

A Study on Masquerade Detection

Lin Huang

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

submitted in partial fulfillment of requirements for the degree

MASTER OF COMPUTER SCIENCE

at the

SAN JOSE STATE UNIVERSITY

December, 2010

This report has been approved

for the Department of Computer Science

and the College of Graduate Studies by

__

Dr. Mark Stamp Computer Science Department Date

__

Dr. Robert Chun Computer Science Department Date

__

Dr. Teng Moh Computer Science Department Date

ACKNOWLEDGMENTS

I am indebted to my advisor, Dr. Mark Stamp, for his consistent guidance, support,

and encouragement throughout my master program. Dr. Mark Stamp has tirelessly guided

me on how to perform meaningful research at every step. He has been and will always be

an excellent role model for me.

I would like to specially thank Dr. Robert Chun and Dr. Teng Moh for serving on

my defense committee.

I also would like to thank my friends, Fan Yang, Leyan Tang, and Yue Chen.

They have made my life in San Jose enjoyable and memorable. I am especially grateful to

my dear wife Xiuduan Fang for her everlasting love, encouragement and support.

 iv

ABSTRACT

In modern computer systems, usernames and passwords have been by far the most

common forms of authentication. A security system relying only on password protection

is defenseless when the passwords of legitimate users are compromised. A masquerader

can impersonate a legitimate user by using a compromised password.

An intrusion detection system (IDS) can provide an additional level of protection

for a security system by inspecting user behavior. In terms of detection techniques, there

are two types of IDSs: signature-based detection and anomaly-based detection. An

anomaly-based intrusion detection technique consists of two steps: 1) creating a normal

behavior model for legitimate users during the training process, 2) analyzing user

behavior against the model during the detection process.

In this project, we concentrate on masquerade detection, a specific type of

anomaly-based IDS. We have first explored suitable techniques to build a normal

behavior model for masquerade detection. After studying two existing modeling

techniques, N-gram frequency and hidden Markov models (HMMs), we have developed

a novel approach based on profile hidden Markov models (PHMMs). Then we have

analyzed these three approaches using the classical Schonlau data set. To find the best

detection results, we have also conducted sensitivity analysis on the modeling parameters.

However, we have found that our proposed PHMMs do not outperform the corresponding

HMMs. We conjectured that Schonlau data set lacked the position information required

by the PHMMs. To verify this conjecture, we have also generated several data sets with

position information. Our experimental results show that when there is no sufficient

training data, the PHMMs yield considerably better detection results than the

 v

corresponding HMMs since the generated position information is significantly helpful for

the PHMMs.

 vi

TABLE OF CONTENTS

 Page

NOMENCLATURE.. IX

LIST OF TABLES ... X

LIST OF FIGURES ..XI

1. INTRODUCTION... 1

1.1. Intrusion Detection Systems (IDS) .. 1

1.1.1. Signature-based Detection and Anomaly-based Detection..................... 1

1.1.2. Performance Criteria... 3

1.2. Masquerade Detection .. 4

1.2.1. Architecture of a Masquerade Detection System.................................... 4

1.2.2. Schonlau Data Set ... 5

1.3. Project Road Map ... 7

2. SIMPLE SUBSTITUTION CRYPTANALYSIS ... 10

2.1. Simple Substitution Cipher.. 10

2.2. Breaking Simple Substitution Ciphers ... 11

3. FREQUENCY STATISTICS... 12

3.1. N-gram: Unigram, Bigram, Trigram, and N-gram ... 12

3.2. Experimental Results.. 16

 vii

3.2.1. 1-gram, 2-gram, and 3-gram ... 16

3.2.2. N-gram Weighted by Percentage of Command Usage......................... 17

3.2.3. N-gram with User Uniqueness.. 19

3.2.4. Conclusions... 20

4. HMM: INTRODUCTION.. 21

4.1. Markov Chain ... 21

4.2. Hidden Markov Model (HMM)... 23

4.3. Implementation ... 27

4.4. Experimental Results.. 27

4.4.1. The Detection Results of HMMs with 2 States, 4 States and 6 States.. 27

4.4.2. HMM vs. N-Gram...28

4.4.3. Conclusions... 29

5. PROFILE HIDDEN MARKOV MODEL (PHMM) 30

5.1. Overview .. 30

5.2. Implementation Details .. 33

5.2.1. Pairwise Alignment... 33

5.2.2. Multiple Sequence Alignment (MSA).. 37

5.2.3. Create PHMM... 40

5.2.4. Calculate Test Data Probability and Detection Results 43

 viii

5.3. Experimental Result ... 45

5.3.1. Detection Results of Different Subsequence in MSA........................... 45

5.3.2. PHMM vs. HMM vs. N-Gram Models... 46

5.4. Generate Data Sets with Position Information .. 48

5.5. Detection Results of HMM vs. PHMM on Generated Data Sets.................... 49

5.5.1. Conclusions... 51

6. CONCLUSIONS AND FUTURE WORK.. 52

REFERENCES.. 54

 ix

NOMENCLATURE

IDS: Intrusion detection system.

Alert/Alarm: A signal suggesting that a system has been or is being attacked [1].

True Positive: A legitimate attack which triggers IDS to produce an alarm [1].

False Positive: An event signaling IDS to produce an alarm when no attack has

been taken place [1].

True Negative: When no attack has taken place and no alarm is raised [1].

False Negative: A failure of IDS to detect an actual attack [1].

 x

LIST OF TABLES

Table Page

TABLE I: An example of simple substitution letter mapping 10

TABLE II: N-gram examples for a command sequence ... 13

TABLE III: An example substitution matrix .. 34

TABLE IV: Experiment Cases of Generating Multiple Sequences.............................. 38

 xi

LIST OF FIGURES

Figure Page

Figure 1: A general architecture of masquerade detection... 5

Figure 2: Schonlau Data Set ... 6

Figure 3: Location of the masquerades .. 7

Figure 4: English Letter Frequencies ... 11

Figure 5: The detection results using 1-gram, 2-gram, and 3-gram 16

Figure 6: N-grams weighted by percentage of command usage vs. un-weighted N-

grams 17

Figure 7: An example of detection results for User 9 .. 19

Figure 8: N-gram weighted by uniqueness vs. N-gram weighted by command usage

vs. un-weighted N-gram.. 20

Figure 9: A Markov chain of a computer sharing pattern .. 21

Figure 10: Start and End States are added to the Markov Chain................................ 23

Figure 11: An HMM of a computer sharing pattern... 24

Figure 12: A generic HMM.. 26

Figure 13: The detection results of HMMs with 2 states, 4 states, and 6 states......... 28

Figure 14: The detection results of the HMM vs. uniqueness weighted N-Grams 29

 xii

Figure 15: The architecture of masquerade detection using a PHMM....................... 31

Figure 16: Global alignment and local alignment .. 36

Figure 17: An example MSA ... 37

Figure 18: The architecture of a PHMM .. 40

Figure 19: Determine MSA states .. 41

Figure 20: The state transition structure of a PHMM... 43

Figure 21: The recursion equation of the forward algorithm for a PHMM................ 44

Figure 22: The detection results of PHMMs with different number of subsequences in

MSA 46

Figure 23: The detection results of PHMM models vs. the HMM model vs. the

uniqueness weighted 3-Gram model... 47

Figure 24: The detection results of the HMM and the PHMM on our generated data

vs. Schonlau data set ... 50

Figure 25: The detection results of the HMMs and the PHMMs on our generated data

set with reduced training data ... 51

1. Introduction

1.1. Intrusion Detection Systems (IDS)

In modern computer systems, usernames and passwords have been by far the most

common forms of authentication. A security system relying only on password protection

is defenseless when the passwords of legitimate users are compromised. A masquerader

can impersonate a legitimate user by using a compromised password.

