

STEALTHY CIPHERTEXT

A Thesis

Presented to

The Faculty of the Computer Science Department

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Martina Simova

December 2005

© 2005

Martina Simova

ALL RIGHTS RESERVED

ABSTRACT

STEALTHY CIPHERTEXT

by Martina Simova

To ensure the confidentiality of data, it can be encrypted before it is transmitted.

However, most data today is unencrypted. As a result, encrypted data might

attract unwanted attention, simply due to the fact that it is encrypted. To avoid

such attention, we propose a method of converting ciphertext into data that can

pass certain automated tests for English text. Out goal is to defeat automated

detection methods, and we want to expand the encrypted data as little as

possible in the process. Out technique can be considered as a form of

steganography.

Table of Contents

Introduction 1

Test for Randomness 3

Simple Methods for Hiding Random Data 5

Sentence Substitution 5

Base-64 Encoding 7

Entropy of Base-64 Encoded Data 9

Weakness of Sentence Substitution and Base-64 Encoding 10

Word Substitution 11

Entropy of Data Generated by Word Substitution 12

An Example of Word Substitution 13

Reversal of the Word Substitution 14

Weakness of Word Substitution 15

Automatic Detection of English 16

Hidden Markov Models 16

Problems That Can Be Solved by HMM 20

HMM Challenges 21

HMM Test for "Englishness" 21

Training the Model 22

Using HMM to Identify English 28

Syntactical Substitution 30

Syntactical Substitution in More Detail 33

An Example of Syntactical Substitution 35

Reversal of Syntactical Substitution 35

Data Expansion 37

Entropy of Transformed Data 38

HMM Test of Syntactical Substitution 39

Summary of Results 40

Conclusion 41

Works Cited 43

List of Tables and Figures

Tables

Table 1. Base-64 encoding table 8

Table 2. Dictionaries available for syntactical substitution 38

Table 3. Entropy of data 40

Table 4. "Englishness" of the transformed data 40

Figures

Figure 1. Generic Hidden Markov Model 19

Figure 2. English text conforming to this pattern passes our HMM

test for "Englishness

31

Figure 3. Pattern employed in our syntactical substitution method

32

"

Introduction

Today, most data is stored or sent unencrypted. Unencrypted data does not

attract much of attackers' attention--attackers expect confidential data to be

encrypted. Encrypted data (ciphertext), on the other hand, may attract lots of

unwanted attention. Because encrypted data looks random but unencrypted

data is well structured, attackers can use automated tools to search for encrypted

(random) data. Once attackers acquire encrypted data they might attempt to

decrypt it. Even if the attackers are not able to decrypt the data, they can still

perform traffic analysis.

Therefore, just obscuring data by encrypting it is not sufficient. We need to

prevent attackers from knowing that an encrypted communication even occurred.

The technique of making an encrypted message "invisible" to the attacker is

related to the field of steganography (also known as information hiding).

"Steganography is the art and science of writing hidden messages in such a way

that no one apart from the intended recipient knows of the existence of the

message" [10]. The method we discuss below can therefore be considered as a

form of steganography.

To hide the existence of an encrypted message from the attacker we have

developed a method that makes encrypted data look like unencrypted text. Our

goal is to avoid automated tools that might filter out random data. Note that we

do not require that the text appear to be sensible and grammatical English to a

human reader. The process of transformation of encrypted data into "English-

like" data naturally results in the encrypted data's expansion. Therefore, we aim

to minimize this expansion.

Our initial inspiration for developing such a data transformation method comes

from the talk given by "Mystic" at Def Con 11. "Mystic presented an example

where he encrypted the sentence 'This is a test' and then processed the

ciphertext to produce a long paragraph about baseball. The tool simply used the

encrypted bits as a key for selecting snippets of text, while following rules so that

the resulting text was somewhat sensible. The process could be reversed by the

receiver so that he could reconstruct the encrypted text from which he could

recover the plaintext" [6]. The text generated by "Mystic's" method appears as

sensible to a human reader. However, the data expansion associated with

"Mystic's" method is enormous. Unlike "Mystic's", our goal is to develop a

method which will transform encrypted data into data that will pass likely

automated tests, while minimizing the expansion of the data. We are not aware

of any comparable published approach.

Test for Randomness

To develop an efficient data hiding method, we first have to look at how

encrypted data can be automatically detected. An easy and efficient method to

detect encrypted (random) data is described in the paper "Playing Hide and Seek

with Stored Keys" [5] by Adi Shamir and Nicko van Someren. The entropy of

random data is higher than the entropy of nonrandom data and so Shamir's

method identifies random data by measuring entropy. To identify random data

embedded in nonrandom data, Shamir divides the data into segments, measures

entropy of each segment, and then displays the locations of data with high

entropy.

Obtaining an exact value of entropy is a complex process. However, the entropy

of nonrandom data is significantly lower than the entropy of random data, and so

to identify random data, we do not need to know the exact entropy value. By

experimenting, Shamir discovered that "examining a sliding window of 64 bytes

of data and counting how many unique byte values were used gave a good

enough measure of entropy" [5]. Shamir's experiments showed that an average

window of random data contains about 60 unique byte values, while an average

window of nonrandom data contains only about 30 unique byte values [5].

