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 Abstract

In the field of Natural Language processing, the Hidden Markov Model (hereafter as HMM) method is proven to be useful in the application area of finding patterns from sequence of data. In this study, we apply HMM technique to the Brown corpus [1], the Brown corpus in its phonemic representation, a Chinese corpus, and the Chinese corpus in its Zhuyin representation in an attempt to find the statistical models that can explain certain language features.  
We first give a brief overview to the original experiment conducted by Cave and Neuwirth [14], the Hidden Markov Model, the Chinese language processing issues and English phonetic properties that are related to our experiments, the design of our experiments, and the finding from our experiments. Finally, we discuss some of the challenges of future research.
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1. Introduction
The theory of Hidden Markov Model (HMM) was first introduced in the late 1960’s by Baum and his colleagues. Quickly spotting the potential in this method, Jack Ferguson (The Institute for Defense Analyses) brought it into the area of speech recognition. During the 1970s, Baker at Carnegie-Mellon University (CMU) and Jelinek at International Business Machines (IBM) applied the HMM technique to speech processing. Several new studies of the language models were quickly spawned after the introduction of the HMM technique, such as Part-Of-Speech Tagging, and the word segmentation problem that is common in Asian languages [12]. Even today, HMM is still widely used in many new research areas such as DNA sequence alignment, network intrusion detection, and vision recognition. 
An HMM is a statistical model of a Markov process with hidden states. One use of an HMM is to determine the relationship of the hidden states to the observations, which depends on the associated probabilities. The graphic representation of the HMM is illustrated as figure 1. The states of the Markov chain are hidden. The outputs from the Markov chain are observable. 
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Figure1: Graphic illustration of Hidden Markov model

This is a common technique used in language processing. One classic example of such is the experiment done by R.L. Cave and L.P. Neuwirth, published in 1980. In this experiment, they applied an HMM to a large body of English text (known as a corpus) where the individual letters were taken as the set of observations. With two states, they found that the letters naturally separated into vowels and consonants. In some sense, this is not surprising. But since no a priori assumption was made regarding the two hidden states, the experiment clearly demonstrates that the vowel-consonant separation of letters in English is significant in a very strong statistical sense. Cave and Neuwirth [14] also conducted similar experiments with more than two hidden states and they were able to sensibly interpret the results for up to 12 hidden states.
We have conducted an HMM analysis of the Chinese text somewhat analogous to the HMM study of English text discussed in the previous paragraph. Chinese is, of course, very different than English. Unlike English, Chinese language has a large character base and the characters are written in sequence without space or other separators.  The only form of separation in Chinese is the use of punctuation marks in locations such as sentence boundaries. The language structure affects the experiment outcome of our projects. More detail will be discussed in the chapter of Chinese information processing.
In addition, we have extended this study to the area of phonology. We applied HMM techniques to both corpora under their respective phonemic transcription. The result is interesting since phonemes are more primitive than graphemes. In addition, the experiment may reveal the different uses of nasal and oral sounds between languages.
We applied an HMM with two to six states, using the individual characters/phoneme as the observations. Such an HMM application is computationally intensive and requires vast amounts of data in order to have any chance of success. We also attempt to give meaningful linguistic interpretation to the results we obtain.
2. The Basic probability theory
The mathematics behind the Hidden Markov Model method is pretty straightforward and easy to understand. In this section, we will describe several basic probability theories that are required to understand the Hidden Markov Model technique. The information is obtainable from many sources[11].
1. Probability axioms:  Given a finite sample space S and an event A in S. We define 
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are mutually exclusive events in S.


2. Joint probability : If A and B  are random variables, then the joint probability function is 
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3. Conditional probability : the probability of A conditioned on
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 is defined as 
[image: image10.wmf](,)

()

()

PAB

PAB

PB

=

 
4. Product rule: from the definition of conditional probability, the product rule is
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5. Chain rule : the chain rule is an extension of the product rule which we can write down in more generic form as: 
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6. Bayes’ rule: Bayes’ rule is an alternative method to calculate the conditional probability if the joint probability 
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Bayes rule is 
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7. Entropy : Entropy is the measurement randomness of a system. If S is a finite set of values based on a probability distribution, the Entropy 
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 where S takes the value si , 1 <= i <= n.
2. The Cave and Neuwirth experiment


The experiment conducted by Cave and Neuwirth [14] can be considered as an important work in the field of natural language processing. They conducted an extensive experiment on English text using Hidden Markov Models. This text collection, also known as the Brown University corpus, was a collection of five hundred articles in which each article has approximately two thousand words (Appendix 7). In the experiment, only the 26 English letters and the space symbol are used. Numerical letters, special symbols, and the case of the letters were ignored in the experiment. Afterward, they analyzed the experiment results and studied the resulting models from the viewpoint of information theory.  In this section, we will give an overview of Cave and Neuwirth’s experiments to help the reader gain some knowledge of our experiments. 
In the first part of the paper [14], Cave and Neuwirth try to correlate the experiment results with the English language. Based on the experiment results, they are able to identify eight different classifiers which are used to classify English letters. Those eight classifiers are: 
	V
	Vowel

	SP
	Space

	C
	Consonant

	FL
	First Letter

	LL
	Last Letter

	VF
	Vowel Follower

	VP
	Vowel Proceeder

	CP
	Consonant Follower.


The meaning of the first three classifiers V, SP, and C should be quite straightforward. The classifier FL represents the case that a particular set of letters is preceded by a space symbol. Similar to FL, the classifier LL represents letters that are followed by a space symbol. 
For example, in the twelve-state experiment (refer to table 1 and table 2), state 11 is interesting to our study because all symbols except SPACE have zero probability of appearing in this state.  Therefore we can view this state as a defining state for the space symbol. We observe directly from the transition matrix that state 11 has forward edges that connect to states 4, 5, 6, 10, and 12. The letters appearing in those states can be preceded by a space symbol. Cave and Neuwirth classify those letters using the classifier FL. Similarly, we can easily figure out the LL classifier according to how we interpret FL. The last three classifiers VF, VP, and CP are similar to the interpretations of classifiers FL and LL. This can be seen very clearly from seven states experiment. 
As the number of state increases, Cave and Neuwirth were able to define more classifiers according to the experiment results. The V and C properties first appear in the two-state experiment and the remaining properties gradually surface in later experiments: SP (3), FL and LL (4), VF (6), CF (7), and VP (8). This is also an indication that as the number of states increases, HMMs are able to carry more information. 
The classification is not always obvious from the experiment results. For example, in the twelve-state experiment, Cave and Neuwirth concluded that the Vowel states are 2, 5, 8 and 10 while the VF can appear in state 3 and 9. However, as we noticed, from the above analogy and by examining the twelve-state experiment’s transition matrix that the transitions from states 2, 5, 8, and 10 have direct links to states 1, 3, 5, 6, 7, 8, 9, 10, 11, and 12. This seems to contradict Cave and Neuwirth’s conclusion. By excluding the Vowel state and Space state, this leaves 1, 3, 6, 7, 9, and 12 as possible candidate of VF states. Then by examining the resulting states, English language, and the distribution of English letters amount those states, Cave and Neuwirth are able to make the final conclusion.
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	1
	
	
	
	
	
	.022
	
	.015
	
	
	.959
	.001

	2
	
	
	.383
	
	
	.229
	.061
	.051
	
	.243
	
	.029

	3
	.116
	.016
	.010
	
	.035
	.016
	.647
	.078
	
	
	.057
	.020

	4
	
	.036
	
	
	.262
	.023
	.003
	.379
	
	.213
	.080
	

	5
	.120
	
	.467
	
	
	
	.340
	
	.012
	
	
	.058

	6
	.009
	.297
	
	
	.350
	.014
	
	.024
	
	.302
	
	

	7
	.115
	.240
	
	
	.058
	.045
	
	.190
	
	.063
	.284
	

	8
	.252
	
	.041
	
	
	
	
	
	.035
	
	.667
	.003

	9
	.075
	.014
	
	
	.062
	.166
	.004
	.063
	.005
	.001
	.551
	.054

	10
	
	
	.108
	
	.135
	.064
	.073
	
	.495
	
	.117
	.005

	11
	
	
	
	.018
	.097
	.417
	
	
	
	.177
	
	.288

	12
	
	
	
	.669
	
	
	
	
	
	.293
	
	.036

	Table1 : Cave and Neuwirth’s 12 states experiment result of the transition matrix


Table 2 is the result of a twelve state experiment extracted from the Cave and Neuwirth’s paper. This table gives cross references between English letters, states, and classifiers. For example, letter A is considered as a V and it is also uniquely identified as an FL in the twelve state experiment. We use this example to explain the finding from the result in the original Cave and Neuwirth experiment as well as serving as a guide to explaining our own experiments.
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	Table 2: Cave and Neuwirth’s 12 states result interpretation