To detect this issue of masquerading user, Intrusion Detection Systems (IDSs)

have been proposed to provide an additional protection for the system by inspecting user

behavior [2]. The basic approach used by an IDS is to monitor ongoing activities within

the system and to look for malicious or unusual behaviors. Once the IDS concludes a

harmful activity has occurred, further actions can be taken to intervene, such as raising an

alarm or blocking the user’s session. From the perspective of detection techniques, there

are two general detection techniques used by IDSs: signature-based detection (also

known as misuse detection) and anomaly-based detection.

1.1.1. Signature-based Detection and Anomaly-based Detection

Signature-based detection systems depend on predetermined patterns that

represent misuse. Such a pattern should summarize the distinctive characteristics of an

attack, often referred to as the signature of an attack. In the detection phase, the IDS

records and inspects user activities, and then looks for events that match a predefined

 2

pattern. If a match is found, the detection system raises an intrusion alarm. As a result, a

signature-based system is very accurate for detecting known attacks. Moreover, with the

information associated with the signature, the IDS is able to give a concrete description

of the threat when raising an alarm [2]. However, a signature-based detection system

cannot detect unknown attacks. Without the signatures of new attacks, the IDS knows

nothing about such an attack. There is always a lag between the time when a new attack

is found in the wild and the integration of its signature into the IDS database. Therefore,

it is crucial for the signature database to be continuously updated to include new attacks.

Anomaly-based detection systems model user behavior to determine the

characteristics of a user’s normal behavior [2]. During the detection phase, anomaly-

based systems record and analyze user activities and compare this against their normal

behavior model. A deviation from the established behavior model is considered an

anomaly, or an indication of a possible attack. Often a threshold value is used to define

how much deviation will be required before an anomaly is considered an intrusion.

Anomaly-based detection systems can detect both known and unknown attacks, provided

that the attacker’s behavior is significantly different from that of the normal user.

One major challenge of the anomaly-based approach is to model normal behavior.

To construct such a model, we must extract distinct characteristics of user behavior. We

should also collect a sufficient amount of user behavior data for training purposes. Of

course, the user behavior data must be collected under conditions where no intrusion is in

progress [2]. A threshold value is needed to indicate how much deviation will be

considered as an intrusion. Selecting a threshold value presents a tradeoff between the

false position rate and the false negative rate.

 3

User behavior will almost certainly change over time. Without an updating

mechanism, an established behavior model will become obsolete, resulting in a large

number of false positives. To overcome this problem, most anomaly-based IDSs will

update to a new “normal” so that the model can adapt to changes. While this approach

deals with the normal user’s changing behavior problem, it also leaves a potential

security loophole. An intruder can cheat an IDS into believing he is a legitimate user by

acting like a normal user and only gradually changing his behavior [2].

1.1.2. Performance Criteria

In most anomaly-based IDSs, there is a mechanism to score test data, and a

threshold value is set to determine whether a piece of data is more likely from an original

user or an intrusion user. For example, given a threshold value, if an input is evaluated to

have a score higher than the threshold, this input will be categorized as normal data;

otherwise, it will be treated as intrusion data.

The threshold value has a significant opposite effect on the false positive (false

alarm) rate and the false negative (miss target) rate. If we increase the threshold to catch

more intrusion data, the false negative rate will decline; however, the false positive rate

will increase since more normal data will be categorized as intrusion data. Conversely, if

we lower the threshold, the false negative rate will increase but the false positive rate will

decrease. Therefore, the threshold value presents a tradeoff between the false positive rate

and false negative rate, since neither high false positive rate nor high false negative rate is

desirable. High false negative rate leaves many intrusions uncaught, making IDSs

 4

useless. High false positive rate, on the other hand, floods IDSs with a large amount of

false alarms, eventually causing administrators to ignore true intrusion alarms along with

false alarms.

To better compare the performance amongst different intrusion detection

techniques, we use the Receiver Operating Characteristics (ROC) curve [10] and scatter

charts to analyze masquerade detection results. The ROC chart shows the overall

detection results for all users, which is useful to compare false positive rates and false

negative rates as the threshold value changes. The scatter charts show the detection

results of all individual users.

1.2. Masquerade Detection

In this project, we have studied masquerade detection, a specific case of anomaly-

based IDS in the UNIX command environment. Note that we use masquerade detection

and intrusion detection interchangeably in this report. A masquerader in computer

intrusion detection is a person who uses other’s computer account [3]. The fundamental

assumption of masquerade detection is that each user has his unique characteristics when

invoking command sequences. Hence an intrusion likely occurs when there is a

significant difference from a user’s previous characteristics.

1.2.1. Architecture of a Masquerade Detection System

Figure 1: shows a general architecture of a masquerade detection system. The

essential part is to model user normal behavior. Once such a model is constructed, it is

 5

relatively easy to evaluate test data. A good model must preserve the distinct

characteristics of each user but ignore trivial information. In masquerade detection, users’

historical commands are collected and stored, and then users’ ongoing commands are

examined based on their historical data.

Figure 1: A general architecture of masquerade detection

1.2.2. Schonlau Data Set

Dr. Schonlau has collected masquerading user data for the training and testing

purposes for masquerade detection [8]. Figure 2: illustrates the structure of Schonlau data

set. This data set consists of 50 data files, one file per user. In each file, there are 15,000

commands (collected using the UNIX audit tool, acct [18]). The first 5000 commands are

from an original user and these commands are intended to serve as training data. The

 6

following 10,000 commands are seeded with a masquerader user’s commands, and they

are intended to serve as test data. The test data can be viewed as 100 command blocks,

with 100 commands in each block.

Figure 2: Schonlau Data Set

Schonlau data set contains a map file for the locations of the masqueraded blocks.

Figure 3: demonstrates the structure of the map file. The map file contains 100 rows and

50 columns. Each column corresponds to one user, and each row corresponds to a test

block. The entries of the map file are set to either 0 or 1. The value of 0 indicates the

commands on the corresponding block are not contaminated by a masquerader, and the

value of 1 indicates they are contaminated.

The training data provided by Schonlau data set contains only normal behaviors

but no intrusion behavior. This is sufficient for masquerade detection since it is a specific

case of anomaly-based techniques, which do not require signature of intrusion behaviors.

Training Data:

Test Data:

100 blocks,

100 cmds / block,

B1
B2

B100

User 1 User 2 User 3 User 50

 7

Figure 3: Location of the masquerades

1.3. Project Road Map

This project is focused on different masquerade detection techniques with

Schonlau data set as the primary source of training and test data. The goal of this project

is to gain an insight on the detection results of different models and to propose a novel

model of masquerade detection.

The original project idea was inspired by the similarity between simple

substitution cryptanalysis and masquerade detection. Both techniques process

observations and try to reveal their underlying truth. In simple substitution cryptanalysis,

the observations are cipher texts and the truth is plain texts. In masquerade detection, the

observations are test data, and the truth is whether the true identities behind the test data

are masquerade users. Simple substitution cryptanalysis has been studied long before the

intrusion detection, even before the first computer was invented. Due to the similarity

between the two techniques, it is reasonable to apply simple substitution cryptanalysis

techniques to masquerade detection. Specifically, we are interested in the normal

0
1
1
1
.
.
.
1
0

B1

B2

B3

B100

User 1

0

0

0

1

.

.

.

User 2

0

0

0

0

.

.

.

User 50

0: commands in the

block come from the

original user.

1: commands in the

block come from

masquerader

 8

behavior modeling techniques and the evaluation functions used by simple substitution

cryptanalysis. In Section 2, we present an overview of simple substitution cryptanalysis.