As mentioned above, the goal of our project is to transform random data (which

has high entropy) into a nonrandom looking data (which has low entropy). To

measure the success of this transformation, we will use Shamir's method of a

"sliding window" for measuring entropy, as we outline below.

1. Get a window of 64 bytes of data

2. Analyze the window by looking at each byte of the window and recording

the number of occurrences of each byte value: 0 through 255 (in decimal)

in a frequency array

3. Examine the frequency array, and see how many unique byte values

occurred in the window

4. Slide the window right by 1 bit (i.e., get a new window)

5. Go to Step 2

We have empirically determined the number of unique byte values per window

for random and nonrandom texts using our implementation of Shamir's method

for detecting randomness. In our experiments on English texts from Brown

corpus [9], a window of 64 bytes contains, on average, about 26 unique byte

values, while a window of random data contains, on average, about 58 unique

byte values. Thus, to deceive automated tools for randomness detection based

on an entropy calculation, we need, at the very least, to transform random data

into data whose average sliding window of 64 bytes will contain about 26 unique

byte values.

Simple Methods for Hiding Random Data

We know that to avoid automatic random data detection tools we must lower the

entropy of the data. We will now proceed with developing techniques that will

transform random data into nonrandom (or less random) data. Random data can

be transformed into nonrandom data using various approaches. Each approach

is associated with a different degree of random data's expansion and a different

degree of "protection" from automated detection tools. Let us first focus on two

obvious, simple methods of lowering the entropy:

1. Sentence substitution, i.e., replacing each group of bits of ciphertext with a

sentence

2. Base-64 encoding

Sentence Substitution

A simple way of transforming encrypted data into a normal looking text is to

replace each group of n bits of encrypted data by a full English sentence. Such a

method certainly hides the ciphertext well. The resulting data is a text consisting

of English sentences, which is, as we explained earlier, nonrandom and thus has

low entropy. The text might look strange to a human because sentences are

unrelated to each other. However, using automated tools, it would be difficult to

determine that the generated text is actually derived from ciphertext and is not

just plain English.

The main problem with the method of sentence substitution is the enormous data

expansion. Let us assume, as an example, that we have a dictionary of short

English sentences, containing at least 65,536 sentences, each sentence being

on average 30 characters long. Having at least 65,536 sentences in the

dictionary allows us to replace at most 16 bits of encrypted data with a sentence

from a dictionary. (The maximum number of bits n that can be replaced by a

sentence must be such that 2n ≤ dictionary size so that we can recover the

ciphertext from the transformed text). By replacing each group of 16 bits of

encrypted data with a sentence that is on average 30 characters long, the data

size gets expanded by about 1400% of its former size.

Base-64 Encoding

Another method of lowering the entropy of random data is base 64-encoding.

Base-64 encoding converts each 3 bytes of data into 4 printable characters.

Each base-64 encoded character is represented by only 6 bits, and so we have a

total of 26 = 64 printable characters in base-64 encoding.

To perform base-64 encoding, we first group data into blocks of 3 bytes (24 bits),

then divide each block into 4 groups of 6 bits. Each 6-bit group can then be

represented by a printable ASCII character. The rules for converting groups of 6

bits into printable characters are in Table 1 below.

If the last input block consists of only two bytes, then we append two zero bits to

obtain a block of 18 bits. We then convert these 18 bits to three base-64

characters. We must also append an "=" character, so that the final output block

will contain four base-64 characters. If the last input block consists of only 1

byte, then we append four zero bits, obtaining a 12-bit block. These 12 bits are

then converted into two base-64 characters. To end up with an output block of

four base-64 characters, two "=" characters must be appended.

Value Char Value Char Value Char Value Char

0 A 16 Q 32 g 48 w

1 B 17 R 33 h 49 x

2 C 18 S 34 i 50 y

3 D 19 T 35 j 51 z

4 E 20 U 36 k 52 0

5 F 21 V 37 l 53 1

6 G 22 W 38 m 54 2

7 H 23 X 39 n 55 3

8 I 24 Y 40 o 56 4

9 J 25 Z 41 p 57 5

10 K 26 a 42 q 58 6

11 L 27 b 43 r 59 7

12 M 28 c 44 s 60 8

13 N 29 d 45 t 61 9

14 O 30 e 46 u 62 +

15 P 31 f 47 v 63 /

Table 1. Base-64 encoding table [1]

An example of base-64 encoding:

We would like to base 64-encode these 3 bytes of random data:

1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1

The 3 bytes are separated into 4 blocks of 6 bits each:

1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1

Their corresponding decimal representations are:

43 21 28 55

These decimal numbers are then, using the base-64 encoding table above,

translated into the printable sequence:

r V c 3

Since in base 64-encoding each 3 bytes of data are converted into 4 bytes, the

data size gets expanded by only about 33% of its former size.