The second part of the analysis is focused on the entropy statistic that is obtained from post-analysis of the model. Cave and Neuwirth studied the entropy of the experiment and made a comparison to Shannon’s estimate of the entropy of English text. 
In the experiment, Cave and Neuwirth defined the entropy of the Hidden Markov Model for English using the formula  
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The function H is the formula of the entropy devised by Shannon (refer to chapter 2).  Cave and Neuwirth’s formula is the Bayes rule taken in logarithm form. The division in the Bayes rule becomes subtraction by taking logarithms to the base 2. 
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Subtracting, we obtain the following:
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where 
H(X) is the entropy in the Hidden Markov chain
H(Y) is the estimated entropy in English

\
H(X|Y)
is the entropy of Hidden Markov model given the sequence

H(Y|X)
is the entropy in the sequence given the model
H(X,Y) is the entropy of observation sequence join by the Hidden Markov model
The resulting entropies H(Y) are around 2.5 to 4 depending on the number of states (Table 3). The entropy values progressively decrease as the number of the states increases. The value that Cave and Neuwirth obtained from the experiment is somewhat larger than Shannon’s estimation of English (1 bit per English letter). Cave and Newwirth reasoned from the experiment results that the entropy of Hidden Markov Model will approach Shannon’s estimate for English text if the experiment has a sufficiently large number of states. 
	States
	H(X)
	H(Y|X)
	H(X|Y)
	H(Y)

	2
	.8254
	3.2890
	.1657
	3.9486

	3
	.8875
	3.1266
	.6199
	3.3942

	4
	1.0839
	2.7060
	.6028
	3.1871

	5
	1.2629
	2.5332
	.6874
	3.1087

	6
	1.2066
	2.4868
	.8757
	2.8176

	7
	1.1851
	2.4433
	1.0312
	2.5973

	8
	1.5305
	2.2143
	.9909
	2.7540

	9
	1.5458
	2.1497
	.9757
	2.7198

	10
	1.6759
	2.0766
	1.1791
	2.5834

	11
	1.8025
	1.8415
	1.0082
	2.6358

	12
	1.8416
	1.8550
	1.2138
	2.4828

	Table 3: Cave and Neuwirth’s experiment result of entropy


Cave and Neuwirth calculated the entropy of the Hidden Markov chain, H(X), using the state transition matrix. Each state’s entropy is the entropy combination of all the possible transitional probabilities across that state. H(X) is the average of all the states’ entropies. 
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where 
N is the number of states. 

i is the ith row of the transition matrix
j is the jth column of the transition matrix

xi,j is the probability of ith row and jth column in the transition matrix
The entropy of Hidden Markov Model given the sequence, H(Y|X), was calculated in a similar fashion using the emission matrix.  
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where 

N is the number of states. 

i is the ith row of the emission matrix

j is the jth column of the emission matrix

There is no direct information to calculate H(X|Y), the Hidden Markov model given the sequence. Cave and Neuwirth had to estimate this term to complete the equation H(Y) = H(Y|X) + H(X) - H(X|Y). This term, H(X|Y), was calculated using the emission matrix. The probability of each observation symbol in the emission matrix is renormalized for each symbol. The entropy is calculated using the renormalized probabilities. The calculation is similar to the calculation of H(Y|X) and the result is averaged by the number of observation symbols. 
One conclusion that Cave and Neuwirth derived from the entropy experiment result is that the uncertainty produced by a state decreases when the number of the states increases, that is, the experiment result becomes more meaningful. 

3. Hidden Markov model

The Hidden Markov model is a statistical model for a sequence of observation items. There are three different sub-problems that are very useful in many application areas. Those three areas are:
· The evaluation problem: The evaluation problem is to find the probabilities of the observation given a sequence and a model. The solution of this problem measures how well a model matches the observation sequence.
· The decoding problem: given the model and a sequence, what is the optimal state sequence? The solution to this problem is useful for solving word segmentation problem such as classifying Chinese compound words. 

· The learning problem: The learning problem is the most interesting of all three problems. If there is existing models, we can use this technique to find the model for a sequence and re-apply the sequence to the model for the learning and decoding problem. This is extremely useful. It is also the problem that our experiments are focused on.  The technique is to apply the forward-backward algorithm to this problem and use the Baum-Welch Algorithm to refine the model parameters. We will give further information on these algorithms in the succeeding chapters.
In this study, we will be looking at the third problem. Our intention is to find the models that can best describe our text sequences. We will give a brief overview of the mathematics behind this beautiful technique. This paper is not intended to be a comprehensive introduction to the mathematics behind HMMs. For more complete description of the technique, the reader can refer to the references [6, 8, 17]. 
3.1 The Markov property

In this chapter, we will introduce an important concept called the Markov property. The Markov system is a dynamic system that exhibits the Markov property. In 1913, the Russian researcher Andrei Andreevich Markov did a series of researches on Russian literature. He studied the chain properties of consonants and vowels from Pushikin’s poems. This chain property was later known as Markov Chain [11]. 

Many systems have the property that given the present state, the past states have no influence on the future. This property is called the Markov Property, and the systems that exhibit these properties are called Markov chains. Based on the above mentioned Markov property, the conditional probability can be expressed as  
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Where 
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 is the random variable of the Markov system at time t. 
3.2 The Hidden Markov model definition
A Hidden Markov Model (HMM) is a probabilistic function of a Markov property. The term “hidden” indicates that the system is a doubly stochastic process where the state 
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  of the Markov chain is not directly observed (hence the term, “hidden”), but it is implicitly defined by a sequence 
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 of the observed data that does not necessarily exhibit the Markov property. 
A HMM is defined by the following conditional probabilities.

1. Given 
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Without the HMM assumptions, we are unable to calculate the conditional probability since it would be intractable if all the history is required to be considered.
3.3 Finding the probability of the observed sequence
The probability of the observed sequence, written as
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 can be recursively factored using conditional probability and chain rules.
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	< ----------------------------Further factoring


where
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We can get the desired probability by marginalizing (summing) over random variables
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3.4 The forward-backward algorithm

The direct approach is computationally infeasible since it has an exponential order of complexity, 
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. Instead, we can calculate the joint probability using an alternative method called the forward-backward algorithm. The forward-backward algorithm is a multi-pass algorithm that reduces the complexity of the computation.
3.4.1 The forward recursion

The forward recursion calculates,
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. We can rewrite this joint probability as a conditional probability in the product form: 
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.  According to the HMM assumption, the term
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Hence, we get the following equation. 
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This equation exhibits a recurrence relation so that 
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 can be calculated recursively. We define
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where 
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is the state space at time t
3.4.2 The backward recursion

Once we complete the forward phase, we still need to calculate the backward phase in the algorithm. The backward phase calculates the partial probability from time t+1 to the end of the sequence, given 
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In the backward phase, 
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We can define 
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, and the above equation can be expressed as 
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where 
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is the state at time t
The forward-backward recursion gives us the essential information to calculate the probability of the observed sequence
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3.5 Choosing the best state sequence

We want to find the most likely state sequence 
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.  Since our interest is in the overall model performance rather than finding a specific sequence, we will use an approach to maximize the expected number of states for our HMMs.  
The state posterior probability, 
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The probability, 
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, is simply the product of forward-backward variables and normalized by the joint distribution of the observation sequences. Hence we express it as the following equation: 

[image: image93.wmf](

)

(

)

(

)

1

1

1

,

T

t

T

t

T

Pqy

Pqy

Py

=

 
[image: image94.wmf](

)

(

)

(

)

(

)

11

1

tT

tttt

T

PyqPqPyq

Py

+

=


[image: image95.wmf](

)

(

)

(

)

11

1

,,

tT

ttt

T

PyqPyq

Py

+

=

   
Since 
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 is normalized by the joint distribution of the observation sequences. 
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3.6 Parameter re-estimation

The transition posterior probability, 
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Note that if we marginalize the probability of 
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.  Once we obtain the state posterior, we can calculate the expected number of time that a certain state 
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To calculate the expected number of time that a transition from state 
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Hence, we can re-estimate the HMM parameter using the formulas that we describe as follows.
· The re-estimated initial state probabilities are simply the expected frequencies of the states at time 
[image: image114.wmf]1

t

=

.
· The re-estimated transition probabilities are the expected numbers of transition from 
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· The re-estimated emission probabilities are the expected number of time that a certain state 
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is visited for the specific observation symbols over the expected number of time in a particular state. 
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To get further information on the subject, [6, 17] can be a good reference article. A practical implementation can be found in [13]. 
4. Chinese information processing

There are about 20,000 Chinese characters and 6,700 of them are considered to be the commonly used characters. These characters form a web of compound words that are arbitrary in length. An interesting example is the Chinese words “海上” and “上海”. The two characters used in the example are above (上) and sea (海). The word “海上” means above the sea while the word “上海” means Shanghai.  
In Chinese, single character words roughly occupy 15% of the language. The ratio grows up to 60% when the two-character words are considered. Generally, most Chinese words are under 5 characters in length but certain words (such as words that are translated from other languages) can be of a longer length. A typical Chinese dictionary can contain more than 100,000 words. This gives the reader a rough idea of the complexity of the Chinese language. 