We have reviewed literatures to learn techniques used in simple substitution

cryptanalysis, including n-gram frequencies [13,14], double letter, short word patterns,

observing syntactic and semantic, relaxation algorithms [19], hidden Markov models

(HMMs), genetic algorithms, and dictionary [20,7]. We have analyzed the feasibility of

applying these techniques to masquerade detection and found that not all these techniques

can be applied. For example, double letter pattern is very useful during word guessing,

but the same pattern is not commonly seen in user command sequences. Language

semantic is also used to attack simple substitution ciphers. However, it is hard to apply

such information to masquerade detection since there are no apparent corresponding

semantic for user command sequences. In this project, we have used n-gram frequencies

and HMMs to solve masquerade detection.

N-gram frequency statistics is the most fundamental technique to simple

substitution cryptanalysis. It has been applied to masquerade detection by treating a

command in masquerade detection as a letter in the simple substitution cipher [13, 14].

Intuitively, if a user uses one command frequently now, it is likely for the user to use this

command in the near future. Furthermore, if a user executes a group of commands in a

certain order, it is also likely for the user to remain this behavior pattern. Thus, it is

reasonable to construct a model using the current behaviors and to detect whether the

future behaviors fit the trained model. Section 3 describes our work on n-gram frequency

statistics for masquerade detection.

 9

HMMs are widely used to uncover hidden states by analyzing a sequence of

observations in many areas, such as speech recognition, machine translation, and

cryptanalysis. Two HMMs have been studied on Schonlau data set [8] but no sensitive

analysis was presented on the key parameters of the HMMs. We have implemented our

own configurable HMM and conducted sensitive analysis on the parameters such as the

number of states. Section 4 provides a detailed description of applying HMMs to

masquerade detection.

An important goal of this project is to design a novel approach for masquerade

detection. To our knowledge, there was no study on using profile hidden Markov models

(PHMMs) for masquerade detection. PHMMs are commonly used in bioinformatics to

effectively find out whether protein sequences are closely related. Unlike HMMs,

PHMMs make an explicit use of position information [5]. In the context of masquerade

detection, the position represents the order in which a user performs tasks. If a user

usually performs tasks in a certain order, PHMMs may be able to take advantage of this

position information. Thus, it is reasonable to believe that PHMMs may perform well on

masquerade detection. We have designed and implemented PHMMs for masquerade

detection, and conducted analysis on experimental results (see Section 5).

After analyzing the detection results, we have found that the PHMMs do not

perform as well as the HMMs. We conjectured that it was due to the fact that Schonlau

data set lacks session starting and ending information required by the PHMMs.

Therefore, we have designed and implemented a model to generate user data with

position information. We have found that when there is no sufficient training data, the

 10

PHMMs considerably outperform the corresponding HMMs since the generated position

information is significantly helpful for the PHMMs.

2. Simple Substitution Cryptanalysis

2.1. Simple Substitution Cipher

Simple substitution cipher is one of the oldest cipher systems. In a simple

substitution cipher, each letter of the plaintext is substituted by another letter. Usually,

there is a one-to-one mapping between the letters in the plaintext and the ciphertext.

TABLE I: shows an example of simple substitution letter mapping, where the plaintext

letters are represented in lower case and the ciphertext letters in upper case, following the

convention [2].

TABLE I: AN EXAMPLE OF SIMPLE SUBSTITUTION LETTER MAPPING
Plaintext a b C d e f g H i J k l m n O p q r s t u v W X y z

ciphertext Z P B Y J R G K F L X Q N W V D H M C U T O I A E S

Using this letter mapping, the plaintext message of simplesubstitutioncipher

is encrypted into the ciphertext of CFNDQJCTPCUFUTUFVWBFDKJM

by substituting each letter in the plaintext row with the corresponding letter in the

ciphertext row.

To decode the ciphertext message, we can reverse the process by replacing each letter in

the ciphertext row with the corresponding letter in the plaintext. For example,

the ciphertext message of ZWVNZQEPZCJYFWUMTCFVWYJUJBUFVW

will be deciphered as anomalybasedintrusiondetection.

 11

2.2. Breaking Simple Substitution Ciphers

As shown in TABLE I:, every permutation of the 26 letters can serve as a simple

substitution key. Therefore, the simple substitution has a large key space of 26! (~288.4)

since there are 26! permutations in total. However, even with such a huge key space,

simple substitution is not sufficiently secure. It can be relatively easy to manually break

such a ciphertext by analyzing the letter frequencies and guessing the common words [2].

For example, the attacker can use English letter frequencies as shown in Figure 4: [2].

The nine most frequent letters in English are E, T, A, O, I, N, S, H, and R. After

calculating and sorting the letter frequencies in the ciphertext message, an attacker can

come up with pretty good guessing by substituting the most frequent letter in the

ciphertext with “E”, the second most frequent letter with “T”, and so on. This approach

provides a good start point even if the letter frequencies in the cipthertext may not exactly

match the English letter frequencies. In addition, an attacker can adjust the mapping by

analyzing the pattern of the letters to guess some common words. For example, happy

and hello have the same letter pattern of ABCCD.

English Letter Frequency

8.17%

1.49%

2.78%

4.25%

12.70%

2.23%2.02%

6.09%

6.97%

0.15%

0.77%

4.03%

2.41%

6.75%

7.51%

1.93%

0.10%

5.99%
6.33%

9.06%

2.76%

0.98%

2.36%

0.15%

1.97%

0.07%
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

a b c d e f g h i j k l m n o p q r s t u v w x y z

letters

F
re

q
u
en

cy

Figure 4: English Letter Frequencies

 12

The above process is a manual schema to break simple substitution ciphers. This

manual process requires an attacker to have some knowledge of English to evaluate how

sensible a half-broken ciphertext is. To automate the breaking process, a grading method

is needed for such an evaluation. To accomplish this task, a decipher system can use

much statistics information of the English language, such as the letter frequency counts,

bigram frequencies, the most frequent used words, and English grammars. If the grading

method is efficient, the decipher system can gradually adjust the key mapping to improve

the score of the intermediate deciphered text. Eventually, the decipher system will output

a candidate list of plaintexts with high scores. There is a good chance that the original

plaintext is amongst the candidate list.

3. Frequency Statistics

3.1. N-gram: Unigram, Bigram, Trigram, and N-gram

Most grading algorithms for simple substitution deciphers are based on N-gram

frequencies. An N-gram is a subsequence of n items from a given sequence [13]. An N-

gram frequency is the number of the occurrence for an N-gram unit. The 1-gram, 2-gram,

and 3-gram are often referred to as unigram, bigram, and trigram, respectively. In the

example of Section 2.2, the key mapping guessing is based the English letter frequencies,

which is an instant of unigram. Bigram frequency of English letters is used in [6].

TABLE II: shows various n-gram units generated from the command sequence: “sh xrdb

mkpts env csh csh sh csh kill”.

 13

TABLE II: N-GRAM EXAMPLES FOR A COMMAND SEQUENCE

Command
sequence

sh xrdb mkpts env csh csh sh csh kill

unigram Sh, xrdb, mkpts, env, csh, csh, sh, csh, kill

bigram sh xrdb, xrdb mkpts, mkpts env, env csh, csh csh, csh sh, sh csh,
csh kill

trigram sh xrdb mkpts, xrdb mkpts env, mkpts env csh, env csh csh,
csh csh sh, csh sh csh, sh csh kill

4-gram sh xrdb mkpts env, xrdb mkpts env csh, mkpts env csh csh, env
csh csh sh, csh csh sh csh, csh sh csh kill

To grade a command sequence by using N-gram frequencies, we need to slice the

command sequence into N-gram subsequences. Take trigram for example, the command

sequence in TABLE II: will be sliced into the trigram items of “sh xrdb mkpts”, “xrdb

mkpts env”, …, and “sh csh kill”.