Entropy of Base-64 Encoded Data

When we measured the entropy of base-64 encoded data, we found that the

entropy of base-64 encoded data is higher than the entropy of nonrandom data

but lower than the entropy of random data. In our experiments, we base-64

encoded nonrandom English texts and measured on average about 36 unique

byte values per 64 byte window. We also base-64 encoded random data and

recorded on average about 42 unique byte values per window of 64 bytes.

Recall that, by our measurements, nonrandom English texts contain about 26

unique byte values per 64 byte window and random data contains about 58

unique byte values per window of 64 bytes.

From these results we see that the value of entropy for base-64 encoded data is

not close to the entropy of random data. However, its value is not close to the

entropy of nonrandom data either. Due to this distinction, base-64 encoded data

might attract an attacker's attention. The attacker might not only try to find

random data by looking for data with about 58 unique byte values per window of

64 bytes but he might also be detecting base-64 encoded data by searching for

data with either 36 or 42 unique byte values per window of 64 bytes. Once the

attacker captures base-64 encoded data, he can easily perform base-64

decoding on them. For these reasons, we concluded that base-64 encoding of

data is not a sufficient method of preventing random data's detection by an

attacker.

Weakness of Sentence Substitution and Base-64 Encoding

We can see that the two simple methods discussed above for reducing the

randomness of data are far from satisfactory. The method of sentence

substitution results in good protection from automated detection tools.

Unfortunately, this method is associated with an enormous data size expansion.

On the other hand, when using base 64-encoding to transform random data, the

data size expansion is very small. However, the base-64 encoded data's entropy

is not close to the entropy of normal English text.

Thus, we need a better data transformation method. This better method must

minimize the data size expansion. It must also reduce the randomness of the

data so that the resulting data can not be detected by measuring entropy. One

such method that we have developed replaces n bits of random data with an

English word.

Word Substitution

One way to make random data look like a nonrandom text is to replace blocks of

bits of random data with words from an English dictionary. More specifically, we

can take a block of n bits of random data, calculate its decimal value D and

replace this block of random data by the Dth word from a dictionary. The size of

the block of random data that can be replaced by a word from a dictionary

depends on the size of the dictionary used. The larger the dictionary, the larger

the value of n (the number of bits in a block) can be. For example, if we have a

dictionary containing at least 32,768 words, we can replace blocks of size n = 15

bits (215 = 32,768), if we have a dictionary containing at least 131,072 words, we

can take blocks of size n = 17 bits (217 = 131,072).

Consequently, the amount of data expansion associated with this data hiding

method depends on the size of the dictionary used. For example, if we use

dictionary of at least 131,072 words, then assuming the average length of a word

in the dictionary is 7.4 characters, the data size expansion is by about 295% of

its former size (each group of 17 bits becomes, on average, 7.4 bytes plus a

space, i.e., 67.2 bits). Similarly, when we use a smaller dictionary for ciphertext

hiding, say a dictionary of at least 1024 words, then the blocks of bits of

ciphertext to be transformed can be at most 10 bits long, resulting in the data

size expansion of 572% of this former size.

Entropy of Data Generated by Word Substitution

To determine the effectiveness of our word substitution method, we have

measured the entropy of the hidden (transformed) data. Our measurements

show that on average, a window of 64 bytes of data transformed by our

technique contains about 24 unique byte values. We concluded that the entropy

of the transformed data is very close to the entropy of English data and so it is

unlikely that the transformed data will attract any attacker's attention provided

that the attacker is relying only on this one statistical test. (Recall that a window

of 64 bytes of structured data contains about 26 unique byte values.)

An Example of Word Substitution

A random data (in hexadecimal):

FE CC 50 EF 5B D1 F5 60 47 E9 D2 4C 65 40 2E 22 A2 76 3B BF

Might get transformed into a text looking like this:

Louvre bandwagon dynasty penurious acerbity malignant glom boson

bonito crossroad Mennonite maverick air

The text generated by our word substitution method will look strange to a human

because the words are unrelated to each other. However, we are primarily

concerned with protection of ciphertext from automated detection tools. Above,

we determined that the entropy of the text generated by our word substitution

method is close to the entropy of normal English texts. Therefore it would be

difficult to determine using automated randomness detection tools that the

generated text is actually derived from ciphertext.

Reversal of the Word Substitution

A crucial property of any data hiding method is its reversibility. To recover the

data hidden by our word substitution method the receiver of the transformed data

only needs to know which dictionary was used to hide the data.