The combined word sequence forms the basic sentence structure. In the Chinese language, sentences are terminated by punctuation marks. This is quite different from western languages as the Chinese language does not have the concept of word boundary. Hence, “to be or not to be” in English will look like “tobeornottobe” in Chinese. To further the confusion, word sequences segmented in different ways can have different meanings. The ambiguity is not only a byproduct of the situation when no clear word spacing exits in the language but it can also be a deliberate act as it is a form of Chinese language art. The word segmentation problem becomes the first problem to be addressed   by computational linguists before any other Chinese language processing task can be performed. 

We are trying to explore the structure information embedded in the character sequence through the use of the HMM technique. According to a review of the literature, HMM is extensively used in the word boundary discovering area [4, 5]. Most papers use Baum-Welch’s Expectation Maximization (EM) approach to learn the probabilistic model and then apply some modified algorithm very similar to the Viterbi decoding algorithm to get the segmented text sequence. In other words, there is no obvious research similar to the Cave and Neuwirth’s experiment that has been conducted using Chinese text.  We are hoping the certain morphological meaning will appear during interpreting the model.

5. Phonology

5.1 Chinese phonemic transcription

Zhuyin (注音, a.k.a. Bopomofo) was developed in 1913 as a national standard phonetic script of learning Chinese pronunciation and it is currently the phonetic system used in Taiwan. The Zhuyin system contains 37 traditional characters and 5 levels of tones. The five different tones add variation to the vowels and create different pronunciation of the sounds. A Chinese character pronunciation contains either a single syllable or two syllables. Two syllables characters are normally newly developed words influenced by western culture. They are very rare in the Chinese language. The pronunciation is normally the combination of two standard Chinese characters. As such, those words are ignored in the phoneme experiments since they pronounce as two characters rather as one. 
The Zhuyin pronunciation can be divided into three different groups. We use the term initial, middle, and final as an abstraction to where the Zhuyin phoneme’s occurrence in relation to a phonetic sequence.  The initial group (I) contain symbols from 1-21. The middle (M) group contains symbols 35-37, and the final group (F) contains symbols 22-34 (Appendix 5). The initials are consonants and middles are vowels. The finals are nasal endings. 

Chinese character pronunciation is some combination of the Zhuyin phonemes and a tone. If a Chinese character requires only one phoneme to pronounce, it can be any of the 37 individual phoneme. If a Chinese character requires two phonemes to pronounce, it must be in the form of IM, IF, or MF. Finally, if a Chinese character requires three phonemes to pronounce, it will be in the form of IMF or IMM.
There is one exception, ER. This particular phoneme is seldom grouped with other symbols in Chinese characters. To pronounce ER is to curl back the tongue and let the back of the tongue touches the upper mouth cavity.  Thus, it is difficult to transit from and to other phones. 

Pinyin, on the other hand, is the Romanization of Chinese phonetic system developed in the 1950s by the People Republic of China. The Pinyin System contains more representations than the Zhuyin system. It classifies pronunciation according to the initials, the finals and the tones. The finals may be either simple, compound vowel or finals with nasal endings. The Pinyin system is more complicated than the Zhuyin system. The Pinyin system contains 27 initials and 37 finals.  A full representation of possible grouping is listed in Appendix 5. 

We obtained a free dictionary software from the web (http://home.swipnet.se/chinese/). After we studied the data file, we converted it to text format. The data file is encoded in the Pinyin representation and required conversion to the Zhuyin representation for our experiment (Appendix 5). We developed a simple state machine type of converter that is able to perform the Pinyin-Zhuyin conversion. The dictionary content is stored in a lookup table structure. We can covert any Chinese corpus into its Zhuyin representation using this lookup table.  Each phoneme sequence is separated by spaces. The conversion results in 38 individual symbols (37 Zhuyin symbols plus the space) and 4,214,761 observations. We were unable to obtain a free Chinese corpus. Hence, we collected the entire experiment corpus randomly from the World Wide Web. 
5.2 English phoneme transcription
The English phoneme chart in Appendix 6 contains 39 individual phonemes that we obtained from Carnegie Mellon University(CMU). Those 39 individual phonemes are the foundation of the CMU Pronouncing Dictionary [2]. In addition to the phoneme representation, it gives certain stresses. There are three stress levels used in the system: 0 (No stress), 1 (Primary stress), and 2 (Secondary stress). The stress will simply be ignored in our project. This approach will reduce the complexity and allow us to study the vowel and consonant interaction more directly. 
The CMU pronouncing dictionary is a simple text data base that contains words and their phonemic representation. We will use this free dictionary as the base for our English to phoneme transcription. 

It is important to mention that certain words (both English and Chinese) may have multiple pronunciations upon different usage (“read” in English for example). It is difficult to choose the correct pronunciation without interaction at the grammar level. In this study, we don’t spend effort to solve the problem but rather we simplify the problem by using a single representation. We think the phonetic grouping sequence of the alternative sound will show up in other word sequences under a large corpus database. Therefore, these simplifications will not adversely affect the experiment results.

6. Experiment design and the software
6.1 Number of iterations

By experimentation, we determined that one thousand iterations is sufficient for our experiments. We initially performed a trial experiment ( two-states ) with a Chinese corpus of smaller size for up to 4000 iterations. We document the intermediate results and make comparisons. The results listed in Appendix 7, indicates a fast convergence with the HMM algorithms. Very few changes occur after 1000 iterations. Thus, we feel confident that we can run our experiments for 1000 iterations and obtain meaningful results.  

6.2 Numbers of states
We set a limitation to the experiment. The primary concern is the memory usage in this experiment and the time needed to run the experiment.  The memory requirement can grow pretty fast when the number of state increases (92 bytes for 2 states and 716 bytes for 8 states, per observation). For a training corpus of 2 million characters, the two state experiment requires 200MB memory and 1.5 GB memory for the eight-state experiment. The implementation should take this into consideration and strive to balance between the memory requirement and the time required to complete the experiment over a large number of iterations. 

6.3 Chinese corpus
We tried to obtain access to an existing developed corpus database, such as UCPENN Treebank, Academic Sinica Corpus bank etc. Unfortunately, it is difficult to gain access without an access fee. Hence, we decide to obtain a corpus by collecting information from the Internet. The Internet is a good source that provides various kinds of information that satisfies the criterion of diversity. 

The disadvantage is that the corpus collected from the web is unsegmented, and unclassified. Therefore, we did not have the chance to train the HMM model using pre-classified information for the purpose of making comparison. During this study, the corpus that we collected consists of 1.5 million characters with more than five thousand distinct Chinese characters. The collection is randomly picked from different novels, daily news articles, and others. 
6.4 The software
Since we need to handle the experiments with different sequences and different number of states, the HMM program needs to be flexible. There are five programs we developed during the study. Four of them are used to convert the four observation sequences into our desired data format. In this case, we choose integer representation written as binary files. The final program is the HMM itself. The size of the resulting converted data file will be much larger than the original source sequence. The largest symbol requirement in our experiments is for the Chinese character experiment. It can be done with a unsigned short representation since the Chinese Big 5 character encoding requires only two bytes. Using integers would allow the HMM program to be extensible for future experiments if the number of symbols are greater than the unsigned short representation can handle, such as in Unicode. The software is compiled using standard gnu GCC and hence it is quite portable between platforms. 
The four conversion programs, English, Phoneme, Chinese, and Zhuyin will convert their respective language sequences into the designated output file in binary format. The model parameters are handled by editing a parameter file that gives options to choose the number of states, the number of individual emission symbols, the number of iterations, and the number of observations. These files are required to be edited before the HMM experiment can be started. Otherwise, memory segmentation failures will result. 

The output information is written into a final data file which includes the initial probability distribution matrix, the transition matrix, and the symbol emission matrix. The meaning of the symbols is not written in this file since the data file does not include this information. The results of the experiments are post-edited by adding the symbol meaning to make the experiment result more readable.
7. Experiment results

7.1 English alphabet experiment results
Since this experiment is identical to the Brown Corpus experiment, we expect the same result as Cave and Neuwirth’s experiment. However, this experiment serves as a validation since the result of the experiment helps us validate the integrity of our software. 

The two state English alphabet experiment yields a result similar to Cave and Neuwirth’s experiment. There is a clear separation between the letters A, E, I, O, U and the others. These symbols A, E, I, O, and U appear to be a state 0 property. The remaining characters are a state 1 property. In English, this is also the distinction between consonant and vowels.
The result of the three state English alphabet experiment is harder to interpret. The strong bipolar property from the previous experiment result can no longer be seen from the transition matrix. From the experiment result, we notice that state 1 is unlikely to be the vowel symbols and consonants will probably not show up in state 2. The SPACE symbol has the possibility to be either in state 0 or state 2.  
The transition matrix seems to suggest the grouping rule in the English language, but out experiment result does not show a clear meaning. 
7.2 English phoneme results

In our English phoneme experiment, we use the phoneme transcription from the Brown Corpus. This experiment contains 4,809,139 phonemes. 