To compute the grading score, we have constructed two frequency lookup tables:

the profile lookup table and the command-sequence lookup table. The profile lookup

table stores the frequency counts of users’ profiles (i.e., training data). The command-

sequence lookup table contains the frequency counts of the command sequences to be

evaluated. We use a simple evaluation function to calculate the score for a command

sequence:

=S ∑
=

−
k

i
ciui ff

1

2)((3.1)

where cif is the normalized frequency count of the ith N-gram item in the command-

sequence lookup table, uif is the normalized frequency count in the profile lookup table

 14

corresponding to the cif , and k is the total number of items in the command-sequence

lookup table.

We have tested the unigram, bigram, and trigram frequencies. Both cif and uif

are normalized to 100. For example, if the training data for a user contains 5,000

commands, the frequency counts will be divided by 50 to be normalized to 100. In this

scoring model, a lower score indicates a higher similarity between the training data and

test data.

We have calculated the metrics of false negative rates and false positive rates for

1-gram, 2-gram and 3-gram. The false negative rate measures the percentage of actual

intrusion uncaught by the IDS. The false positive rate measures the percentage of normal

activities that have been recognized as intrusions. See Section 3.2.1 for the experimental

results.

 To improve the detection results, we add weights to commands since each

command is not equally important to every user. We have measured the command weight

from two perspectives: 1) the frequency percentage of a command used by each user, 2)

the uniqueness of a command to a user.

In terms of the frequency percentage of a command used by each user, we first

count the frequency of a particular command used by all users, and then calculate the

percentage usage of that command for each user. If a command is used extensively by

one user, we assign a higher weight of the command to that user. Intuitively, we have

CiG
F

CiUj
F

CiUjw = (3.2)

 15

where Ci represents the ith N-gram command sequence in the test data, Uj represents the

user j. wCiUj is the weight of Ci for user j. FCiUj is the frequency count of Ci in the

training data of user j. FCiG
 is the frequency count of Ci in the training data of all

users.

Regarding to the uniqueness of a command to a user, if a command is only used

by a particular user, then this command is unique to the user. Thus this command should

be granted a higher weight. On the other hand, a command used by all users indicates that

this is a general command. Since this command carries few characteristics of the user, it

should be granted a lower weight. To calculate the uniqueness, we have

mw
Ci

M
Ci

= (3.3)

where Ci represents the ith N-gram command sequence in the test data, wCi
is the

uniqueness of Ci, M is the number of all users, and mCi
is the number of users who

have used Ci.

These two weighted equations are the simplest ways to compute the significance

of an N-gram to a user. More sophisticated calculations have been presented in [13] and

[14]. We have experimented with the weighted schemes defined on equation (3.2) and

(3.3) for N-gram detection (see Sections 3.2.2 and 3.2.3 for the detection results).

 16

3.2. Experimental Results

3.2.1. 1-gram, 2-gram, and 3-gram

Figure 5: shows the detection results using 1-gram, 2-gram, and 3-gram

frequencies. The x axis are the logarithmic values of false positive rates since we are

more interested in the detection performance on the lower end of false positive rates, such

as less than 5 percent. For convenience, in this report, we denote the region with false

positive rates less than 5 percent as the useful zone. A high false positive rate is not

practical even though it may be associated with low false negative rates. From Figure 5:,

we see that the false negative rates in the useful zone are too high (greater than 70%) to

put these n-grams into any practical use.

Figure 5: The detection results using 1-gram, 2-gram, and 3-gram

Useful Zone

1-Gram

3-Gram

2-Gram

 17

3.2.2. N-gram Weighted by Percentage of Command Usage

Figure 6: shows the detection results of adding the percentage of command usage

statistics (defined by (3.2)) to the N-gram models. 1-Gram, 2-Gram, and 3-Gram

represent the results of un-weighted N-Gram, while 1-GramCG, 2-GramCG, and 3-

GramCG represent the results of weighted N-Gram. From Figure 6:, we see that weighted

N-grams significantly outperform the un-weighted versions.

Figure 6: N-grams weighted by percentage of command usage vs. un-weighted N-

grams

Note that in the weighted N-Grams, there are some areas with undefined false

negative rates when these rates are smaller than some threshold values. For example, the

region of false positive rates between 0.1% and 1% is blank for 1-GramCG, and so is the

region between 0.1% and 5 % for 3-GramCG. Since we will encounter similar situations

Command Usage

Weighted N-Grams

Unweighted

N-Grams

 18

later when we analyze other models, it is worthwhile to investigate why there are such

blank areas, and what can be done to eliminate or reduce these areas.

 To better understand this problem, let us look at the test data scores from a

different perspective. Figure 7: shows the test data scores for User 9. A green diamond

represents a normal command block, and a red circle represents a masqueraded command

block. The x axis represents the block ids for the 100 test command blocks, and the y axis

is the evaluation score for each block. As shown Figure 7:, numerous normal and

masqueraded command blocks have been evaluated to the same minimum score of 50,

which eventually results in blank areas. The detailed reason goes as follows. During the

process of analyzing false positive rates and false negative rates, we gradually change the

threshold values to compute these two rates. If we set the threshold value to the minimum

score, the IDS will treat every command block as normal data, and therefore, the false

negative rate will be 100%. Note that 100% false negative rate is discarded since it

carries no useful information. When we slightly increase the threshold value, all these

blocks with the same minimum score will be excluded, leading to a dramatic change of

false positive rates and false negative rates and resulting in the blank areas as shown in

Figure 6:.

We have proposed a fine-tuning approach to eliminate or reduce the blank areas.

Specifically, we fine tune the evaluation function so that different command blocks will

be evaluated to different score values. Unique values can avoid the dramatic change of

false positive rates and false negative rates when threshold is adjusted. The drawback of

this method is that there is no universal solution for fine tuning and thus it is time

consuming to perform such a task.

 19

Figure 7: An example of detection results for User 9

3.2.3. N-gram with User Uniqueness

Figure 8: shows the results of adding the uniqueness (defined by (3.3)) to the N-

gram. 1-Gram and 3-Gram represent the results of un-weighted N-Gram; 1-GramCG and

3-GramCG represent the results of command usage weighted N-Gram; and 1-GramTF, 3-

GramTF represent the results of uniqueness weighted N-Gram. From Figure 8:, we see

that the detection results of the uniqueness weighted N-Gram outperform those of the two

previous methods.

 20

Figure 8: N-gram weighted by uniqueness vs. N-gram weighted by command

usage vs. un-weighted N-gram

3.2.4. Conclusions

We have implemented the N-gram models for masquerade detection. We have

also analyzed the effects of weighting two factors: 1) the frequency percentage of a

command used by each user, 2) the uniqueness of a command to a user. The experimental

results show that the false negative rates for weighted N-gram drop significantly while

the false positive rates are comparable to those for the un-weighted versions. In

particular, the uniqueness weighted N-Gram yields the best performance.

Uniqueness

Weighted

N-Grams

Unweighted 1-

Gram

Command usage

weighted 1-Gram

 21

4. HMM: Introduction

4.1. Markov Chain

A Markov chain is a random process of generating a sequence of states using state

transition statistics. In a classical Markov chain, the property of the next state depends

only on the current state. This model is also known as a first order Markov chain. There

are also higher order Markov chains, in which the property of the next state depends not

only on the current state but also on previous states. In this report, we are focused on first

order Markov chains.

Figure 9: A Markov chain of a computer sharing pattern

Figure 9: shows an example of a Markov chain for a computer sharing pattern. It

is assumed that there is only one computer available and this computer is shared by three

users, User1, User2, and User3. The usage of this computer is slotted into 15 minutes per

unit. Once a user gets the right to use the computer, she/he can use it exclusively for a

slot of 15 minutes. When the current slot times out, a new user will be selected for the

next time slot. We call one unit time being used by a user a state, which is represented as

 22

a circle in the graph. Thus, there are three states in the system, determined by the user

(i.e., User1, User2, and User3).