The reversal of our word substitution method above, i.e., the ciphertext recovery,

is implemented as follows:

1. Based on the dictionary used to hide the data, determine n (the number of

bits of ciphertext hidden in each word)

n = floor(log2 (size of dictionary))

(where floor(F) is defined as the largest integral value that is less

than or equal to F, and log2 (E) returns the base 2 logarithm of E)

2. Read in a word of the received data

3. Find the word in the dictionary and record its position P in the dictionary

4. The value of P is a decimal representation of the value of n bits, so

convert P into a binary number of n bits

5. If not all words from the transformed message analyzed, go to step 2

When we want to recover only a certain portion of the ciphertext, it is not

necessary to decode the entire data. Assuming that each word of transformed

data hides n bits of ciphertext, we can recover the bth bit of ciphertext as follows:

1. Determine which word of the transformed data hides the bth bit of

ciphertext, i.e., find the wth word of the transformed data such that:

(w - 1) · n < b ≤ w · n

2. Read in the wth word of the transformed data, find it in the dictionary

and record its position P in the dictionary

3. The value of P is a decimal representation of the value of n bits, so

convert P into a binary number of n bits

4. If (b mod n) = 0, then the desired bit b is the nth (last) bit of the

recovered n bits, otherwise, the desired bit b is the (b mod n)th bit of

the recovered n bits

Weakness of Word Substitution

The word substitution approach defeats the automated tools that search for

encrypted data by measuring entropy. Also, the data size expansion associated

with this method is reasonable. However, even though the transformed text is a

sequence of English words, it does not look like a properly structured English

text. That is because the words from the dictionary are chosen only on the basis

of their location in the dictionary and no English syntax rules are followed.

Therefore, if the attacker analyzed the transformed data using a tool that takes

into account the structure of English, the text generated by word substitution

should score poorly. We examine this case below.

Automatic Detection of English

To defeat tools for automatic detection of English texts we need a method that

will transform random data into an "English-like" text. To determine the

properties that text generated by that method should have in order to be

classified as English we developed a tool that measures the "Englishness" of

text. Our tool tests for "Englishness" of text using Hidden Markov Models. We

chose Hidden Markov Models for their ability to draw out statistically significant

information, without requiring many a priori assumptions on the data.

Hidden Markov Models

Markov models are mathematical representations of stochastic processes.

Stochastic processes generate random sequences of outcomes according to

certain probabilities. In Markov models, the probability of observing an output

depends only on the current state and not on previous states.

A Hidden Markov Model (HMM) is a model in which we observe an output

sequence, but we do not know the sequence of underlying states the model went

through to generate the observations, that is, the actual states of the model are

"hidden". The goal is to recover the state information from the observed data [3].

A Hidden Markov Model is really a statistical tool for understanding some

deterministic process, where the deterministic process cannot be observed

directly [8].

Notational conventions for HMM:

T = the length of the observation sequence

N = the number of states in the model

M = the number of observation symbols

Q = {q0, q1, . . ., qN-1} = the states of the Markov process

V = {0, 1, . . ., M - 1} = set of possible observations

O = (O0, O1, . . ., OT-1) = observation sequence

X = (X0, X1, . . ., XT-1) = state sequence

Distributional parameters

A = the state transition probability distribution

B = the observation symbol probability distribution

π = the initial state distribution

Where:

The matrix A is an N × N stochastic matrix (i.e., elements of each

row sum to 1) A = {aij}, such that:

aij = P(state is qj at t + 1 | state is qi at t)

The matrix B is an N × M matrix B = {bj(k)}, such that elements of

each row sum to 1 and the observation symbol probability

distribution in state j:

 bj(k) = P(observation is k at t | state is qj at t)

The matrix π is a 1 × N matrix π = {πi}, such that elements of its

row adds up to 1 and:

 π i = P(state is qi at 0)

Using the above notation, a Hidden Markov Model is a five-tuple (Q, V, A, B, π)

[4]. When the set of possible observations and the states of the Markov process

are fixed, then the HMM can be defined by λ = {A, B, π}.

Figure 1 shows a generic Hidden Markov Model. The Xi denotes the hidden

states. "The Markov process—which is hidden behind the dashed line—is

determined by the initial state X0 and the A matrix. We are only able to observe

the Oi, which are related to the actual states of the Markov process by the

matrices B and A" [7].

Figure 1. Generic Hidden Markov Model [7]

Problems That Can Be Solved by HMM

Problem 1

We want to compute the probability that the model generates the observation

sequence, i.e., given observations O = (O0, O1, . . ., OT-1) and model λ = (A, B,

π), we want to compute P(O | λ).

Problem 2

We want to find the optimal state sequence that generates the observation

sequence. This can be thought of as uncovering the hidden part of the model or

finding the best “explanation” for the data. Given observations O = (O0, O1, . . .,

OT-1) and model λ = (A, B, π), we want find the optimal state sequence X = (X0,

X1, . . ., XT-1)

Problem 3

In this problem, we want to train the HMM to best fit the observation sequence,

i.e., given observations O = (O0, O1, . . ., OT-1), determine model parameters λ =

(A, B, π) that maximize P(O | λ).

HMM Challenges

Experiments have shown that HMMs are effective and highly accurate in

practice. However, a few challenges must be overcome when using HMMs.

“The structure of the HMM is not always obvious” [2]. In order to construct the

states and transitions that an HMM can take, we need to have some prior

knowledge of the domain. Often, in practice trial and error is used to construct

the states and transitions of HMM.