7.2.1 English phoneme experiment using 2 States

The same segmentation phenomenon that exists in English alphabets also manifests itself at the English phonetic level. The English phoneme experiment (2 states) yields similar results. From the experiment results, we confirm that the bipolar property of consonant and vowel is a dominant property in English

7.2.2 English phoneme experiment with more than two states
We can still see the consonant-vowel separation property from the experiments with more than two states. This property has a strong appearance at the four and six state experiments while being less obvious with the other experiments. 
We can see some distinct meaning from the experiment results. For example, from experiments four and six, we observe that HH (refer to appendix 6 for the meaning of the symbols) can not proceed SP. This means, in English, HH will not be an ending consonant. Another example would be consonant NG, which will not be a leading consonant. These are very distinct properties in the English language. There is also some subtle information that we can see from the experiment results.  

For example, we obtained quite noticeable results from the six state experiment. From this experiment result, the vowel states converge to state 0 and state 1 and the consonant states are 3, 4, and 5. We can identify some properties from the transition matrix. We summarize the information from the emission matrix and make educated guesses according to the transition matrix. 

	Vowel
	State 0, 1

	Space
	state 2

	Consonant
	3,4,5

	Ending vowel
	0

	Ending consonant
	3,5

	Leading Vowel
	0, 1

	Leading consonant
	4

	Table 4 :  The classification of the English Phoneme 6 states 


	State 0
	AH, AW, AY, ER, EY, EA, UO, OY, UW, OW, IY

	State 1
	AA, AE, AH, AO, AW,AY, EH, EY, IT, IH, OY, UH, OW

	State 2
	SP

	State 3
	CH, K, L, M, N, NG, R, S, TH, V, ZH

	State 4
	B, DH, F, G, HH, JH, K, L, M, P, R, S, SH, TH, W, Y

	State 5
	CH, D, S, T, TH, Z

	Table 5: The summaries of phones and their respective state for the 6 states English Phoneme Experiment


We expect more information can be derived from the experiment results as the number of the states increases. 

7.3 Chinese characters experiment result

We conducted the Chinese character experiments using the corpus we collected from the web. We were unable to interpret the result from the experiments. The result from the two state and three state experiments are difficult to interpret as a large amount of symbols exists in the experiments. We looked at some commonly used characters with respect to their occurrence at the emission matrix. The classification does not seem to be able to segment the word sequences. 

We also notice that there are a lot of characters that have relatively low frequencies in the sequence. We tried a biased approach by removing the low frequency characters and perform the experiment accordingly. We didn’t see improvement in the experiment results. 

Unlike English, Chinese does not have a strong bipolarized meaning in character sequence such as consonant and vowel.  Hence the resulting models from the experiments may be a foundation for the Chinese compound word separation problem to answer questions such as “should there be a space before/after this character”, or “does this character strongly associate to the left or to the right?” ...etc. 

From what is known about the Chinese language, the average word length in Chinese is a little more than two.  The word length rarely exceeds 5. Most Chinese idioms are either 4 or 7 characters in sequence. This language characteristic indicates higher order HMMs may be useful in processing Chinese. Higher order HMMs can be converted into HMMs of order one by elaborating the state space as a cross product of multiple previous states. It will be more difficult to interpret the result with larger number of states. 
7.4 Zhuyin experiment results

We obtained quite a nice result from the two state Zhuyin experiment. From the experiment results, we noticed that the SPACE symbol is clearly a state 1 property. Without really knowing what the meaning of the state is, we can guess that this state behaves in some way like SPACE in the English letter experiment, which is to separate phoneme sequences. 

The symbols 35-37 have the probabilities to be in either state 0 or state 1 while all other Zhuyin symbols consolidate to state 2. We are able to give a meaningful interpretation to the experiment results after a quick review. The symbols 35-37 have properties like SPACE symbol does.  

This can be also confirmed by the transition matrix. The transition matrix state 0 does not have a direct route to itself. This indicates state 0 has the property to serve as a break, just as the SPACE symbol is used to segment the Zhuyin sequences in our data. 

Considering the above mentioned Zhuyin grouping rules, symbols 35-37 are the only symbols that can exist in the middle of a three symbols sequence. In addition, those symbols can also be either a standalone phone, or serve as leading or ending symbols of some two symbol sequences. 

The Zhuyin three state experiment reveals even more structure information. From the experiment result, we immediately notice that only the SPACE symbol holds the state 1 property.  Initials (I) consolidate to state 0 while finals (F) consolidate to state 2. The middle symbols (M) can exist both in state 0 and state 1. This experiment yields even better result than the two state experiment. The model captures more information of the grouping rules from the Zhuyin system. 

The transition matrix can be represented as a directed graph. The states are the probabilities of certain symbols that can exist either in the beginning or the end. The edges encode the grouping rules. If you look at the following graph, it is clear that there are two outgoing edges from state 1. This is the indication that either state 0 or 2 can be a starting state for a new Zhuyin sequence. The transition into state 1 means the end of a zhuyin sequence. This covers the single symbol situation: I, M, F. 

The transition from state 0 to state 2 gives the possibility of a IF, IM, MM, or MF grouping. The final transition from state 2 to itself adds the grouping rules IMF, and IMM.
	
[image: image120.emf]012

0.898

0.768

0.029

0.971

0.102



	Figure 2 : transition diagram of two-state Zhuyin experiment


The Zhuyin three-states experiment yields a good result since the Zhuyin system has a simple structure that can be represented using few states.

7.5 Entropy 

Entropy measures the randomness in the information. The higher the entropy, the more content there will be embedded inside the information. On the other hand, if the information appears highly repetitive, then the information is less random and results in less entropy. 

According to Shannon’s fundamental theory of information, entropy is associated with encoding cost. That is, it will require as many bits (or more) as the entropy of the distribution to encode a data set drawn from the distribution. 

The entropy concept provides a mechanism to assess the HMMs. The experiment results agree with the entropies. As the number of states increases, the resulting model entropies go down accordingly. The models convey more structure. The entropy measure gives us some idea of the complexity of the sequence. As such, we can use the entropy value to adjust the size of the model. 

From the experiment results, we noticed that the English phoneme entropy is very close to that of English letters but only slightly larger. The Chinese character experiment, on the other hand, gives a much larger value than all the other experiments. We also notice that the Zhuyin experiment has the lowest entropy of all the experiments. The entropy result explains why we can not get a meaningful model from Chinese character experiments. 
Shannon’s entropy is measured by taking the logarithm to the base two. In general, we need to double the state space in order to reduce the entropy of the model by one. The size of the state space will quickly grow if we are trying to reduce the entropy to one with data sequences as complex as Chinese characters. 
	Chinese character Entropy Summaries

	
	H(X)
	H(Y|X)
	H(X|Y)
	H(Y)

	2
	0.786099
	8.223311
	3.73E-05
	9.009373

	3
	1.077931
	7.397173
	0.514621
	7.960483

	
	
	
	
	

	Zhuyin Entropy Summaries

	
	H(X)
	H(Y|X)
	H(X|Y)
	H(Y)

	2
	0.474027
	2.753355
	0.060169
	3.167213

	3
	0.482789
	2.62598
	0.063993
	3.044776

	
	
	
	
	

	English Phoneme Entropy Summaries

	
	H(X)
	H(Y|X)
	H(X|Y)
	H(Y)

	2
	0.722341
	3.695454
	0.007267
	4.410527

	3
	0.650194
	3.67628
	0.064208
	4.262266

	4
	1.008237
	2.951796
	0.503658
	3.456375

	5
	1.139522
	3.330247
	0.945869
	3.5239

	6
	1.197455
	2.802061
	0.798457
	3.20106

	Table 6: Entropy of the experiment summaries


8. Summary and conclusions
The HMM technique is a way to find the structure embedded inside a sequence. The resulting structure is the model that elucidates information.  Dr. Claude Elwood Shannon’s fundamental theory of information states that any encoding system for items draw from a distribution must take at least as many bits on average as the entropy of that distribution. This gives some explanation why we can or can not obtain good results from our experiments.

The experimental results demonstrate that the HMM technique is very efficient in finding structure from a sequence. When the sequence fits the model, the model can provide extra information. Zhuyin experiments are prime examples. There are only 8 different ways to group Zhuyin symbols(I, M, F, IM, IF, MF, IMM, IMF); therefore we only need very few states to capture the essence of the Zhuyin rules. 

If the model is larger than the dominant structure embedded in the information, this introduces noise into the model. The model is still influenced by the dominant structure but the meaning of the model changes accordingly. This is the situation of our English 3 states experiment and English phoneme 3 states experiment. On the other hand, if the model is smaller than the dominant structure embedded in the information, the model can not convey the structure at all. This is the situation of our Chinese character experiment. 