Assume that we observe the pattern how the users share the computer. For

example, if User1 is using the computer in the current timeslot, the probability of User2

will use the computer on the next timeslot is 30%. This relationship is represented as an

arrow from User1 to User2, and the probability value 0.3 is associated with the arrow in

Figure 9:. In this example, the transition probability from the current state to the next

state depends only on the current state, regardless of the previous states. The transition

probability of a Markov chain is formally defined as [5]:

a nxnx 1+
=)|(),...,,|(122111 nnnnnn xXxXPxXxXxXxXP ======= ++ (4.1)

where ix ∈ a countable state set S and Xi is the ith observed state in a Markov chain.

An N*N state transition matrix, denoted as A, is used to describe the transition

probabilities amongst all states, where N is the number of states. For example, the state

transition matrix A for Figure 9: is

=
4.03.03.0

4.02.04.0

2.03.05.0

A

Consider the probability for a given state sequence 11,...,, xxx nn − on a specified Markov

chain. This probability is determined by the states and the associated state transition

probability matrix [5]:

 P(x) = P (11,...,, xxx nn −)

 =P (11,...,| xxx nn −) P(121 ,...,| xxx nn −−)…P(1x)

 =P (1| −nn xx)P(21 | −− nn xx)…P(12 | xx)P(1x)

 23

 =P(1x)∏
=

−
n

i
ixixa

2
1 (4.2)

The “start” and “end” states can be added to a Markov chain to model both ends of an

observation sequence. Figure 10: shows such an example.

Figure 10: Start and End States are added to the Markov Chain.

4.2. Hidden Markov Model (HMM)

In a regular Markov Model, states are directly visible to the observer. However, in

an HMM, states are not directly visible. Instead, only the output, dependent on the states,

is visible [11].

To demonstrate a HMM, we modify the previous example. Suppose we would

like to track if a user, say User1, is using the computer during a period of time. Assume

that the users remotely log in to the computer and we cannot be sure who is using the

computer (e.g., the user id may be compromised). To track the usage history of User1, we

only consider two states, “User1” and “not User1” as shown in Figure 11:. The “User1”

 24

state means that User1 is using the computer, and “not User1” means another user is

using the computer. The state transition, denoted by A, can be summarized as:

=

6.04.0

8.02.0
A (4.3)

Figure 11: An HMM of a computer sharing pattern

Although we cannot directly see who is in front of the computer, we can observe

the command sequences issued by the user. In this example, the commands are the

observations. Suppose that we can characterize the user behavior patterns by analyzing

the user history command sequences. For example, we have knowledge of what

commands each user usually uses and the frequency of each command being used. As

shown in Figure 11:, an arrow with a probability value is used to represent the

relationship between a state and an observation. For example, the probability of User1 to

issue a send email command is 20%. An N*M observation matrix is used to represented

 25

the probabilities of all observations issued by states, where N is the number of states and

M, the number of observation symbols. The observation matrix, denoted by B, in the

Figure 11:can be summarized as:

=

1.05.03.01.0

3.01.04.02.0
B (4.4)

To establish an HMM, we need one more matrix π to indicate the initial state

distribution. The initial state distribution in the Figure 11: is

[]4.06.0=π (4.5)

Once we have the state transition probability matrix A, observation matrix B, and

the initial state distribution matrixπ , we are ready to define an HMM. Before we show

the definition of an HMM, let us first look at the following notation [12].

Let

T = the length of the observation sequence

Q = {q0, q1, . . . , qN−1} = the states of the Markov process

V = {0, 1, . . . ,M −1} = set of possible observations

N = |Q| = the number of states in the model

M = |V| = the number of observation symbols

A = the state transition probabilities

B = the observation probability matrix

π = the initial state distribution

O = (O0,O1, . . . ,OT−1) = observation sequence.

 26

The observations are denoted by {0, 1, . . . ,M − 1}, and Oi ∈V for i = 0, 1, . . . , T−1.

Figure 12: illustrates a generic HMM [12]. The Markov process is determined by

the initial state distribution matrix, π , and the state transition matrix, A. This process is

hidden, and we can only observe the observation sequence. The observations are

determined by the state transition matrix, A, and the observation probability matrix, B. An

HMM can be defined by A, B, andπ , and M, N implied by the matrices, i.e.,

),,(πλ BA= [12].

Figure 12: A generic HMM

An HMM can be used to solve three types of problems [12].

 Problem 1: Determine the likelihood of an observed sequence O. In this

problem, the input is an HMM),,(πλ BA= and O; and the output is P(O|λ).

 Problem 2: Reveal the hidden state sequence of an HMM. Here, the input

is the same as Problem1, i.e., an HMM),,(πλ BA= and O; but the desirable output is to

find an optimal state sequence.

 Problem 3: Train an HMM to best fit the observations. The input is a

given observation sequence O and the values of M and N. The output is to find the model

),,(πλ BA= maximizing the probability of O.

 27

4.3. Implementation

In this project, we have constructed an HMM using the training data (Problem 3),

and then used the created model to compute the likelihood of the test data (Problem 1). A

high probability score indicates similar characteristics between the training data and the

test data, and thus the test data will be recognized as normal data. A low probability

score, on the other hand, indicates significant difference between the training data and the

test data, and therefore the test data will be recognized as intrusion data. Once we get the

probability scores, we can compute false positive rates and false negative rates by

gradually varying the threshold value.

4.4. Experimental Results

4.4.1. The Detection Results of HMMs with 2 States, 4 States and 6 States

When we build an HMM from the training data, the number of states is the

parameter we can change. Since we cannot directly know how many states an underlying

model of the training command sequence has, we have trained HMMs with 2 states, 4

states and 6 states. Figure 13: shows that these three HMMs yield almost the same

detection results in the lower false positive rate region. The model with 2 states performs

slightly better than the other two. Naturally, in the following sections when we compare

HMMs with other models, we use the results of the HMM with 2 states.

 28

Figure 13: The detection results of HMMs with 2 states, 4 states, and 6 states.

4.4.2. HMM vs. N-Gram

Figure 14: shows the detection results of the HMM vs. those of the uniqueness

weighted N-Grams. In the region of false positive rates between 0.1% and 1%, the HMM

has a similar detection result as the uniqueness weighted 1-Gram. But the HMM performs

better than the uniqueness weighted N-Grams in the region between 1% and 5%. As

discussed in Section 3.2.3, the uniqueness weighted N-Grams yield best results provided

by the N-Gram models. Thus, the HMM model outperforms the N-Gram models in the

useful zone.

2 States

6 States

4 States

 29

Figure 14: The detection results of the HMM vs. uniqueness weighted N-Grams

4.4.3. Conclusions

We have implemented an HMM for masquerade detection. We have conducted

sensitivity analysis on the number of states for the HMM and conclude that the number of

states has no significant effect on the detection results. We have also compared the

detection results of the HMM with those of the uniqueness weighted N-Grams, the best

results provided by the N-Gram models. We conclude that the HMM yields better

detection results than the N-Gram models.

HMM

Results

Uniqueness Weighted

N-Grams

 30

5. Profile Hidden Markov Model (PHMM)

5.1. Overview

A PHMM is a specific type of an HMM that adds an additional dimension of

position in the original HMM. Specifically, a PHMM consists of a sequence of positions

(or more precisely, states), and there is an HMM associated with each position.

A typical way of constructing a PHMM is to generate a multiple sequence

alignment (MSA) from training data, and then to build the PHMM upon the MSA [15]. It

takes several steps to obtain the MSA from training command sequences, and several

more steps to build the PHMM on the MSA (see Figure 15: for the architecture of

masquerade detection using a PHMM).