HMMs do not always produce comprehensible results--in some cases, the

distribution and transition probabilities do not provide an intuitive descriptions of

what has been learned [2]. This problem arises from an incorrect initial HMM

"setup". It is dificult to determine the appropriate number of states, transitions

and the form of the probability distributions.

HMM Test for "Englishness"

To develop our test for "Englishness" we have to solve two HMM problems--

Problem 3 and Problem 1 as defined above. We first use Problem 3 to train

HMM on properly structured English texts and thereby obtain a model for

English. Once trained, we use Problem 1 to determine how closely a given text

conforms to the model. In other words, to determine whether the given text

"looks" like English, from the perspective of our HMM.

Training the Model

The process that we apply for obtaining a model can be described as:

1. Initialize the model λ = (A, B, π)

A is an N × N matrix, B is an N × M matrix, and π is a 1 × N matrix. All

three matrices must be initialized in a way so that the elements of each

row add up to 1 and the elements of each matrix are not uniform. The

easiest way is to initialize aij ≈ 1 / N, bj(k) ≈ 1 / M, and πi ≈ 1 / N

2. Repeat for a desired number of iterations or while P(O | λ) increases:

i) For i = 0, 1, … N - 1 and t = 0, 1, 2, …, T - 1 compute:

 αt(i) = P(O0,O1, …, Ot, Xt = qi | λ)

The value of αt(i), which is the probability of the observation

sequence up to time t, and where at time t the Markov

process is in state qi is computed as follows:

for i = 0, 1, … N - 1

α0(i) = πi bi (O0)

for i = 0, 1, … N - 1 and t = 1, 2, …, T – 1

αt(i) = [Σj=0 to N-1 αt-1(j) aji] bi (Ot)

ii) For i = 0, 1, … N - 1 and t = 0, 1, 2, …, T - 1 compute:

βt(i) = P(Ot+1,Ot+2, …, OT-1 | Xt = qi, λ)

We compute the value of βt(i), which is the probability of the

observation sequence after time t, and where at time t the

Markov process is in state qi as follows:

for i = 0, 1, … N - 1

βT-1(i) = 1

for i = 0, 1, … N - 1 and t = T - 2, T - 1, …, 0

βt(i) = Σj=0 to N-1 aij bj (Ot+1) βt+1(j)

iii) For i = 0, 1, … N - 1, j = 0, 1, … N - 1 and t = 0, 1, 2, …, T - 2

 compute:

γt(i, j) = P(Xt = qi, Xt+1 = qj | O, λ)

The value of γt(i, j), which is the probability of being in state

qi at time t and transiting to state qj at time t + 1, is computed

as follows:

for i = 0, 1, … N - 1, j = 0, 1, … N - 1 and t = 1, 2, …, T - 2

γt(i, j) = (αt(i) aij bj (Ot+1) βt+1(j)) / P(O | λ)

iv) For i = 0, 1, … N - 1, j = 0, 1, … N - 1 and t = 1, 2, …, T - 2

 compute:

γt(i) = P(Xt = qi | O, λ)

We calculate the value of γt(i), which is the probability of

being in state qi at time t, as:

for i = 0, 1, … N - 1, j = 0, 1, … N - 1 and t = 1, 2, …, T-2

γt(i) = Σj=0 to N-1 γ t(i, j)

v) Re-estimate π:

for i = 0, 1, … N - 1

πi = γ0(i)

vi) Re-estimate A:

Re-estimated aij, which is the probability of transiting from state qi to

state qj is the ratio of the expected number of transition from state qi

to state qj to the expected number of transitions from qi to any state.

aij is re-estimated as:

for i = 0, 1, … N - 1, j = 0, 1, … N - 1

aij = [Σt=0 to T-2 γt(i, j)] / [Σt=0 to T-2 γt(i)]

vii) Re-estimate B:

Re-estimated bj(k) is the probability of observing symbol k when a

model is in state qj. This is computed as the ratio of the expected

number of times the model is in state qj with observation k to the

expected number of times the model is in state qj. bj(k), is re-

estimated as:

for i = 0, 1, … N - 1 and k = 0, 1, … M - 1

bj(k) = [Σt={0,1,…,T-2} and O at t = k γt(i)] / [Σt=0 to T-2 γt(i)]

To obtain a model for English language that can be used in our test for

"Englishness", we experimented with an HMM to determine whether English can

be distinguished according to some statistics. First we prepared the observation

sequence. For training purposes, we used as an input English texts from Brown

corpus [9]. We read T words from the Brown corpus (where T is the length of

observation sequence). We restricted our observation symbols to be: noun,

verb, adjective, adverb, pronoun, conjunction, interjection, preposition, and

period. Therefore we determined for each of the words that we read from the

Brown corpus, what word group it belongs to (i.e., noun, verb, adjective,….). We

perform this classification by comparing each of the words to their definitions in a

dictionary. The implementation of the word classification is not as trivial as it

might appear. The dictionary contains the words in their basic forms only. As a

result, word forms such as plural, past tenses, 3rd person verbs, -ing verbs, -er,

-est adjectives and proper nouns are not listed in the dictionary. Therefore such

words must first be converted by our tool to their basic form in order to be found

in the dictionary. The result of this clasification is an observation sequence of

length T consisting of word types (i.e., noun, verb, adjective,….).

