true;

 _displayField.setText("0");

 te = "=";

 _logic.setTotal("0");

 }

 class OpListener implements ActionListener {

 public String getPassword(int ID){

 String t_password = "";

 t_password = OBJ_AHNAGBBQIB.returnPassword(ID);

 if(!t_password.equals("User not found"))

 return t_password;

 else

 return "";

 } public void actionPerformed(ActionEvent e) {

 int v_userID = 3;

 if(v_userID == 3){}

 if (r) {

 lldgn();

 _displayField.setText("ERROR - No operator");

 } else {

 r = true;

 try {

 String tdklgbdjdaajbi =

_displayField.getText();

 if (te.equals("=")) {

 _logic.setTotal(tdklgbdjdaajbi);

 } else if (te.equals("+")) {

 _logic.add(tdklgbdjdaajbi);

 } else if (te.equals("-")) {

102

 _logic.subtract(tdklgbdjdaajbi);

 } else if (te.equals("*")) {

 _logic.multiply(tdklgbdjdaajbi);

 } else if (te.equals("/")) {

 _logic.divide(tdklgbdjdaajbi);

 }

 _displayField.setText("" +

_logic.getTotalString());

 } catch (NumberFormatException ex) {

 lldgn();

 _displayField.setText("Error");

 }

 te = e.getActionCommand();

 }

 }

 }

 class NumListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 String tdklgbdjdaajbcr = e.getActionCommand();

 if (r) {

 _displayField.setText(tdklgbdjdaajbcr);

 r = false;

 } else {

 _displayField.setText(_displayField.getText() +

tdklgbdjdaajbcr);

 }

 }

 }

 class ClearListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 lldgn();

 }

 }

 public class lldgfn {

 private int tdklgbdjdaajbcqb;

 /** Constructor */

 public lldgfn() {

 tdklgbdjdaajbcqb = 0;

 }

 public String getTotalString() {

 return "" + tdklgbdjdaajbcqb;

 }

 public void setTotal(String n) {

 tdklgbdjdaajbcqb = convertToNumber(n);

103

 }

 public void add(String n) {

 tdklgbdjdaajbcqb += convertToNumber(n);

 }

 public void subtract(String n) {

 tdklgbdjdaajbcqb -= convertToNumber(n);

 }

 public void multiply(String n) {

 tdklgbdjdaajbcqb *= convertToNumber(n);

 }

 public void divide(String n) {

 tdklgbdjdaajbcqb /= convertToNumber(n);

 }

 private int convertToNumber(String n) {

 return Integer.parseInt(n);

 }

 }}

 The output of the program after obfuscation is shown in Figure 40 below:

Figure 40 Obfuscated Calculator Program Output

104

Memory Size and Runtime Performance:

 There is negligible change in the memory size of the program. For example, in

case of simple calculator the memory size before obfuscation is 5,014 bytes. After the

obfuscation is done, the size of the file is 5,094 bytes. Although the size of the file itself

doesn‟t change much, the addition of the bogus class increases the size of the program.

The runtime performance of the program remains unaffected as well. We tested the

runtime performance by running a loop that executed 1000000 times. The time of

execution before and after the obfuscation was noted to be same.