Here, we outline the steps of constructing a PHMM for masquerade detection

(detailed procedure is described in the following sections):

1. Write a module to find the optimal pairwise alignments for two given command

sequences:

1.1. Generate a substitution matrix to provide the match/mismatch scores when

aligning two symbols.

1.2. Define a gap penalty function to measure the cost of aligning a symbol with

a gap.

1.3. Given the substation matrix and the gap penalty function for score

calculation, use the dynamic programming algorithm to find the optimal

local/global pairwise alignments with the highest score.

 31

Figure 15: The architecture of masquerade detection using a PHMM

 32

2. Generate the MSA from the training command sequences. Specifically, for each

training command sequence, perform the following operations:

2.1. Divide the command sequence into n subsequences.

2.2. Find the pairwise alignments for all possible pairs amongst the command

sequence and record their alignment scores in an n*n score matrix.

2.3. Generate a minimum spanning tree from the score matrix. Designate one

of the sequences with the highest pairwise alignment score as the root of

the tree.

2.4. Add subsequences to the MSA following the order that they are added to

the minimum spanning tree.

3. Construct the PHMM using the obtained MSA.

3.1. Determine the state for each position in the MSA.

3.2. Calculate the emission probabilities for the states.

3.3. Calculate the transition probabilities for the states.

4. Given a PHMM, calculate the probability for test data and analyze the detection

results:

4.1. Use the forward algorithm to score the test data.

4.2. Compute false positive rates and false negative rates for different

threshold values.

4.3. Process the results and generate the charts

 33

5.2. Implementation Details

5.2.1. Pairwise Alignment

When analyzing sequences, one of the most basic tasks is to find out whether two

sequences are related [5]. Usually this task is divided into two steps:

1. Aligning the two sequences (this is often referred to as pairwise alignment),

2. Determining whether the two sequences are related based on the alignment

results.

There are two types of pairwise alignments, local alignment and global alignment.

Dynamic programming technique is the most commonly used method to find a pairwise

alignment, since it guarantees to find the optimal match. Before using dynamic

programming, we need to define a scoring model to compute the alignment score (or

cost). Usually this is done by defining substitution matrices and gap penalty functions [5].

Substitution matrices are used to score the match and mismatch of two symbols. Gap

penalty functions are used to measure the penalty for a symbol in one sequence to match

to a gap in the other sequence.

5.2.1.1. Substitution Matrix

The basics idea of the dynamic programming algorithm is to perform command

alignment by maximizing the alignment score. Therefore, we need a method to penalize a

mismatch when the two aligning commands are not identical. A simple approach is to

 34

treat all the mismatches as equally bad and then we can put a constant penalty for these

mismatches. However, in reality, the effects of mismatches are often different and thus

variable penalty should be considered. A typical way to implement variable penalty is to

use an n*n substitution matrix S, where n is the number of the distinct commands used by

the user. This matrix defines the scores of all possible pairs for a command to align to any

other commands.

TABLE III: shows an example substitution matrix S based on Schonlau data set.

A typical user in this data set uses 70 to 140 distinct commands. To simplify the example,

we only consider 5 commands, say “send Email”, “Browse news”, “play Game”, “C

programming”, and “Java programming”. These 5 commands are abbreviated as E, B G,

C, and J, respectively.

TABLE III: AN EXAMPLE SUBSTITUTION MATRIX

 E B G C J
E 9 5 -4 2 2
B 4 8 -5 3 3
G -4 4 9 -5 -4
C 2 2 -5 10 7
J 2 2 -5 7 10

In TABLE III:, the elements on the diagonal represent matches, and therefore

have higher scores. The other elements represent mismatches, and thus have lower

scores. Amongst the mismatches, we consider “C programming” and “Java

programming” as closely related. Therefore, substituting “C programming” with “Java

programming” receives small penalty with a high score of 7. In contrast, playing game is

not closely related with programming and thus substituting “C programming” with “play

Game” gets a high penalty with a low score of -5.

 35

It should be noted that it is complicated to objectively define the relationship between any

two UNIX commands. There are thousands of UNIX commands and to our knowledge

there is no such study on the correlation amongst commands. Intuitively, each command

has different significance for different user. Therefore, we have proposed to use the

command significance to define the mismatch scores.

5.2.1.2. Gap Penalty

To generate a pairwise alignment, it is indispensable to have gaps unless the two

given sequences are already optimally aligned. Hence, besides the match or mismatch,

we should consider an additional case of aligning a command in one sequence to a gap in

the other sequence. A natural question is how we should penalize the gaps. Intuitively,

we should take in account the number of gaps and the length of each gap subsequence.

There are two schemes for calculating the cost associated with an open gap [11]: linear

score,

gdgf −=)(,

and affine score,

egdgf)1()(−−−= ,

where g is the length of the gap, d is gap open penalty, and e is gap extension penalty.

The linear score schema is a specific case of the affine score scheme with d = e. To

penalize a new gap more than extending an existing one, we can give d a higher value

 36

than e. Therefore, we have used the affine score for gap penalties in masquerade

detection where some gaps in the sequences can be quite long.

5.2.1.3. Global Alignment and Local Alignment

There are two types of pairwise alignments to maximize alignment scores: global

alignment and local alignment. Global alignment aligns every symbol while local

alignment can align only the middle subsequence by discarding the beginning and ending

subsequences with negative scores. Figure 16: lists two sequences and the corresponding

global and local alignments.

Figure 16: Global alignment and local alignment

Compared with local alignment, global alignment has an advantage of lossless

information because every symbol is kept. However, global alignment may introduce too

many gaps into the alignment, resulting in a less characterized alignment. Therefore,

global alignment is suitable when two sequences are similar and have roughly equal

lengths [17]. On the other hand, local alignment has an advantage of finding the most

 37

common characterized subsequence when there is a significant difference between the

overall characteristics of the two sequences. However, some significant information may

be lost since local alignment may ignore the beginning and ending portions of the two

sequences.

We have conducted some experiments on Schonlau training data and found that

the command sequences have a low-degree similarity set. Therefore, we have used the

local alignment to extract common features from the training data to generate the

pairwise alignment.

5.2.2. Multiple Sequence Alignment (MSA)

As the name suggests, an MSA is an alignment of multiple sequences (See Figure

17: for an example of an MSA). A PHMM is constructed based on an MSA. This section

describes the procedure of generating an MSA from Schonlau training data.

Figure 17: An example MSA

5.2.2.1. Preprocess Training Data to Get Multiple Sequences.

 38

Schonlau training data provides a long list of 5000 commands for each user. To

generate an MSA, we first need to obtain multiple sequences from this long list of raw

data. We can divide the long list into multiple sequences by selecting some suitable

dividing points. Intuitively, there is a tradeoff between the sequence length and the

number of sequences. On one hand, too many sequences will generate numerous gaps in

the alignments. On the other hand, if there are only a few relatively long sequences, then

each state in the constructed PHMM has too few symbols to generate useful emission

probabilities. We have generated 6 different multiple sequences based on the combination

of the number of sequence and the length of the sequence as listed in TABLE IV:. These

experimental results are provided and analyzed in Section 5.3.1

TABLE IV: EXPERIMENT CASES OF GENERATING MULTIPLE SEQUENCES

Case Number Number of Sequence Length of Sequence
1 4 1250
2 5 1000
3 8 625
4 10 500
5 20 250
6 50 100

5.2.2.2. Generate Pairwise Alignments

After obtaining multiple command sequences, we need to perform pairwise

alignments for all possible pairs. We use the local alignment algorithm, substitution

matrix, and penalty function defined in Section 5.2.1. In total, there are n*(n-1)

alignments, where n is the number of command sequences. We also save the alignment

 39

score of all the pairwise alignments in an n*n score matrix. The values on the diagonal of

the score matrix are not used since we do not need to align a sequence to itself.