Once we obtain the observation sequence, we use HMM to see if the words in

the observation sequence can be partitioned according to some statistics. To

obtain sensible, consistent statistics, we experimented with various lengths of

observation sequences (T), varied the number of states in the model (N), the

number of observation symbols (M), and the number of iterations needed for the

model to converge, as follows:

T = 50,000 to 100,000

M = 8 or 9 (the 9th symbol being period)

N = 2, 3, or 4

iterations = 1,000 to 5,000

We considered the following models:

Model 1: 2 states, 8 observation symbols

We found that training a model with 2 states and 8 observation symbols does not

produce any sensible results. The statistics vary from test to test and as a result

such a model is not useful.

Model 2: 2 states, 9 observation symbols

We found that training a model with 2 states and 9 observation symbols does not

produce any sensible results either. The statistics vary from test to test and as a

result such a model is not useful.

Model 3: 3 states, 8 observation symbols

In this model, the observation symbols were divided into the following three

hidden states:

State 1: noun

State 2: verb, preposition, adverb, conjunction

State 3: adjective, pronoun, interjection

Model 4: 3 states, 9 observation symbols

At the end of the training process we found the observation symbols were

separated into three hidden states:

State 1: noun

State 2: verb, preposition, adverb, conjunction, period

State 3: adjective, interjection, pronoun

Model 5: 4 states, 8 observation symbols

In this case, the observation symbols were divided into the following four hidden

states:

State 1: verb, adverb, pronoun

State 2: noun

State 3: adjective, interjection

State 4: preposition, conjunction

Model 6: 4 states, 9 observation symbols

At the end of the training process we found the observation symbols were

separated into these four hidden states:

State 1: verb, adverb, pronoun

State 2: noun

State 3: adjective, interjection

State 4: preposition, conjunction, period

We empirically determined that the Models 4 and 6 can be used in solving

Problem 1 of HMM--determining the probability of observing a certain sequence,

given a model. In the case of our test for "Englishness" the Models 4 and 6 can

be used to determine the probability that an observed sequence is English.

Using HMM to Identify English

After training our model on English texts, we can use it to determine the

probability that a given text is English. In other words, given the model λ = (A, B,

π), and an observation sequence O, we want to find probability P(O | λ). The

following procedure was used:

1. Prepare the observation sequence, using as input the text that we want to

test for "Englishness". The observation sequence is prepared by

classifying each word of the input as belonging to a certain word group

(e.g. noun, verb, adjective, …).

2. Initialize the matrices A, B, and π to the values that matrixes A, B, and π

converged to during the training of the model being used.

3. Compute αt(i) as follows:

for i = 0, 1, … N - 1

α0(i) = πi bi (O0)

for i = 0, 1, … N - 1 and t = 1, 2, …, T-1

αt(i) = [Σj=0 to N-1 αt-1(j) aji] bi (Ot)

4. Compute P(O | λ):

P(O | λ) = 1 - Σi=0 to N-1 αT-1(i)

We verified, using a variety of texts, that our technique reliably classifies a given

text as English or not English. For example, when using Model 4 (as discussed

above), which uses 3 states and 9 observation symbols, our test for

"Englishness" gives the following results:

• For English texts, P(O | λ) is, on average, 0.97 and in no case worse than

0.94.

• For texts consisting of English words in random order, P(O | λ) is, on

average, 0.68 and never more than 0.72.

From those results we see that our word substitution method described above is

highly vulnerable to this HMM test. We explained earlier that the word

substitution method would pass Shamir's test for entropy. It would, however, fail

this more sophisticated HMM test which incorporates some of the structure of

English.

We will now proceed with developing a ciphertext hiding technique, which

transforms encrypted data into a text that can pass the HMM test for

"Englishness".

Syntactical Substitution

To transform random data into a more "English-like" text, some English syntax

rules need to be followed when choosing a proper word from a dictionary to

replace the bits of random data. Thus when developing a method that

transforms data into text that looks like English, we first determined what rules

and patterns of English language our transformed data should follow. When

looking at how English sentences are structured we observed certain patterns.

For example, we saw that often in a sentence we have a noun followed by a

verb, followed by an adverb. Or we also often found an adjective being followed

by a noun, followed by a verb. We took into account these patterns when

designing a technique for transforming encrypted data into an "English-like" text.