9. Future work

In this study, we apply the HMM technique to 4 difference sequences: English text, Chinese text, English text in its phoneme representation, and Chinese text in its Zhuyin representation. In total, eleven experiments were conducted. From the experimental results, we gain knowledge of the Hidden Markov technique. We think there are a few challenging areas that are worth further exploration. 

The entropy information of the sequence may have some relation to the number of states that are needed to capture the dominant structure in the sequence. If entropy plays such a role in choosing the number of states, then by considering entropy before performing the experiment can reduce the time required for trial and errors. 

Although we obtain some nice results from the English phoneme experiments, there may be more significant information that can be revealed by doing further experiment on this subject. We still haven’t seen complete phonetic rules from our experiment. This may require performing experiments with more states or experiments with higher order HMMs. 
In terms of Chinese character experiments, we think HMM is capable of finding meaningful models with exceptionally large number of states due to the large entropy value. Alternatively, experiments using higher order HMMs may yields good results on Chinese language. It is worth exploring the idea. 
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Appendix 1 : Experiment results
English alphabet experiment (2 states)
	
	
	
	

	States
	Iterations
	Symbols
	Observations

	2
	1000
	27
	5713925

	
	
	
	

	[PI Matrix]

	State 0
	State 1

	0
	1

	
	

	[A Matrix]

	State 0
	State 1

	0.2715
	0.7285

	0.706177
	0.293823

	
	

	 [B Matrix]

	State 0
	State 1
	Symbol 

	0.134589
	0
	A

	0
	0.02489
	B

	0
	0.050446
	C

	0
	0.064268
	D

	0.209065
	0
	E

	0
	0.03793
	F

	0.000569
	0.031119
	G

	0.002847
	0.084995
	H

	0.122213
	0
	I

	0
	0.002699
	J

	0.000582
	0.010121
	K

	0.001051
	0.066097
	L

	0
	0.041241
	M

	0
	0.115141
	N

	0.127028
	0
	O

	0.001312
	0.031577
	P

	0
	0.001744
	Q

	0
	0.099527
	R

	0
	0.106224
	S

	0.001321
	0.148737
	T

	0.045377
	0
	U

	0
	0.016184
	V

	0
	0.030387
	W

	0
	0.003228
	X

	0.002363
	0.025598
	Y

	0
	0.001548
	Z

	0.351683
	0.006298
	SP

	
	
	


English alphabet Experiment (3 states)
	
	
	
	

	States
	Iterations
	Symbols
	Observations

	3
	1000
	27
	5713925

	
	
	
	


	[PI Matrix]
	
	

	State 0
	State 1
	State 2

	0
	1
	0

	
	
	

	[A Matrix]
	
	

	State 0
	State 1
	State 2

	0.316935
	0
	0.683065

	0.534408
	0.033242
	0.43235

	0
	0.871805
	0.128195


	[B Matrix]
	
	
	

	State 0
	State 1
	State 2
	Symbol 

	0
	0.002288
	0.170664
	A

	0.003791
	0.033576
	0
	B

	0.018322
	0.059727
	0
	C

	0.055174
	0.051188
	0
	D

	0.162451
	0
	0.153694
	E

	0.007184
	0.050066
	0
	F

	0.030633
	0.022531
	0
	G

	0.154889
	0.007656
	0
	H

	0.009623
	0
	0.150056
	I

	0.000998
	0.003182
	0
	J

	0.009605
	0.007399
	0.000697
	K

	0.047715
	0.061204
	0
	L

	0.012024
	0.051139
	0
	M

	0.007448
	0.162989
	0.000204
	N

	0.042658
	0
	0.132927
	O

	0.017456
	0.034569
	0
	P

	0.000693
	0.002019
	0
	Q

	0.051279
	0.106
	0
	R

	0.060176
	0.108871
	0
	S

	0.087383
	0.15188
	0
	T

	0.002625
	0.000228
	0.056178
	U

	0.003831
	0.020763
	0
	V

	0.003388
	0.04196
	0
	W

	0
	0.00474
	0
	X

	0.038129
	0.010447
	0.000601
	Y

	0.000431
	0.001936
	0
	Z

	0.172094
	0.00364
	0.334978
	SP

	
	
	
	


Zhuyin experiment (2 states)
	
	
	
	

	States
	Iterations
	Symbols
	Observations

	2
	1000
	38
	4214761

	
	
	
	

	 [PI Matrix]

	State 0
	State 1

	0
	1

	

	[A Matrix]

	State 0
	State 1

	0.000001
	0.999999

	0.63339
	0.36661

	[ B Matrix ]

	State 0
	State 1
	symbol

	0.820494
	0
	SP

	0
	0.0269
	ㄅ

	0
	0.005607
	ㄆ

	0
	0.017616
	ㄇ

	0
	0.012499
	ㄈ

	0
	0.048962
	ㄉ

	0
	0.019568
	ㄊ

	0
	0.016297
	ㄋ

	0
	0.028877
	ㄌ

	0
	0.020268
	ㄍ

	0
	0.008158
	ㄎ

	0
	0.020617
	ㄏ

	0
	0.02969
	ㄐ

	0
	0.020649
	ㄑ

	0
	0.028065
	ㄒ

	0
	0.033258
	ㄓ

	0
	0.012017
	ㄔ

	0
	0.044702
	ㄕ

	0
	0.015504
	ㄖ

	0
	0.019472
	ㄗ

	0
	0.005647
	ㄘ

	0
	0.009854
	ㄙ

	0
	0.032084
	ㄚ

	0
	0.021441
	ㄛ

	0
	0.031547
	ㄜ

	0
	0.004911
	ㄝ

	0
	0.020405
	ㄞ

	0
	0.018462
	ㄟ

	0
	0.041123
	ㄠ

	0
	0.025875
	ㄡ

	0
	0.050226
	ㄢ

	0
	0.0339
	ㄣ

	0
	0.029074
	ㄤ

	0
	0.047872
	ㄥ

	0
	0.003924
	ㄦ

	0.109046
	0.101982
	ㄧ

	0.069926
	0.07917
	ㄨ

	0.000534
	0.013777
	ㄩ

	
	
	


Zhuyin Experiment (3 states)
	
	
	
	

	States
	Iterations
	Symbols
	Observations

	3
	1000
	38
	4214761

	
	
	
	

	[PI Matrix]
	
	

	State 0
	State 1
	State 2

	1
	0
	0

	
	
	

	[A Matrix]
	
	

	State 0
	State 1
	State 2

	0
	0.102309
	0.897691

	0.970655
	0.000001
	0.029344

	0
	0.768289
	0.231711

	
	
	

	[ B Matrix ]
	
	
	

	State 0
	State 1
	State 2
	Symbol 

	0
	1
	0
	SP

	0.053327
	0
	0
	ㄅ

	0.011115
	0
	0
	ㄆ

	0.034922
	0
	0
	ㄇ

	0.024779
	0
	0
	ㄈ

	0.097062
	0
	0
	ㄉ

	0.038791
	0
	0
	ㄊ

	0.031281
	0
	0.00085
	ㄋ

	0.057246
	0
	0
	ㄌ

	0.040178
	0
	0
	ㄍ

	0.016173
	0
	0
	ㄎ

	0.040871
	0
	0
	ㄏ

	0.058857
	0
	0
	ㄐ

	0.040934
	0
	0
	ㄑ

	0.055636
	0
	0
	ㄒ

	0.065931
	0
	0
	ㄓ

	0.023822
	0
	0
	ㄔ

	0.088616
	0
	0
	ㄕ

	0.030734
	0
	0
	ㄖ

	0.0386
	0
	0
	ㄗ

	0.011195
	0
	0
	ㄘ

	0.019535
	0
	0
	ㄙ

	0
	0
	0.052661
	ㄚ

	0
	0
	0.035192
	ㄛ

	0
	0
	0.051779
	ㄜ

	0
	0
	0.008061
	ㄝ


	0
	0
	0.033492
	ㄞ

	0
	0
	0.030303
	ㄟ

	0
	0
	0.067497
	ㄠ

	0
	0
	0.04247
	ㄡ

	0
	0
	0.082439
	ㄢ

	0
	0
	0.055642
	ㄣ

	0
	0
	0.04772
	ㄤ

	0
	0
	0.078575
	ㄥ

	0.007779
	0
	0
	ㄦ

	0.057123
	0
	0.233458
	ㄧ

	0.035655
	0
	0.17312
	ㄨ

	0.01984
	0
	0.006741
	ㄩ

	
	
	
	


English Phoneme Experiment (2 states)
	
	
	
	

	States
	Iterations
	Symbols
	Observations

	2
	1000
	40
	4809139

	
	
	
	


	[PI Matrix]
	

	State 0
	State 1

	0
	1

	
	

	[A Matrix]
	

	State 0
	State 1

	0.22832
	0.77168

	0.824734
	0.175266


	[B Matrix]
	
	

	State 0
	State 1
	Symbol 

	0.375431
	0.017917
	SP

	0.026337
	0
	AA

	0.047256
	0
	AE

	0.168883
	0
	AH

	0.023438
	0
	AO

	0.007479
	0.000321
	AW

	0.024912
	0.001258
	AY

	0
	0.029114
	B

	0
	0.009737
	CH

	0.001485
	0.070606
	D

	0
	0.050352
	DH

	0.043052
	0
	EH

	0.036847
	0.000887
	ER

	0.027501
	0
	EY

	0
	0.029508
	F

	0.000898
	0.012259
	G

	0
	0.024755
	HH

	0.091415
	0
	IH

	0.050609
	0
	IY

	0
	0.009553
	JH

	0.001763
	0.050342
	K

	0
	0.066354
	L

	0
	0.047675
	M

	0
	0.120372
	N

	0
	0.015856
	NG

	0.018476
	0
	OW

	0.001479
	0
	OY

	0.003393
	0.0319
	P

	0
	0.076646
	R

	0.005506
	0.07854
	S

	0
	0.015382
	SH

	0.010349
	0.107009
	T

	0
	0.006316
	TH

	0.005722
	0
	UH

	0.02777
	0
	UW

	0
	0.034972
	V

	0
	0.031159
	W

	0
	0.011245
	Y

	0
	0.048843
	Z

	0
	0.001119
	ZH

	
	
	


English Phoneme Experiment (3 States)
	
	
	
	

	States
	Iterations
	Symbols
	Observations

	3
	1000
	40
	4809139

	
	
	
	

	[PI Matrix]
	
	

	State 0
	State 1
	State 2

	0
	0
	1

	
	
	

	[A Matrix]
	
	

	State 0
	State 1
	State 2

	0.31574
	0.68426
	0

	0
	0.000254
	0.999746

	0.470544
	0.523048
	0.006408

	
	
	

	[B Matrix]
	
	
	

	State 0
	State 1
	State 2
	Symbol 

	0.254546
	0.370511
	0.000041
	SP

	0.000498
	0.036367
	0
	AA

	0
	0.06587
	0
	AE

	0.089125
	0.173737
	0
	AH

	0.000916
	0.032036
	0
	AO

	0.004591
	0.006862
	0.000799
	AW

	0.017326
	0.022385
	0.00198
	AY

	0.004121
	0
	0.034903
	B

	0.005068
	0
	0.009136
	CH

	0.070858
	0
	0.044851
	D

	0
	0
	0.065266
	DH

	0
	0.060009
	0
	EH

	0.051203
	0.01709
	0
	ER

	0.010832
	0.030839
	0
	EY

	0.005714
	0
	0.034318
	F

	0.002307
	0.000766
	0.014787
	G

	0.00067
	0
	0.031627
	HH

	0.000111
	0.127345
	0
	IH

	0.076353
	0.017713
	0
	IY

	0.00478
	0
	0.009096
	JH

	0.010448
	0.002065
	0.058457
	K

	0.029298
	0
	0.065861
	L

	0.010446
	0
	0.054612
	M

	0.002496
	0
	0.15431
	N

	0
	0
	0.020553
	NG

	0.013295
	0.016555
	0
	OW

	0.00087
	0.001459
	0
	OY

	0.016101
	0.001277
	0.033709
	P

	0.052227
	0
	0.063434
	R

	0.055742
	0
	0.071099
	S

	0.005415
	0
	0.016215
	SH

	0.099924
	0
	0.084327
	T

	0.002608
	0
	0.006394
	TH

	0
	0.007976
	0
	UH

	0.042737
	0.009137
	0
	UW

	0.003148
	0
	0.043167
	V

	0.008108
	0
	0.034812
	W

	0.013042
	0
	0.005608
	Y

	0.035055
	0
	0.039205
	Z

	0.000025
	0
	0.001434
	ZH

	
	
	
	


English Phoneme Experiment (4 States)
	
	
	
	

	States
	Iterations
	Symbols
	Observations

	4
	1000
	40
	4809139

	
	
	
	

	[PI Matrix]
	
	
	

	State 0
	State 1
	State 2
	State 3

	0
	0
	1
	0

	
	
	
	

	[A Matrix]
	
	
	

	State 0
	State 1
	State 2
	State 3

	0
	0
	0.708979
	0.291021

	0.593505
	0.208833
	0.046165
	0.151496

	0.000001
	0
	0.096191
	0.903808

	0.201096
	0.709009
	0.081376
	0.008519

	
	
	
	

	[ B Matrix ]
	
	
	
	

	State 0
	State 1
	State 2
	State 3
	Symbol 

	0.923881
	0
	0
	0
	SP

	0
	0
	0
	0.045417
	AA

	0
	0
	0
	0.081469
	AE

	0.00624
	0
	0
	0.28669
	AH

	0
	0
	0
	0.040414
	AO

	0
	0
	0.000563
	0.013009
	AW

	0
	0
	0.000376
	0.044731
	AY

	0.002955
	0.003413
	0.058794
	0
	B

	0
	0.011897
	0.007179
	0
	CH

	0
	0.101826
	0.035489
	0
	D

	0
	0.00654
	0.106005
	0
	DH

	0
	0
	0
	0.074391
	EH

	0.00754
	0.01375
	0.003805
	0.044388
	ER

	0.006959
	0
	0
	0.042592
	EY

	0.000448
	0.0122
	0.051289
	0
	F

	0.005195
	0.004767
	0.018626
	0
	G

	0
	0
	0.056162
	0
	HH

	0
	0
	0
	0.157588
	IH

	0.006099
	0.006228
	0
	0.077624
	IY

	0
	0.006996
	0.013299
	0
	JH

	0.010383
	0.041232
	0.055912
	0
	K

	0
	0.072469
	0.059313
	0
	L

	0
	0.042582
	0.054539
	0.000001
	M

	0
	0.194859
	0.027568
	0
	N

	0
	0.028533
	0
	0
	NG

	0.000214
	0.000157
	0.0001
	0.031479
	OW

	0.000003
	0
	0.000048
	0.002512
	OY

	0.009458
	0.013754
	0.053608
	0
	P

	0
	0.065436
	0.091486
	0
	R

	0.007207
	0.085735
	0.076115
	0
	S

	0
	0.003955
	0.029925
	0
	SH

	0.013364
	0.132294
	0.087373
	0
	T

	0
	0.005165
	0.007818
	0
	TH

	0
	0
	0
	0.009862
	UH

	0.000053
	0
	0
	0.047835
	UW

	0
	0.056638
	0.007936
	0
	V

	0
	0
	0.070701
	0
	W

	0
	0
	0.025519
	0
	Y

	0
	0.087727
	0.000236
	0
	Z

	0
	0.001844
	0.000215
	0
	ZH

	
	
	
	
	


English Phoneme Experiment (5 States)
	
	
	
	

	States
	Iterations
	Symbols
	Observations

	5
	1000
	40
	4809139

	
	
	
	

	[PI Matrix]
	
	
	
	

	State 0
	State 1
	State 2
	State 3
	State 4

	0
	0
	0
	0
	1

	
	
	
	
	

	[A Matrix]
	
	
	
	

	State 0
	State 1
	State 2
	State 3
	State 4

	0
	0.605684
	0
	0
	0.394316

	0.468041
	0.019842
	0.512117
	0
	0

	0.621127
	0
	0.132625
	0.246248
	0

	0.625578
	0
	0
	0.147838
	0.226584

	0.578994
	0
	0.000099
	0.420907
	0

	
	
	
	
	

	[B Matrix]
	
	
	
	
	

	State 0
	State 1
	State 2
	State 3
	State 4
	Symbol

	0.358793
	0.000077
	0.135205
	0.467014
	0
	SP

	0.037609
	0
	0.000602
	0.000399
	0
	AA

	0.068085
	0
	0
	0.000042
	0
	AE

	0.175764
	0
	0
	0.200274
	0
	AH

	0.033127
	0
	0.001795
	0
	0
	AO

	0.007483
	0.000128
	0.004186
	0.004187
	0.001496
	AW

	0.022193
	0.004193
	0.012533
	0.024422
	0
	AY

	0
	0.041019
	0.005884
	0.000335
	0.024827
	B

	0
	0.001287
	0.008016
	0
	0.020082
	CH

	0.000016
	0.01851
	0.117075
	0.001618
	0.090548
	D

	0
	0
	0.000711
	0
	0.143595
	DH

	0.062175
	0
	0
	0.000011
	0.000007
	EH

	0.017091
	0
	0.02521
	0.082811
	0
	ER

	0.031325
	0
	0.003173
	0.021841
	0
	EY

	0
	0.046193
	0.00849
	0
	0.017504
	F

	0.000346
	0.026263
	0.003321
	0
	0.000071
	G

	0
	0.000264
	0.00146
	0
	0.069379
	HH

	0.131588
	0
	0
	0.00041
	0
	IH

	0.017638
	0
	0.065476
	0.093943
	0
	IY

	0
	0.002057
	0.007896
	0
	0.019089
	JH

	0.000651
	0.100146
	0.016509
	0
	0.00405
	K

	0
	0.076219
	0.048891
	0
	0.052209
	L

	0
	0.050411
	0.012773
	0.00396
	0.057656
	M

	0
	0.253618
	0.000072
	0.001536
	0.010783
	N

	0
	0.017877
	0
	0
	0.021929
	NG

	0.01736
	0
	0.022326
	0.003299
	0
	OW

	0.001553
	0.000002
	0.001494
	0.000092
	0
	OY

	0.000902
	0.060876
	0.024983
	0
	0.000662
	P

	0
	0.08895
	0.09616
	0.000171
	0.028157
	R

	0
	0.130061
	0.090248
	0
	0.001188
	S

	0
	0.007461
	0.009308
	0
	0.027044
	SH

	0
	0.049947
	0.17402
	0
	0.137679
	T

	0
	0.008024
	0.004111
	0
	0.004365
	TH

	0.008241
	0
	0
	0.000006
	0
	UH

	0.008059
	0
	0.006256
	0.087786
	0
	UW

	0
	0.01179
	0.00547
	0
	0.080399
	V

	0
	0
	0.013977
	0
	0.078371
	W

	0
	0
	0.019524
	0.002175
	0.015507
	Y

	0
	0.004594
	0.052787
	0.003668
	0.090282
	Z

	0
	0.000031
	0.000057
	0
	0.003119
	ZH

	
	
	
	
	
	


English Phoneme Experiment (6 States)
	
	
	
	

	States
	Iterations
	Symbols
	Observations

	6
	1000
	40
	4809139

	
	
	
	

	[PI Matrix]
	
	
	
	
	

	State 0
	State 1
	State 2
	State 3
	State 4
	State 5

	0
	0
	0
	0
	1
	0

	
	
	
	
	
	

	[A Matrix]
	
	
	
	
	

	State 0
	State 1
	State 2
	State 3
	State 4
	State 5

	0.0006
	0.03201
	0.648543
	0.182988
	0.045335
	0.090523

	0
	0.000242
	0
	0.95029
	0.049468
	0

	0.039206
	0.24414
	0
	0
	0.716654
	0

	0.002495
	0.13936
	0.499588
	0.003302
	0.081398
	0.273857

	0.331603
	0.574421
	0
	0
	0.093976
	0

	0.017108
	0.121911
	0.719104
	0
	0.014087
	0.127789

	
	
	
	
	
	

	[B Matrix]
	
	
	
	
	
	

	State 0
	State 1
	State 2
	State 3
	State 4
	State 5
	Symbol

	0
	0
	0.950549
	0
	0
	0
	SP

	0.002256
	0.063418
	0
	0
	0
	0
	AA

	0.000124
	0.115207
	0
	0
	0
	0
	AE

	0.34325
	0.276925
	0.008301
	0
	0
	0
	AH

	0.003211
	0.055987
	0
	0
	0
	0
	AO

	0.01611
	0.011365
	0
	0
	0.001711
	0
	AW

	0.077905
	0.03429
	0.000484
	0
	0.000115
	0
	AY

	0
	0
	0.000336
	0.008841
	0.058978
	0.000212
	B

	0
	0
	0
	0.011455
	0.006886
	0.010975
	CH

	0
	0
	0
	0.050466
	0.03577
	0.21904
	D

	0
	0
	0
	0.010925
	0.107199
	0
	DH

	0.00008
	0.105207
	0
	0
	0
	0.000009
	EH

	0.066557
	0.018634
	0.003402
	0
	0.002015
	0.120569
	ER

	0.05255
	0.040949
	0.007061
	0
	0
	0
	EY

	0
	0
	0
	0.01593
	0.050836
	0.005702
	F

	0
	0
	0.00302
	0.008954
	0.018575
	0
	G

	0
	0
	0
	0
	0.058364
	0
	HH

	0
	0.222935
	0
	0
	0
	0.000006
	IH

	0.200652
	0.015574
	0
	0
	0
	0.095726
	IY

	0
	0
	0
	0.007576
	0.011854
	0.008455
	JH

	0
	0
	0.004228
	0.055524
	0.05527
	0.01342
	K

	0
	0
	0
	0.089531
	0.062095
	0
	L

	0.000003
	0
	0
	0.053454
	0.053128
	0.007883
	M

	0
	0
	0
	0.240846
	0.029762
	0
	N

	0
	0
	0
	0.035421
	0
	0
	NG

	0.051897
	0.023461
	0
	0.000046
	0
	0.006637
	OW

	0.003817
	0.002118
	0
	0
	0
	0.000216
	OY

	0
	0
	0.008995
	0.019537
	0.051665
	0.005962
	P

	0
	0
	0
	0.083317
	0.092874
	0
	R

	0
	0
	0.000929
	0.062237
	0.076154
	0.151882
	S

	0.000003
	0
	0
	0.008809
	0.026977
	0.000015
	SH

	0
	0
	0.011472
	0.097001
	0.083109
	0.218387
	T

	0
	0
	0.000113
	0.004383
	0.007406
	0.007393
	TH

	0.000056
	0.013931
	0
	0
	0
	0
	UH

	0.181529
	0
	0.000686
	0
	0
	0
	UW

	0
	0
	0
	0.068001
	0.009002
	0.004538
	V

	0
	0
	0
	0
	0.073473
	0
	W

	0
	0
	0
	0
	0.02652
	0
	Y

	0
	0
	0
	0.065716
	0.000207
	0.122971
	Z

	0
	0
	0.000424
	0.002029
	0.000055
	0
	ZH

	
	
	
	
	
	
	


Chinese Character Experiments 2 and 3 states 
Refer to attached PDF file

Appendix 2: Entropy experiment results
Chinese entropy 2 state
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	1
	0.687069
	
	6.88683
	

	2
	0.88513
	
	9.559792
	

	Average
	0.786099
	
	8.223311
	


Chinese entropy 3 state
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	1
	1.294356
	
	8.52547
	

	2
	0.990407
	
	9.783183
	

	3
	0.94903
	
	3.882864
	

	Average
	1.077931
	
	7.397173
	


Zhuyin Entropy Summaries

	
	H(X)
	H(Y|X)
	H(X|Y)
	H(Y)

	2
	0.474027
	2.753355
	0.060169
	3.167213

	3
	0.482789
	2.62598
	0.063993
	3.044776


Zhuyin entropy 2 states 
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	1
	2.14E-04
	
	0.622802
	

	2
	0.948033
	
	4.883908
	

	Average
	0.474027
	
	2.753355
	


Zhuyin entropy 3 states
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	1
	0.476273
	
	4.422283
	

	2
	0.191113
	
	0
	

	3
	0.780982
	
	3.455663
	

	Average
	0.482789
	
	2.62598
	


English Phoneme Entropy Summaries

	
	H(X)
	H(Y|X)
	H(X|Y)
	H(Y)

	2
	0.722341
	3.695454
	0.007267
	4.410527

	3
	0.650194
	3.67628
	0.064208
	4.262266

	4
	1.008237
	2.951796
	0.503658
	3.456375

	5
	1.139522
	3.330247
	0.945869
	3.5239

	6
	1.197455
	2.802061
	0.798457
	3.20106


English Phoneme Entropy 2 states
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	State 0
	0.775071
	
	3.152516
	

	State 1
	0.669611
	
	4.238391
	

	Average
	0.722341
	
	3.695453
	


English Phoneme Entropy 3 States
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	State 0
	0.899689
	
	3.862843
	

	State 1
	0.0034
	
	2.981002
	

	State 2
	1.047493
	
	4.184996
	

	Average
	0.349164
	
	3.676281
	


English Phoneme Entropy 4 States
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	State 0
	0.870036
	
	0.638299
	

	State 1
	1.535894
	
	3.710819
	

	State 2
	0.456825
	
	4.142052
	

	State 3
	1.170191
	
	3.316015
	

	Average
	1.008236
	
	2.951796
	


English Phoneme Entropy 5 States
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	State 0
	0.967528
	
	2.994127
	

	State 1
	1.11928
	
	3.5219
	

	State 2
	1.311153
	
	3.909419
	

	State 3
	1.316393
	
	2.342597
	

	State 4
	0.983256
	
	3.883193
	

	Average
	1.139522
	
	3.330247
	


English Phoneme Entropy 6 States
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	State 0
	1.534931
	
	2.609895
	

	State 1
	0.287371
	
	3.043193
	

	State 2
	1.024296
	
	0.42624
	

	State 3
	1.75146
	
	3.669145
	

	State 4
	1.308106
	
	4.131708
	

	State 5
	1.278568
	
	2.932186
	

	Average
	1.197456
	
	2.802061
	


Appendix 3 : Brown University corpus.

The original Brown Corpus (the brown university standard corpus of present-day American English ), compiled by W.N. Francis and H. Kucera in 1964 , consists of one million English words that considered to be a good representation of modern American English at that time. The corpus is sampled from fifteen different text sources (see folloing). 

 

	Press: reportage 

Press: editorial 

press: reviews 

Religion 

Skills & hobbies 

Popular Lore 

Belles lettres, biography, esays 

Miscellaneous 

Learned 

General fiction 

Mystery & detective fiction 

Science fiction 

Adventure & western fiction 

Romance & love story 

Humor 




In our experiment, we will use Brown corpus as the base of our English alphabet experiment. We will also use this corpus as the base for English phoneme transcription.

Appendix 4. Chinese character encoding

Chinese character encoding is very sophisticated in the sense that there are many different standards (there are somewhere around 4 different encoding methods). The official encoding scheme defined by the Taiwan government is CNS 11643. It is rarely used in encoding information. The encoding standard we are interested in is the BIG5 encoding standard, which was originally designed by Institute for Information Industry of Taiwan in 1984. It is not the most extensive encoding scheme but is the most widely implemented standard. Today, almost all the information we find on electronic medium is encoded with this encoding scheme. BIG5 plus is an extended encoding standard of original BIG5 encoding standard. BIG5 plus standard is a more extensive character encoding standard, which is a collection of CNS, BIG5, and other encoding standards.)  

Our system only reads characters that are encoded by the BIG5 encoding for two reasons. First, it is easier to collect corpus that is encoded with BIG5 standard since it is commonly used and second, BIG5 covers most common used characters that is sufficient for Chinese Text [9]. 

The BIG5 encoding method encodes character using 2 bytes sequence, covers 65535 possible cells. The matrix is segmented into discontinued blocks so that the encoding scheme is able to distinguish western characters from Asian Characters. Chinese character is set in disjointed blocks of size 94 x 157 of total 14758 characters. 
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The encoding table of the grayed block

	A140
	A24E
	punctuation and other symbols

	A24F
	A258
	various units

	A259
	A261
	Chinese units

	A262
	A2AE
	box-drawing pieces and shapes

	A2AF
	A2B8
	Arabic numerals

	A2B9
	A2C2
	Roman numerals

	A2C3
	A2CE
	Hangzhou numerals

	A2CF
	A2E8
	Latin capital letters

	A2E9
	A343
	Latin small letters

	A344
	A35B
	Greek capital letters

	A35C
	A373
	Greek small letters

	A374
	A3BA
	zhuyin symbols

	A3BB
	A3BF
	zhuyin diacritics

	A440
	C67E
	frequently used hanzi (5401)

	C6A1
	C6F7
	Hiragana

	C6F8
	C7B0
	Katakana

	C7B1
	C7E8
	Cyrillic letters

	C7E9
	C7F2
	circled numbers

	C7F3
	C7FC
	parenthesized numbers

	C940
	F9D5
	less frequently used hanzi (7652)


Appendix 5: Zhuyin – Pinyin conversion table

	Zhuyin
	ㄅ
	ㄆ
	ㄇ
	ㄈ
	ㄉ
	ㄊ
	ㄋ
	ㄌ

	Pinyin
	B
	P
	M
	F
	D
	T
	N
	L

	#
	1
	2
	3
	4
	5
	6
	7
	8

	
	
	
	
	
	
	
	
	

	Zhuyin
	ㄍ
	ㄎ
	ㄏ
	ㄐ
	ㄑ
	ㄒ
	ㄓ
	ㄔ

	Pinyin
	G
	K
	H
	J
	Q
	X
	ZH
	CH

	#
	9
	10
	11
	12
	13
	14
	15
	16

	
	
	
	
	
	
	
	
	

	Zhuyin
	ㄕ
	ㄖ
	ㄗ
	ㄘ
	ㄙ
	ㄧ
	ㄨ
	ㄩ

	Pinyin
	SH
	R
	Z
	C
	S
	I
	U
	V

	#
	17
	18
	19
	20
	21
	35
	36
	37

	
	
	
	
	
	
	
	
	

	Zhuyin
	ㄚ
	ㄛ
	ㄜ
	ㄝ
	ㄞ
	ㄟ
	ㄠ
	ㄡ

	Pinyin
	A
	O
	E
	EH
	AI
	EI
	AO
	OU

	#
	22
	23
	24
	25
	26
	27
	28
	29

	
	
	
	
	
	
	
	
	

	Zhuyin
	ㄢ
	ㄣ
	ㄤ
	ㄥ
	ㄦ
	ㄧㄚ
	ㄧㄝ
	ㄧㄞ

	Pinyin
	AN
	EN
	ANG
	ENG
	ER
	IA
	IE
	IEH

	#
	30
	31
	32
	33
	34
	
	
	

	
	
	
	
	
	
	
	
	

	Zhuyin
	ㄧㄠ
	ㄧㄡ
	ㄧㄢ
	ㄧㄣ
	ㄧㄤ
	ㄧㄥ
	ㄨㄚ
	ㄨㄛ

	Pinyin
	IAO
	IOU
	IAN
	IN
	IANG
	ING
	UA
	UO

	#
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Zhuyin
	ㄨㄞ
	ㄨㄟ
	ㄨㄢ
	ㄨㄣ
	ㄨㄤ
	ㄨㄥ
	ㄩㄝ
	ㄩㄢ

	Pinyin
	UAI
	UEI
	UAN
	UN
	UANG
	ONG
	UE
	YAN

	#
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Zhuyin
	ㄩㄣ
	ㄩㄥ
	
	
	
	
	
	

	Pinyin
	YN
	IONG
	
	
	
	
	
	

	#
	
	
	
	
	
	
	
	


Appendix 6: CMU pronouncing dictionary phoneme chart

Phoneme Example Translation

	1
	AA
	odd
	AA D

	2
	AE
	at
	AE T

	3
	AH
	hut
	HH AH T

	4
	AO
	ought
	AO T

	5
	AW
	cow
	K AW

	6
	AY
	hide
	HH AY D

	7
	B
	be
	B IY

	8
	CH
	cheese
	CH IY Z

	9
	D
	dee
	D IY

	10
	DH
	thee
	DH IY

	11
	EH
	Ed
	EH D

	12
	ER
	hurt
	HH ER T

	13
	EY
	ate
	EY T

	14
	F
	fee
	F IY

	15
	G
	green
	G R IY N

	16
	HH
	he
	HH IY

	17
	IH
	it
	IH T

	18
	IY
	eat
	IY T

	19
	JH
	gee
	JH IY

	20
	K
	key
	K IY

	21
	L
	lee
	L IY

	22
	M
	me
	M IY

	23
	N
	knee
	N IY

	24
	NG
	ping
	P IH NG

	25
	OW
	oat
	OW T

	26
	OY
	toy
	T OY

	27
	P
	pee
	P IY

	28
	R
	read
	R IY D

	29
	S
	sea
	S IY

	30
	SH
	she
	SH IY

	31
	T
	tea
	T IY

	32
	TH
	theta
	TH EY T AH

	33
	UH
	hood
	HH UH D

	34
	UW
	two
	T UW

	35
	V
	vee
	V IY

	36
	W
	we
	W IY

	37
	Y
	yield
	Y IY L D

	38
	Z
	zee
	Z IY

	39
	ZH
	seizure
	S IY ZH ER



Source : http://www.speech.cs.cmu.edu/cgi-bin/cmudict
Appendix 7 : Trial experiment result to determine the number of iterations to use.

	
	Number of symbols that converge to 0
	which probability is greater, or equal 

(add up to total number of observation symbols)

	iterations
	State[0]
	State[1]
	state[0] > state[1]
	State[1] > State[0]
	State[0] = State[1]

	1
	0
	0
	1833
	1655
	1801

	2
	0
	0
	1830
	1651
	1808

	3
	0
	0
	1830
	1647
	1812

	4
	0
	0
	1830
	1644
	1815

	5
	0
	0
	1832
	1647
	1810

	6
	0
	0
	1834
	1644
	1811

	7
	0
	0
	1832
	1645
	1812

	8
	0
	0
	1832
	1644
	1813

	9
	0
	0
	1828
	1644
	1817

	10
	0
	0
	1829
	1644
	1816

	20
	0
	0
	1820
	1655
	1814

	30
	0
	0
	1811
	1661
	1817

	40
	0
	0
	1802
	1677
	1810

	60
	0
	0
	1815
	1692
	1782

	70
	0
	0
	1830
	1701
	1758

	80
	0
	0
	1847
	1747
	1695

	90
	0
	0
	1849
	1776
	1664

	100
	0
	0
	1875
	1793
	1621

	200
	187
	186
	2488
	2558
	243

	300
	1420
	1200
	2479
	2773
	37

	400
	1539
	1205
	2466
	2786
	37

	500
	1546
	1191
	2481
	2772
	36

	600
	1546
	1205
	2482
	2773
	34

	700
	1541
	1209
	2489
	2766
	34

	800
	1532
	1209
	2489
	2767
	33

	900
	1534
	1221
	2501
	2757
	31

	1000
	1529
	1216
	2449
	2756
	84

	2000
	1515
	1210
	2500
	2757
	32

	3000
	1510
	1210
	2504
	2750
	35

	4000
	1513
	1207
	2501
	2759
	29
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