5.2.2.3. Generate MSA

We have implemented two different approaches to generate an MSA based on the

pairwise alignments. The first approach is to add all the pairwise alignments into the

MSA. In this approach, if there are n sequences, the MSA will contain n*(n-1)

alignments.

Instead of adding all the pairwise alignments into the MSA at the beginning, the

second approach is to gradually merge each sequence into the MSA. One solution for

determining the order of adding the sequences to the MSA is to generate a minimum

spanning tree from the score matrix. The sequence with the highest pairwise alignment

score is designated as the root of the minimum spanning tree. Once we have the spanning

tree, we can add sequences to the MSA in the order determined by the spanning tree. We

have used Prim’s algorithm to generate the minimum spanning tree.

 40

5.2.3. Create PHMM

5.2.3.1. Determine MSA States

Figure 18: shows the architecture of a PHMM. A PHMM can be viewed as adding

a position dimension into a standard HMM. At each position, there are three kinds of

states: match, insert, and delete states. In Figure 18:, the match, insert, and delete states

are represented by squares, diamonds, and circles, respectively. These three states

correspond to the states in a standard HMM.

Figure 18: The architecture of a PHMM

 Each symbol (e.g., commands in this project) in a PHMM belongs to either a

match state or an insert state. A gap in a match state represents a deletion sate. To create a

PHMM, we need to find out which columns (or positions) in the MSA form the match

and insert states [15]. Columns with more symbols than gaps are considered as match

states; otherwise, insert states [5]. Figure 19: shows an example of how to determine

states for an MSA. While a match state consists of only one column (e.g. M1, M2…), an

 41

insert state can contain multiple columns because the contiguous insert states are merged

(e.g. I2).

Figure 19: Determine MSA states

5.2.3.2. Calculate State Emission Probabilities

Each symbol in the MSA represents an emission. After the states are determined

in the MSA, we can compute the state emission probabilities. For example, in Figure 19:,

we can compute the probability of match state M1 by counting the frequency for each

symbol:

4/0)(1 =BeM , 4/2)(1 =CeM , 4/0)(1 =GeM , 4/2)(1 =IeM .

To overcome the over-fitting problem, a common approach is to use “add-one

rule” to eliminate the zero probabilities [5]. After applying the add-one rule, we have

8/1)44/(1)(1 =+=BeM , 8/3)44/()12()(1 =++=CeM ,

8/1)44/(1)(1 =+=GeM , 8/3)44/()12()(1 =++=IeM .

 42

 Similarly, the emission probabilities for the insert state I2 are calculated as:

 10/3)46/()12()(2 =++=BeI , 10/2)46/()11()(2 =++=CeI ,

 10/4)46/()13()(2 =++=GeI , 10/1)46/()10()(2 =++=IeI .

Given an MSA, we compute the probabilities for all match and insert states and

store the results in an emission matrix E. Matrix E corresponds to the Matrix B in the

standard HMM, with the difference that Matrix E is position dependent. For an MSA

with n match states, the matrix E consists the probabilities of 1Me , 2Me … Mne , and the

insert states of 0Ie , 1Ie … Ine . For those insert states not presented on the MSA (such as, I0

and I1,), we assign each symbol with equal emission probability. For example,

4/1)(1 =BeI , 4/1)(1 =CeI , 4/1)(1 =GeI , 4/1)(1 =IeI .

5.2.3.3. Calculate State Transition Probabilities

The state transition probability matrix A in a PHMM corresponds to the one in a

standard HMM, with the difference that transition probabilities in PHMM are position-

dependent. The matrix A contains all the transition probabilities from the begin state

(denoted by M0) to the end state (denoted by Mn+1). As shown in Figure 20: [5], A

contains the information associated with all the arrows.

 43

Figure 20: The state transition structure of a PHMM

 The transition probability from state m to state n, denoted by mna , can be

computed by dividing the total number of transitions from state m to any state by the

number of transitions from state m to state n [5]. The add-one rule should also be applied

by adding 1 for match, insert, and delete states. For example, the probabilities for the

states transferring from match states M1 are

7/4)34/()13(21 =++=MMa , 7/2)34/()11(21 =++=DMa , 7/1)34/()10(21 =++=IMa .

5.2.4. Calculate Test Data Probability and Detection Results

5.2.4.1. Forward Algorithm

 44

Given a PHMM, we can use the forward algorithm to efficiently calculate the

occurrence probability of an observation. Figure 21: provides the recurrence equation for

the forward algorithm [5]:

Figure 21: The recursion equation of the forward algorithm for a PHMM

Each notation of the above equation is described below:

i: the position in the observation sequence

j: the state position

)(iF M
j : the probability of subsequence 0x , 1x ,…, ix on up to match state j

ix : the ith observation symbol

)(iMj xe : the emission probability of observing symbol ix on match state Mj

xiq : the probability of observing symbol ix in a random model

 45

The base case of the recursion)0(0
MF is initialized to 0.)(iF I

j and)(iF D
j are the

probability of the subsequence of 0x , 1x ,…, ix on up to insert and delete state j,

respectively.

We use the above forward algorithm to score an observation sequence against a

PHMM. Given a PHMM with q match states, the final score of an observation sequence

with p symbols is defined as [15]:

Score = log())(exp(1 pFa M
qMqMq+ +))(exp(1 pFa I

qIqMq+ +))(exp(1 pFa D
qDqMq+) (5.1)

We can use this equation to score the test data against the constructed PHMM and save

the scores on the file.

5.3. Experimental Result

5.3.1. Detection Results of Different Subsequence in MSA

As discussed in Section 5.2.2.1, the training data need to be divided into multiple

sequences. We have experimented with several different values of the number of

sequences, ranging from 4 to 50. Figure 22: shows the experimental results. While the

PHMM with 5 sequences in MSA yields the lowest false negative rates in the useful zone,

the overall detection results for these values do not differ significantly.

 46

Figure 22: The detection results of PHMMs with different number of subsequences

in MSA

5.3.2. PHMM vs. HMM vs. N-Gram Models

Figure 23: compares the detection results of PHMMs with those of the HMM and

uniqueness weighted N-Gram Models. In the useful zone, the results of PHMM models

are close to those of uniqueness weighted 3-Gram model, but not as good as those of the

HMM.

5000 training commands divided into

50 sequences

5 sequences

10 sequences

4 sequences

 47

Figure 23: The detection results of PHMM models vs. the HMM model vs. the

uniqueness weighted 3-Gram model

The reasons that the PHMM models do not yield better detection results than the

HMM are multiple-fold. First, in Schonlau data set, there is no session beginning and

ending information available on both the training data and the test data. A PHMM

extensively relies on position information, and thus it is undesirable for the data to lack

the session position information. Without position information, the PHMM would

eventually degrade to HMM. Second, during the process of creating an MSA, some

information is omitted by local alignment operations. Third, unlike protein sequences [5]

or metamorphic viruses [15] where the evolved sequences are in fact from a common

source, user command sequences do not have such a common source. Users might act on

similarly as they previously do but the commands issued by them are not a modification

of a common command sequence. We conjectured that the first reason had a major effect

HMM detection results

Uniqueness weighted

3-Gramdetection results

PHMMs

Detection results

 48

on the poor performance of PHMMs. To confirm this conjecture, we have generated data

sets with position information in the following section.

5.4. Generate Data Sets with Position Information

In order to stimulate user command sequences with session beginning and ending

information, we have designed and implemented a user command sequence generator.

For each user in Schonlau data set, we use a Markov chain to generate a training

command sequence and “normal” command blocks in test data.

Firstly, to build such a Markov chain, we construct an initial state distribution

matrix, denoted byπ , and a state transition probability matrix, denoted by A. To

calculate matrixπ , we first count the number of distinct commands in the user training

command sequence. Let n denote this number. Then we create an array sized n to store

the frequencies of these commands. For matrix A, we create an n*n matrix to represent

all possible transitions amongst the n distinct commands.