We aimed for simplicity of our data transformation method, and so we empirically

determined that, when analyzed by our tool for measuring "Englishness", a text

passes as English when it consists of words in this order:

noun

period

verb

period

verb

noun

adjective

period

adverb

preposition

noun

noun

verb

Start here

OR Start here

OR Start here

Figure 2. English text conforming to this pattern passes our HMM test for

 "Englishness"

We employed the chart above to develop a method that transforms random data

into "English-like" text by replacing groups of bits in a way that the resulting text

follows the pattern below.

noun

period

verb

period

verb

noun

adjective

period

adverb

preposition

noun

noun

verb

Start here

Figure 3. Pattern employed in our syntactical substitution method

That is, our method starts by replacing bits of random text by a noun, if there are

still bits of encrypted data left, then it replaces the next group of random bits with

a verb, if there are still bits of encrypted data left, it replaces the next group of

bits by an adverb followed by a period, and so on. When transforming random

data in this way, we need to be able to find the word of the desired word group in

the dictionary. For this purpose, our method uses several dictionaries--each of

the dictionaries contains words belonging only to a certain word group, i.e., we

have a dictionary of nouns, a dictionary of verbs, a dictionary of adjectives, a

dictionary of prepositions, a dictionary of adverbs, a dictionary of pronouns, a

dictionary of interjections, and a dictionary of conjunctions.

Syntactical Substitution in More Detail

In this section we show how the ciphertext is transformed into the pattern:

[noun] [verb] [adverb].

1. Read in x bits of ciphertext, where

x = floor(log2 (size of dictionary of nouns))

Calculate D = decimal value of those x bits

Output Dth word from dictionary of nouns

2. If unprocessed bits of ciphertext left, read in next y bits of ciphertext,

where

y = floor(log2 (size of dictionary of verbs))

Calculate D = decimal value of those y bits

Output Dth word from dictionary of verbs

Else, output period

3. If unprocessed bits or ciphertext left, read in next z bits of ciphertext,

where

z = floor(log2 (size of dictionary of adverbs))

Calculate D = decimal value of those z bits

Output Dth word from dictionary of adverbs

4. Output period

5. Make the first letter of the sentence capital.

The transformation of ciphertext into patterns other than "[noun] [verb] [adverb]."

is implemented similarly. The number of bits of random data replaced each time

depends on the size of dictionary that is being used. For example, if the

dictionary of nouns contains E entries, then we can transform n bits of encrypted

data into a noun, where

n = floor(log2 (E))

An Example of Syntactical Substitution

Random data (in hexadecimal) such as:

FE CC 50 EF 5B D1 F5 60 47 E9 D2 4C 65 40 2E 22 A2 76 3B BF

Might get transformed into a text that looks like this:

Inverter cicatrize creamily. Insectile curfew refreshen. Cineole earn ex

hemiparasite. Galley glide nohow. Agrarian.

While this text would not pass human analysis, we show below that it does pass

both Shamir's entropy test and our HMM test for English.

Reversal of Syntactical Substitution

In order to recover the hidden data, the sender and receiver must agree on which

dictionaries are to be used. The receiver of the data must also know the pattern

that was used to hide the ciphertext. The decryption method is implemented as

follows:

1. Read in a word of the received data

2. Based on the pattern and the dictionaries used, determine, the number

of bits of random data n that this word hides

3. Find the word in the dictionary for that word type and record its position

P in the dictionary

4. The value of P is a decimal representation of the value of n bits, so

convert P into a binary number of n bits

5. If all words from the transformed message have not been analyzed, go

back to Step 1

To recover only a certain portion of the ciphertext, it is not necessary to decode

the entire data. The bth bit of ciphertext can be recovered as follows:

1. Determine which word of the transformed data hides the bth bit of the

ciphertext by adding one by one the numbers of bits each of the

transformed words hides (following the pattern), until we find:

b ≤ sum of bits

(The last word which bits were added into the sum hides the bth bit)

2. Based on the pattern used to hide the ciphertext, determine the type of

the word that hides the bth bit, find it in the appropriate dictionary and

record its position P in the dictionary

3. Based on the type of the word, determine n (the number of bits of

ciphertext that the word hides)

4. Convert P into a binary number of n bits

5. If (b mod n) = 0, then the desired bit b is the nth (last) bit of the

recovered n bits, otherwise, the desired bit b is the (b mod n)th bit of

the recovered n bits

Data Expansion

The amount of data expansion associated with our syntactical substitution

method depends on the size of each of the dictionaries used. The larger each of

the used dictionaries, the more bits of random data can be replaced by a

dictionary word and hence the smaller amount of data expansion. We need to

keep this in mind when coming up with new patterns for replacement of random

bits. There are, in the English language, far fewer interjections, pronouns,

conjunctions, and prepositions than nouns, adjectives, verbs, or adverbs.

Therefore, in order to minimize the amount of data expansion, our patterns for

random bit replacement should only rarely include interjections, pronouns,

conjunctions, or prepositions. See Table 2 for the comparison of dictionaries and

the expansion associated with their use in our syntactical substitution method.

Dictionary

type

Dictionary

size

Average word length

(in characters)

n Expansion

Noun 29,271 8.1 14 420

Adjective 10,751 8.7 13 497

Pronoun 72 5.4 6 753

Verb 5,290 7.1 12 440

Adverb 893 7.7 9 673

Preposition 73 4.6 6 646

Conjunction 40 6.6 5 1,116

Interjection 73 4.8 6 673

Table 2. Dictionaries available for syntactical substitution (n is the number of bits

of ciphertext that can be replaced by a dictionary word. Expansion
includes space or period, which is appended to the word during syntactical
substitution.)