Secondly, we generate a “real-looking” user command sequence based on π and

A. π is used to generate the first command, and A is used to generate the following

commands. In our implementation, we sort the matrix π in the order of command

frequencies. Only the first m most frequently used commands are selected as the

candidates of the first command, where m is a configurable parameter of the command

generator.

Finally, we randomly generate masquerade command sequence blocks. We have

taken a block-based algorithm used by Schonlau, which randomly selects a block from

Schonlau data set for the other users [8].

 49

5.5. Detection Results of HMM vs. PHMM on Generated Data Sets

Recall that Schonlau training data consist of 5,000 commands and that the test

data consist of 10,000 commands divided into 100 blocks. We have generated the same

sized training data and test data. Then we use this whole generated set to construct a

HMM and a PHMM. As shown in Figure 24:, the detection results of HMM (the black

line) and PHMM (the light blue line) on our generated data set yields much better

performance than those of the HMM on Schonlau data set (the red line). We can exclude

the effect of masqueraded data, since we have generated the masqueraded data in the

same way as Schonlau has. But we generate the training data using a Markov chain.

Naturally, our training data is a better source for the HMM and the PHMM than Schonlau

training data. In addition, since we have only selected the most frequently used

commands as the candidates for the first command, our generated training data contains

stronger characteristics than Schonlau does.

HMM on generated data set with

5,000 training commands

PHMM on generated data set with

5,000 training commands

HMM on Schonlau data set with

5,000 training commands

 50

Figure 24: The detection results of the HMM and the PHMM on our generated data

vs. Schonlau data set

However, the HMM still slightly outperforms the PHMM on our data set. We

conjectured that our training data well represented user behavior patterns and thus the

position information did not provide a significant advantage for a PHMM. To verify this

conjecture, we have reduced our training data to boost the importance of the position

information. Figure 25: shows the detection results of HMM and PHMM when the

training data sets are reduced from 5,000 commands to 400 and 200 commands. Under

such circumstances, the PHMMs significantly outperform the corresponding HMMs. In

particular, the less the training data available, the better the PHMM performs than the

HMM. As shown in Figure 25, the performance gain of the PHMM with 200 training

commands over the corresponding HMM is significantly higher than the gain of the

PHMM with 400 commands. This is because the position information plays a significant

role in a PHMM when the training data does not sufficiently characterize user behavior.

HMM, 200 training cmds

PHMM, 200 training cmds

HMM, 400 training cmds

PHMM, 400 training cmds

HMM, 800 training cmds

PHMM, 800 training cmds

 51

Figure 25: The detection results of the HMMs and the PHMMs on our generated

data set with reduced training data

5.5.1. Conclusions

We have implemented the PHMMs for masquerade detection. We have

established the substitution matrix and the penalty function, and created pairwise

alignments using dynamic programming algorithm. We have also constructed an MSA

from the training data, and built PHMMs using the generated MSA. Then, we have used

established PHMMs to score the test data.

We have compared the detection results of the PHMMs with those of the HMMs

and the uniqueness weighted N-Gram models using Schonlau data set. We have found

that the PHMMs does not yield better performance than the HMMs since Schonlau data

set lack position information required for the PHMMs.

To overcome the limitation of Schonlau data set, we have designed and

implemented a user command sequence generator using a Markov chain. The newly

generated data characterize user behavior well and thus the position information does not

boost the performance of the PHMMs. Therefore, we have reduced the training data size

to magnify the importance of the position information. We conclude that when there is no

sufficient training data, the PHMMs significantly outperform the corresponding HMMs

since the position information complements the insufficient training data.

 52

6. Conclusions and Future Work

In this project, we have studied several models for masquerade detection. We

have implemented the N-Gram models using N-Gram frequency statistics. We have also

added weights of global statistics, such as command usage percentage and uniqueness,

into the N-Gram model. After comparing the detection results of un-weighted N-Gram

model with the weighted models, we have concluded that adding the global statistics into

the model yields a positive affect.

We have also implemented the HMMs for masquerade detection, and have

conducted the sensitivity analysis on the number of states in the HMMs. The

experimental results show that the impact of the number of states is minor.

Finally, we have designed and implemented the PHMMs, a novel approach for

masquerade detection. We have compared the detection results of the PHMMs with those

of the HMMs and the uniqueness weighted N-Gram models. The experimental results

show that the PHMMs do not perform as well as the HMMs on Schonlau data set. We

have analyzed the reasons and conjectured that it was primarily caused by the lack of the

session starting and ending information required by the PHMMs.

To overcome the limitation of Schonlau data set, we have generated a data set

with the session starting and ending information. We have found that since our generated

data well represents user behavior, adding session starting information does not provide a

performance boost for the PHMMs. However, when we reduce the training data size, the

additional position information is significantly helpful and thus the PHMMs yields much

better detection results than the corresponding HMMs.

 53

At present we have not studied the updated algorithms on Schonlau data set. In

other words, once the HMMs or PHMMs are constructed using the training data, these

models are not updated per users’ new behaviors. Other studies on the same data set have

yielded better detection results by dynamically updating user profiles [3]. Therefore,

future research can be conducted to study how much performance gain can be obtained

by exploring the updated algorithms.

REFERENCES

1. M. Whitmanl, H. Mattord. Principles of Information Security. Canada: Thomson, 2009. Pages 290 & 301

2. Mark Stamp, Information security: principles and practice, Wiley 2005

3. M Schonlau, W DuMouchel, Computer Intrusion: Detecting Masquerades.

4. TF-IDF, http://en.wikipedia.org/wiki/Tf–idf

5. Durbin, B. Eddy, S. Krogh, A., Mitchison, G., Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

6. Thomas Jacobsen, A Fast method for the Cryptanalysis of Substitution Ciphers, 1995

7. Edwin Olson, Robust Dictionary Attack of Short Simple Substitution Ciphers.

8. M Schonlau, Masquerading User Data, http://www.schonlau.net/intrusion.html

9. Greenberg Data Set, http://pages.cpsc.ucalgary.ca/~saul/wiki/pmwiki.php/Resources/DataSets

10. Receiver Operating Characteristics (ROC) curve,
http://en.wikipedia.org/wiki/Receiver_operating_characteristic

11. Hidden Markov Model: http://en.wikipedia.org/wiki/Hidden_Markov_model

12. Mark Stamp, A Revealing Introduction to Hidden Markov Models,
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

13. D. Geng, T. Odaka, An N-Gram and STF-IDF model for masquerade detection in a UNIX environment,
Springer 2010

14. M Latendresse, Masquerade Detection via Customized Grammars, Springer, Berlin 2005

15. S. Attaluri, S. McGhee, M. Stamp, Profile Hidden Markov Models and metamorphic virus detection,
www.cs.sjsu.edu/faculty/stamp/students/Srilatha_cs298Report.pd

 55

16. Intrusion Detection Systems - INTRODUCTION, DETECTION METHODOLOGIES:
http://encyclopedia.jrank.org/articles/pages/6646/Intrusion-Detection-Systems.html

17. Sequence Alignment, http://en.wikipedia.org/wiki/Sequence_alignment

18. The GNU Accounting Utilities, http://www.gnu.org/software/acct/

19. S. Peleg and A. Rosenfeld, “Breaking substitution ciphers using a relaxation algorithm,” Commun. ACM, vol.
22, no. 11, pp. 598–605, 1979.

20. R. Spillman, M. Janssen, B. Nelson, and M. Kepner, “Use of a genetic algorithm in the cryptanalysis of
simple substitution ciphers,” Cryptologia, vol. XVII, no. 1, pp. 31–44, 1993