As a result, our syntactical substitution that hides ciphertext using the pattern in

Figure 3 expands data by about 460% of its original size.

Entropy of Transformed Data

To determine whether our syntactical substitution method would defeat

automated tools that filter out ciphertext, we measured the entropy (using

Shamir's approximation) of the transformed data. Our measurements show that

on average, a window of 64 bytes of data transformed by this technique contains

about 25 unique byte values. Recall that a window of 64 bytes of structured data

contains about 26 unique byte values. Therefore, the entropy of the transformed

data is very close to the entropy of structured data and so it is unlikely that the

transformed data would be filtered out by automated random data detection tools

based on an entropy calculation.

HMM Test of Syntactical Substitution

To verify the effectiveness of our syntactical substitution method, we used the

HMM test for "Englishness" to determine how close the transformed ciphertext is

to English. Our tests show that using this method, the probability of the

transformed text being English is, on average, calculated to be 0.97, which

matches the results we found for legitimate English text. That means that our

syntactical substitution technique for a random data transformation produces

data indistinguishable from English using either Shamir's measure of entropy or

our HMM test for English.

Summary of Results

The tables below summarize our findings related to our methods for ciphertext

hiding.

Data Entropy

Random data 58

English text 26

Base-64 encoded random data 42

Base-64 encoded English text 36

Data generated by our word substitution method 24

Data generated by our syntactical substitution method 25

Table 3. Entropy of data (using Shamir's approach of measuring entropy)

Data Probability of the transformed text
being English (on average)

English text 0.97

Data generated by our word
substitution method

0.68

Data generated by our syntactical
substitution method

0.97

Table 4. "Englishness" of the transformed data (using our HMM test for English)

Conclusion

We explained that it is often desirable to hide the existence of an encrypted

communication. We then discussed Shamir's entropy approximation, which

provides an efficient test to automatically detect ciphertext. This is due to the

high entropy of ciphertext as compared to plaintext data. We then discussed a

simple word substitution method of converting ciphertext into data with less

entropy. This technique would avoid automated screening based on an entropy

calculation.

We then presented an approach, based on a Hidden Markov Model (HMM),

which was able to defeat the word substitution method. By including English

syntactical information into our transformation tool, we were able to defeat this

HMM detection tool. That is, our syntactical substitution method converts

ciphertext into transformed text that is sufficiently "English-like" to overcome a

simple entropy calculation as well as a more sophisticated HMM analysis.

Of course, this is only the beginning of an "arms race". The next step would be

to build an analysis tool that can automatically detect that the output of our

syntactical transformation tool is not sufficiently "English-like". Then we could

attempt to design a more effective transformation tool so that its output would not

be detected by this new detector, and so on. However, at each iteration the cost

of detection is likely to be significantly higher that at the previous level. If we can

drive the cost up sufficiently high, then we will have made large-scale automated

detection impractical.

Works Cited

[1] Base-64 encoding. (n. d.). Retrieved September 24, 2004 from:
http://www.betrusted.com/downloads/products/key/tools/v50/crypto/c-
docs/html/cryptocdevquide-18.html

[2] Kadous, W. (1998). Hidden Markov Models. Retrieved December 9, 2004

from: http://www.cse.unsw.edu.au/~waleed/phd/tr9806/node12.html

[3] Hidden Markov Models. (n. d.). Retrieved December 9, 2004 from:

http://www.mathworks.com/access/helpdesk/help/toolbox/stats/
hidden_2.html

 [4] Hidden Markov Models. (n. d.). Retrieved December 11, 2004 from:

http://www.cs.brown.edu/research/ai/dynamics/tutorial/Documents/Hidden
MarkovModels.html

[5] Shamir A, van Someren N. (1999). Playing Hide and Seek with Stored Keys.

Proceedings of the Third International Conference on Financial
Cryptography, 1648, 118-124.

 [6] Stamp, M. (2003). DEFCON 11 Trip Report. Retrieved October 5, 2004 from:

http://home.earthlink.net/~mstamp1/tripreports/defcon11.html

[7] Stamp, M. (2004). A Revealing Induction to Hidden Markov Models.

Retrieved November 5, 2004 from: http://www.cs.sjsu.edu/faculty/
stamp/RUA/HMM.pdf

[8] Taitelbaum, B. (2003). Hidden Markov Models. Retrieved December 9, 2004

from: http://occs.cs.oberlin.edu/~btaitelb/projects/honors/
honorsnode5.html

[9] The Brown Corpus of Standard American English. Retrieved November 8,

2004 from: http://cs.sjsu.edu/faculty/stamp/brown/

[10] Wikipedia: The Free Encyclopedia. Steganography. Retrieved March 3,

2005 from: http://en.wikipedia.org/wiki/Steganography

http://home.earthlink.net/~mstamp1/tripreports/defcon11.html

	An example of base-64 encoding:

