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ABSTRACT 

 

 

STEALTHY CIPHERTEXT 

by Martina Simova 

 

 

To ensure the confidentiality of data, it can be encrypted before it is transmitted. 

However, most data today is unencrypted. As a result, encrypted data might 

attract unwanted attention, simply due to the fact that it is encrypted. To avoid 

such attention, we propose a method of converting ciphertext into data that can 

pass certain automated tests for English text. Out goal is to defeat automated 

detection methods, and we want to expand the encrypted data as little as 

possible in the process. Out technique can be considered as a form of 

steganography.  
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Introduction 

 

Today, most data is stored or sent unencrypted.  Unencrypted data does not 

attract much of attackers' attention--attackers expect confidential data to be 

encrypted.  Encrypted data (ciphertext), on the other hand, may attract lots of 

unwanted attention.  Because encrypted data looks random but unencrypted 

data is well structured, attackers can use automated tools to search for encrypted 

(random) data.  Once attackers acquire encrypted data they might attempt to 

decrypt it.  Even if the attackers are not able to decrypt the data, they can still 

perform traffic analysis.   

 

Therefore, just obscuring data by encrypting it is not sufficient.  We need to 

prevent attackers from knowing that an encrypted communication even occurred.  

The technique of making an encrypted message "invisible" to the attacker is 

related to the field of steganography (also known as information hiding).  

"Steganography is the art and science of writing hidden messages in such a way 

that no one apart from the intended recipient knows of the existence of the 

message" [10].  The method we discuss below can therefore be considered as a 

form of steganography.   

 

To hide the existence of an encrypted message from the attacker we have 

developed a method that makes encrypted data look like unencrypted text.  Our 



 

goal is to avoid automated tools that might filter out random data.  Note that we 

do not require that the text appear to be sensible and grammatical English to a 

human reader.  The process of transformation of encrypted data into "English-

like" data naturally results in the encrypted data's expansion.  Therefore, we aim 

to minimize this expansion. 

 

Our initial inspiration for developing such a data transformation method comes 

from the talk given by "Mystic" at Def Con 11.  "Mystic presented an example 

where he encrypted the sentence 'This is a test' and then processed the 

ciphertext to produce a long paragraph about baseball.  The tool simply used the 

encrypted bits as a key for selecting snippets of text, while following rules so that 

the resulting text was somewhat sensible.  The process could be reversed by the 

receiver so that he could reconstruct the encrypted text from which he could 

recover the plaintext" [6].  The text generated by "Mystic's" method appears as 

sensible to a human reader.  However, the data expansion associated with 

"Mystic's" method is enormous.  Unlike "Mystic's", our goal is to develop a 

method which will transform encrypted data into data that will pass likely 

automated tests, while minimizing the expansion of the data.  We are not aware 

of any comparable published approach. 

 

 



 

Test for Randomness   

 

To develop an efficient data hiding method, we first have to look at how 

encrypted data can be automatically detected.  An easy and efficient method to 

detect encrypted (random) data is described in the paper "Playing Hide and Seek 

with Stored Keys" [5] by Adi Shamir and Nicko van Someren.  The entropy of 

random data is higher than the entropy of nonrandom data and so Shamir's 

method identifies random data by measuring entropy.  To identify random data 

embedded in nonrandom data, Shamir divides the data into segments, measures 

entropy of each segment, and then displays the locations of data with high 

entropy.   

 

Obtaining an exact value of entropy is a complex process.  However, the entropy 

of nonrandom data is significantly lower than the entropy of random data, and so 

to identify random data, we do not need to know the exact entropy value.  By 

experimenting, Shamir discovered that "examining a sliding window of 64 bytes 

of data and counting how many unique byte values were used gave a good 

enough measure of entropy" [5].  Shamir's experiments showed that an average 

window of random data contains about 60 unique byte values, while an average 

window of nonrandom data contains only about 30 unique byte values [5]. 

 



 

As mentioned above, the goal of our project is to transform random data (which 

has high entropy) into a nonrandom looking data (which has low entropy).  To 

measure the success of this transformation, we will use Shamir's method of a 

"sliding window" for measuring entropy, as we outline below. 

 

1. Get a window of 64 bytes of data 

2. Analyze the window by looking at each byte of the window and recording 

the number of occurrences of each byte value: 0 through 255 (in decimal) 

in a frequency array 

3. Examine the frequency array, and see how many unique byte values 

occurred in the window 

4.  Slide the window right by 1 bit (i.e., get a new window) 

5.  Go to Step 2 

 

We have empirically determined the number of unique byte values per window 

for random and nonrandom texts using our implementation of Shamir's method 

for detecting randomness.  In our experiments on English texts from Brown 

corpus [9], a window of 64 bytes contains, on average, about 26 unique byte 

values, while a window of random data contains, on average, about 58 unique 

byte values.  Thus, to deceive automated tools for randomness detection based 

on an entropy calculation, we need, at the very least, to transform random data 



 

into data whose average sliding window of 64 bytes will contain about 26 unique 

byte values.   

 

 

Simple Methods for Hiding Random Data 

 

We know that to avoid automatic random data detection tools we must lower the 

entropy of the data.  We will now proceed with developing techniques that will 

transform random data into nonrandom (or less random) data.  Random data can 

be transformed into nonrandom data using various approaches.  Each approach 

is associated with a different degree of random data's expansion and a different 

degree of "protection" from automated detection tools.  Let us first focus on two 

obvious, simple methods of lowering the entropy:  

1. Sentence substitution, i.e., replacing each group of bits of ciphertext with a 

sentence  

2. Base-64 encoding 

 

 

Sentence Substitution 

 

A simple way of transforming encrypted data into a normal looking text is to 

replace each group of n bits of encrypted data by a full English sentence.  Such a 



 

method certainly hides the ciphertext well.  The resulting data is a text consisting 

of English sentences, which is, as we explained earlier, nonrandom and thus has 

low entropy.  The text might look strange to a human because sentences are 

unrelated to each other.  However, using automated tools, it would be difficult to 

determine that the generated text is actually derived from ciphertext and is not 

just plain English. 

 

The main problem with the method of sentence substitution is the enormous data 

expansion.  Let us assume, as an example, that we have a dictionary of short 

English sentences, containing at least 65,536 sentences, each sentence being 

on average 30 characters long.  Having at least 65,536 sentences in the 

dictionary allows us to replace at most 16 bits of encrypted data with a sentence 

from a dictionary.  (The maximum number of bits n that can be replaced by a 

sentence must be such that 2n ≤ dictionary size so that we can recover the 

ciphertext from the transformed text).  By replacing each group of 16 bits of 

encrypted data with a sentence that is on average 30 characters long, the data 

size gets expanded by about 1400% of its former size.   

 

 



 

Base-64 Encoding 

 

Another method of lowering the entropy of random data is base 64-encoding.  

Base-64 encoding converts each 3 bytes of data into 4 printable characters. 

Each base-64 encoded character is represented by only 6 bits, and so we have a 

total of 26 = 64 printable characters in base-64 encoding.   

 

To perform base-64 encoding, we first group data into blocks of 3 bytes (24 bits), 

then divide each block into 4 groups of 6 bits.  Each 6-bit group can then be 

represented by a printable ASCII character.  The rules for converting groups of 6 

bits into printable characters are in Table 1 below.   

 

If the last input block consists of only two bytes, then we append two zero bits to 

obtain a block of 18 bits.  We then convert these 18 bits to three base-64 

characters.  We must also append an "=" character, so that the final output block 

will contain four base-64 characters.  If the last input block consists of only 1 

byte, then we append four zero bits, obtaining a 12-bit block.  These 12 bits are 

then converted into two base-64 characters.  To end up with an output block of 

four base-64 characters, two "=" characters must be appended.   

 

 

 



 

Value Char   Value Char   Value Char   Value Char 

0 A   16 Q   32 g   48 w 

1 B   17 R   33 h   49 x 

2 C   18 S   34 i   50 y 

3 D   19 T   35 j   51 z 

4 E   20 U   36 k   52 0 

5 F   21 V   37 l   53 1 

6 G   22 W   38 m   54 2 

7 H   23 X   39 n   55 3 

8 I   24 Y   40 o   56 4 

9 J   25 Z   41 p   57 5 

10 K   26 a   42 q   58 6 

11 L   27 b   43 r   59 7 

12 M   28 c   44 s   60 8 

13 N   29 d   45 t   61 9 

14 O   30 e   46 u   62 + 

15 P   31 f   47 v   63 / 

 

Table 1.  Base-64 encoding table [1] 

 

 

An example of base-64 encoding: 

 

We would like to base 64-encode these 3 bytes of random data:  

1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 

 

The 3 bytes are separated into 4 blocks of 6 bits each:   



 

1 0 1 0 1 1 0 1  0 1 0 1 0 1 1 1  0 0 1 1 0 1 1 1 

 

Their corresponding decimal representations are:  

43 21 28 55 

 

These decimal numbers are then, using the base-64 encoding table above, 

translated into the printable sequence:  

r V c 3 

 

 

Since in base 64-encoding each 3 bytes of data are converted into 4 bytes, the 

data size gets expanded by only about 33% of its former size. 

 

 

Entropy of Base-64 Encoded Data 

 

When we measured the entropy of base-64 encoded data, we found that the 

entropy of base-64 encoded data is higher than the entropy of nonrandom data 

but lower than the entropy of random data.  In our experiments, we base-64 

encoded nonrandom English texts and measured on average about 36 unique 

byte values per 64 byte window.  We also base-64 encoded random data and 

recorded on average about 42 unique byte values per window of 64 bytes.  

Recall that, by our measurements, nonrandom English texts contain about 26 



 

unique byte values per 64 byte window and random data contains about 58 

unique byte values per window of 64 bytes. 

 

From these results we see that the value of entropy for base-64 encoded data is 

not close to the entropy of random data.  However, its value is not close to the 

entropy of nonrandom data either.  Due to this distinction, base-64 encoded data 

might attract an attacker's attention.   The attacker might not only try to find 

random data by looking for data with about 58 unique byte values per window of 

64 bytes but he might also be detecting base-64 encoded data by searching for 

data with either 36 or 42 unique byte values per window of 64 bytes.  Once the 

attacker captures base-64 encoded data, he can easily perform base-64 

decoding on them.   For these reasons, we concluded that base-64 encoding of 

data is not a sufficient method of preventing random data's detection by an 

attacker.   

 

 

Weakness of Sentence Substitution and Base-64 Encoding  

 

We can see that the two simple methods discussed above for reducing the 

randomness of data are far from satisfactory.  The method of sentence 

substitution results in good protection from automated detection tools.  

Unfortunately, this method is associated with an enormous data size expansion.  



 

On the other hand, when using base 64-encoding to transform random data, the 

data size expansion is very small.  However, the base-64 encoded data's entropy 

is not close to the entropy of normal English text.   

 

Thus, we need a better data transformation method.  This better method must 

minimize the data size expansion.  It must also reduce the randomness of the 

data so that the resulting data can not be detected by measuring entropy.  One 

such method that we have developed replaces n bits of random data with an 

English word. 

 

 

Word Substitution 

 

One way to make random data look like a nonrandom text is to replace blocks of 

bits of random data with words from an English dictionary.  More specifically, we 

can take a block of n bits of random data, calculate its decimal value D and 

replace this block of random data by the Dth word from a dictionary.  The size of 

the block of random data that can be replaced by a word from a dictionary 

depends on the size of the dictionary used.  The larger the dictionary, the larger 

the value of n (the number of bits in a block) can be.  For example, if we have a 

dictionary containing at least 32,768 words, we can replace blocks of size n = 15 



 

bits (215 = 32,768), if we have a dictionary containing at least 131,072 words, we 

can take blocks of size n = 17 bits (217 =  131,072).   

 

Consequently, the amount of data expansion associated with this data hiding 

method depends on the size of the dictionary used.  For example, if we use 

dictionary of at least 131,072 words, then assuming the average length of a word 

in the dictionary is 7.4 characters, the data size expansion is by about 295% of 

its former size (each group of 17 bits becomes, on average, 7.4 bytes plus a 

space, i.e., 67.2 bits).  Similarly, when we use a smaller dictionary for ciphertext 

hiding, say a dictionary of at least 1024 words, then the blocks of bits of 

ciphertext to be transformed can be at most 10 bits long, resulting in the data 

size expansion of 572% of this former size. 

 

 

Entropy of Data Generated by Word Substitution 

 

To determine the effectiveness of our word substitution method, we have 

measured the entropy of the hidden (transformed) data.  Our measurements 

show that on average, a window of 64 bytes of data transformed by our 

technique contains about 24 unique byte values.  We concluded that the entropy 

of the transformed data is very close to the entropy of English data and so it is 

unlikely that the transformed data will attract any attacker's attention provided 



 

that the attacker is relying only on this one statistical test.  (Recall that a window 

of 64 bytes of structured data contains about 26 unique byte values.)  

 

 

An Example of Word Substitution 

 

A random data (in hexadecimal):  

FE CC 50 EF 5B D1 F5 60 47 E9 D2 4C 65 40 2E 22 A2 76 3B BF 

 

Might get transformed into a text looking like this:  

Louvre bandwagon dynasty penurious acerbity malignant glom boson 

bonito crossroad Mennonite maverick air 

 

The text generated by our word substitution method will look strange to a human 

because the words are unrelated to each other.  However, we are primarily 

concerned with protection of ciphertext from automated detection tools.  Above, 

we determined that the entropy of the text generated by our word substitution 

method is close to the entropy of normal English texts.  Therefore it would be 

difficult to determine using automated randomness detection tools that the 

generated text is actually derived from ciphertext. 

 

 



 

Reversal of the Word Substitution 

 

A crucial property of any data hiding method is its reversibility.  To recover the 

data hidden by our word substitution method the receiver of the transformed data 

only needs to know which dictionary was used to hide the data.   

 

The reversal of our word substitution method above, i.e., the ciphertext recovery, 

is implemented as follows: 

1. Based on the dictionary used to hide the data, determine n (the number of 

bits of ciphertext hidden in each word) 

n = floor(log2 (size of dictionary)) 

(where floor(F) is defined as the largest integral value that is less 

than or equal to F, and log2 (E) returns the base 2 logarithm of E) 

2. Read in a word of the received data 

3. Find the word in the dictionary and record its position P in the dictionary  

4. The value of P is a decimal representation of the value of n bits, so 

convert P into a binary number of n bits  

5. If not all words from the transformed message analyzed, go to step 2 

 

 



 

When we want to recover only a certain portion of the ciphertext, it is not 

necessary to decode the entire data.  Assuming that each word of transformed 

data hides n bits of ciphertext, we can recover the bth bit of ciphertext as follows: 

1. Determine which word of the transformed data hides the bth bit of 

ciphertext, i.e., find the wth word of the transformed data such that:  

(w - 1) · n < b ≤ w · n 

2. Read in the wth word of the transformed data, find it in the dictionary 

and record its position P in the dictionary  

3. The value of P is a decimal representation of the value of n bits, so 

convert P into a binary number of n bits  

4. If (b mod n) = 0, then the desired bit b is the nth (last) bit of the 

recovered n bits, otherwise, the desired bit b is the (b mod n)th bit of 

the recovered n bits 

 

 

Weakness of Word Substitution  

 

The word substitution approach defeats the automated tools that search for 

encrypted data by measuring entropy.  Also, the data size expansion associated 

with this method is reasonable.  However, even though the transformed text is a 

sequence of English words, it does not look like a properly structured English 

text.  That is because the words from the dictionary are chosen only on the basis 



 

of their location in the dictionary and no English syntax rules are followed.  

Therefore, if the attacker analyzed the transformed data using a tool that takes 

into account the structure of English, the text generated by word substitution 

should score poorly.   We examine this case below.   

 

 

Automatic Detection of English 

 

To defeat tools for automatic detection of English texts we need a method that 

will transform random data into an "English-like" text.  To determine the 

properties that text generated by that method should have in order to be 

classified as English we developed a tool that measures the "Englishness" of 

text.  Our tool tests for "Englishness" of text using Hidden Markov Models.  We 

chose Hidden Markov Models for their ability to draw out statistically significant 

information, without requiring many a priori assumptions on the data. 

 

 

Hidden Markov Models 

 

Markov models are mathematical representations of stochastic processes.  

Stochastic processes generate random sequences of outcomes according to 



 

certain probabilities.  In Markov models, the probability of observing an output 

depends only on the current state and not on previous states. 

 

A Hidden Markov Model (HMM) is a model in which we observe an output 

sequence, but we do not know the sequence of underlying states the model went 

through to generate the observations, that is, the actual states of the model are 

"hidden".  The goal is to recover the state information from the observed data [3].  

A Hidden Markov Model is really a statistical tool for understanding some 

deterministic process, where the deterministic process cannot be observed 

directly [8].   

 

 

Notational conventions for HMM: 

 

T = the length of the observation sequence 

N = the number of states in the model 

M = the number of observation symbols 

Q = {q0, q1, . . ., qN-1} = the states of the Markov process 

V = {0, 1, . . ., M - 1} = set of possible observations 

O = (O0, O1, . . ., OT-1) = observation sequence 

X = (X0, X1, . . ., XT-1) = state sequence 

 



 

Distributional parameters 

 

A = the state transition probability distribution 

B = the observation symbol probability distribution 

π = the initial state distribution 

 

Where: 

The matrix A is an N × N stochastic matrix (i.e., elements of each 

row sum to 1) A = {aij}, such that: 

aij = P(state is qj at t + 1 | state is qi at t)   

 

The matrix B is an N × M matrix B = {bj(k)}, such that elements of 

each row sum to 1 and the observation symbol probability 

distribution in state j: 

 bj(k) = P(observation is k at t | state is qj at t) 

 

The matrix π is a 1 × N matrix π = {πi}, such that elements of its 

row adds up to 1 and: 

 π i = P(state is qi at 0)  

 

 



 

Using the above notation, a Hidden Markov Model is a five-tuple (Q, V, A, B, π) 

[4].  When the set of possible observations and the states of the Markov process 

are fixed, then the HMM can be defined by λ = {A, B, π}. 

 

Figure 1 shows a generic Hidden Markov Model.  The Xi denotes the hidden 

states.  "The Markov process—which is hidden behind the dashed line—is 

determined by the initial state X0 and the A matrix.  We are only able to observe 

the Oi, which are related to the actual states of the Markov process by the 

matrices B and A" [7]. 

 

 

 

Figure 1.  Generic Hidden Markov Model [7] 

 

 



 

Problems That Can Be Solved by HMM 

 

Problem 1 

We want to compute the probability that the model generates the observation 

sequence, i.e., given observations O = (O0, O1, . . ., OT-1) and model λ = (A, B, 

π), we want to compute P(O | λ). 

 

Problem 2 

We want to find the optimal state sequence that generates the observation 

sequence.  This can be thought of as uncovering the hidden part of the model or 

finding the best “explanation” for the data.  Given observations O = (O0, O1, . . ., 

OT-1) and model λ = (A, B, π), we want find the optimal state sequence X = (X0, 

X1, . . ., XT-1)  

 

Problem 3 

In this problem, we want to train the HMM to best fit the observation sequence, 

i.e., given observations O = (O0, O1, . . ., OT-1), determine model parameters λ = 

(A, B, π) that maximize  P(O | λ). 

 

 



 

HMM Challenges 

 

Experiments have shown that HMMs are effective and highly accurate in 

practice.  However, a few challenges must be overcome when using HMMs. 

“The structure of the HMM is not always obvious” [2].  In order to construct the 

states and transitions that an HMM can take, we need to have some prior 

knowledge of the domain.  Often, in practice trial and error is used to construct 

the states and transitions of HMM. 

 

HMMs do not always produce comprehensible results--in some cases, the 

distribution and transition probabilities do not provide an intuitive descriptions of 

what has been learned [2].  This problem arises from an incorrect initial HMM 

"setup".  It is dificult to determine the appropriate number of states, transitions 

and the form of the probability distributions.   

 

 

HMM Test for "Englishness" 

 

To develop our test for "Englishness" we have to solve two HMM problems--

Problem 3 and Problem 1 as defined above.  We first use Problem 3 to train 

HMM on properly structured English texts and thereby obtain a model for 

English.  Once trained, we use Problem 1 to determine how closely a given text 



 

conforms to the model.  In other words, to determine whether the given text 

"looks" like English, from the perspective of our HMM. 

 

 

Training the Model 

 

The process that we apply for obtaining a model can be described as: 

1.  Initialize the model λ = (A, B, π) 

A is an N × N matrix, B is an N × M matrix, and π is a 1 × N matrix.  All 

three matrices must be initialized in a way so that the elements of each 

row add up to 1 and the elements of each matrix are not uniform.  The 

easiest way is to initialize aij  ≈ 1 / N, bj(k) ≈ 1 / M, and πi ≈ 1 / N 

2. Repeat for a desired number of iterations or while P(O | λ)  increases: 

i) For i  = 0, 1, … N - 1 and t = 0, 1, 2, …, T - 1 compute: 

 αt(i) = P(O0,O1, …, Ot, Xt = qi | λ)  

The value of αt(i), which is the probability of the observation 

sequence up to time t, and where at time t the Markov 

process is in state qi  is computed as follows: 

for i  = 0, 1, … N - 1 

α0(i) = πi bi (O0) 

for i  = 0, 1, … N - 1 and t = 1, 2, …, T – 1 

αt(i) = [ Σj=0 to N-1 αt-1(j) aji ] bi (Ot) 



 

ii) For i  = 0, 1, … N  - 1 and t = 0, 1, 2, …, T - 1 compute: 

βt(i) = P(Ot+1,Ot+2, …, OT-1 | Xt = qi, λ)  

We compute the value of βt(i), which is the probability of the 

observation sequence after time t, and where at time t the 

Markov process is in state qi  as follows: 

for i  = 0, 1, … N - 1 

βT-1(i) = 1 

for i  = 0, 1, … N - 1 and t = T - 2, T - 1, …, 0 

βt(i) = Σj=0 to N-1 aij bj (Ot+1) βt+1(j)  

iii) For i  = 0, 1, … N - 1, j  = 0, 1, … N - 1 and t = 0, 1, 2, …, T - 2   

           compute: 

γt(i, j) = P(Xt = qi, Xt+1 = qj | O, λ)  

The value of γt(i, j), which is the probability of being in state 

qi at time t and transiting to state qj at time t + 1, is computed 

as follows: 

for i  = 0, 1, … N - 1, j  = 0, 1, … N - 1 and t = 1, 2, …, T - 2 

γt(i, j) = (αt(i) aij bj (Ot+1) βt+1(j)) / P(O | λ) 

iv) For i  = 0, 1, … N - 1, j  = 0, 1, … N - 1 and t = 1, 2, …, T - 2  

            compute: 

γt(i) = P(Xt = qi | O, λ)  

We calculate the value of γt(i), which is the probability of 

being in state qi at time t, as: 



 

for i  = 0, 1, … N - 1, j  = 0, 1, … N - 1 and t = 1, 2, …, T-2 

γt(i) = Σj=0 to N-1 γ t(i, j) 

v) Re-estimate π: 

for i  = 0, 1, … N - 1 

πi = γ0(i) 

vi) Re-estimate A: 

Re-estimated aij, which is the probability of transiting from state qi to 

state qj is the ratio of the expected number of transition from state qi 

to state qj to the expected number of transitions from qi to any state.  

aij is re-estimated as: 

for i  = 0, 1, … N - 1, j  = 0, 1, … N - 1  

aij = [ Σt=0 to T-2 γt(i, j) ] / [ Σt=0 to T-2 γt(i) ] 

vii) Re-estimate B: 

Re-estimated bj(k) is the probability of observing symbol k when a 

model is in state qj.  This is computed as the ratio of the expected 

number of times the model is in state qj with observation k to the 

expected number of times the model is in state qj.  bj(k),  is re-

estimated as: 

for i  = 0, 1, … N - 1 and k  = 0, 1, … M - 1  

bj(k) = [ Σt={0,1,…,T-2} and O at t = k γt(i) ] / [Σt=0 to  T-2 γt(i) ] 

 

 



 

To obtain a model for English language that can be used in our test for 

"Englishness", we experimented with an HMM to determine whether English can 

be distinguished according to some statistics.  First we prepared the observation 

sequence.  For training purposes, we used as an input English texts from Brown 

corpus [9].  We read T words from the Brown corpus (where T is the length of 

observation sequence).  We restricted our observation symbols to be: noun, 

verb, adjective, adverb, pronoun, conjunction, interjection, preposition, and 

period.  Therefore we determined for each of the words that we read from the 

Brown corpus, what word group it belongs to (i.e., noun, verb, adjective,…. ).  We 

perform this classification by comparing each of the words to their definitions in a 

dictionary.  The implementation of the word classification is not as trivial as it 

might appear.  The dictionary contains the words in their basic forms only.  As a 

result, word forms such as plural, past tenses, 3rd person verbs, -ing verbs, -er,    

-est adjectives and proper nouns are not listed in the dictionary.  Therefore such 

words must first be converted by our tool to their basic form in order to be found 

in the dictionary.  The result of this clasification is an observation sequence of 

length T consisting of word types (i.e., noun, verb, adjective,…. ). 

 

Once we obtain the observation sequence, we use HMM to see if the words in 

the observation sequence can be partitioned according to some statistics.  To 

obtain sensible, consistent statistics, we experimented with various lengths of 

observation sequences (T), varied the number of states in the model (N), the 



 

number of observation symbols (M), and the number of iterations needed for the 

model to converge, as follows: 

T = 50,000 to 100,000   

M = 8 or 9 (the 9th symbol being period) 

N = 2, 3, or 4 

iterations = 1,000 to 5,000 

 

 

We considered the following models: 

 

Model 1: 2 states, 8 observation symbols  

We found that training a model with 2 states and 8 observation symbols does not 

produce any sensible results.  The statistics vary from test to test and as a result 

such a model is not useful. 

 

Model 2: 2 states, 9 observation symbols  

We found that training a model with 2 states and 9 observation symbols does not 

produce any sensible results either.  The statistics vary from test to test and as a 

result such a model is not useful. 

 



 

Model 3: 3 states, 8 observation symbols  

In this model, the observation symbols were divided into the following three 

hidden states: 

State 1: noun 

State 2: verb, preposition, adverb, conjunction 

State 3: adjective, pronoun, interjection 

 

Model 4: 3 states, 9 observation symbols  

At the end of the training process we found the observation symbols were 

separated into three hidden states: 

State 1: noun 

State 2: verb, preposition, adverb, conjunction, period 

State 3: adjective, interjection, pronoun 

 

Model 5: 4 states, 8 observation symbols  

In this case, the observation symbols were divided into the following four hidden 

states: 

State 1: verb, adverb, pronoun 

State 2: noun 

State 3: adjective, interjection 

State 4: preposition, conjunction 

 



 

Model 6: 4 states, 9 observation symbols  

At the end of the training process we found the observation symbols were 

separated into these four hidden states: 

State 1: verb, adverb, pronoun 

State 2: noun 

State 3: adjective, interjection 

State 4: preposition, conjunction, period 

 

We empirically determined that the Models 4 and 6 can be used in solving 

Problem 1 of HMM--determining the probability of observing a certain sequence, 

given a model.  In the case of our test for "Englishness" the Models 4 and 6 can 

be used to determine the probability that an observed sequence is English. 

 

 

Using HMM to Identify English 

 

After training our model on English texts, we can use it to determine the 

probability that a given text is English.  In other words, given the model λ = (A, B, 

π), and an observation sequence O, we want to find probability P(O | λ).  The 

following procedure was used: 

1. Prepare the observation sequence, using as input the text that we want to 

test for "Englishness".  The observation sequence is prepared by 



 

classifying each word of the input as belonging to a certain word group 

(e.g. noun, verb, adjective, …). 

2. Initialize the matrices A, B, and π to the values that matrixes A, B, and π 

converged to during the training of the model being used. 

3. Compute αt(i) as follows: 

for i  = 0, 1, … N - 1 

α0(i) = πi bi (O0) 

for i  = 0, 1, … N - 1 and t = 1, 2, …, T-1 

αt(i) = [ Σj=0 to N-1 αt-1(j) aji ] bi (Ot) 

4. Compute P( O | λ): 

P( O | λ) = 1 - Σi=0 to N-1 αT-1(i) 

 

 

We verified, using a variety of texts, that our technique reliably classifies a given 

text as English or not English.  For example, when using Model 4 (as discussed 

above), which uses 3 states and 9 observation symbols, our test for 

"Englishness" gives the following results: 

• For English texts, P(O | λ) is, on average, 0.97 and in no case worse than 

0.94.   

• For texts consisting of English words in random order, P(O | λ) is, on 

average, 0.68 and never more than 0.72. 

 



 

From those results we see that our word substitution method described above is 

highly vulnerable to this HMM test.  We explained earlier that the word 

substitution method would pass Shamir's test for entropy.  It would, however, fail 

this more sophisticated HMM test which incorporates some of the structure of 

English.   

 

We will now proceed with developing a ciphertext hiding technique, which 

transforms encrypted data into a text that can pass the HMM test for 

"Englishness". 

 

 

Syntactical Substitution 

 

To transform random data into a more "English-like" text, some English syntax 

rules need to be followed when choosing a proper word from a dictionary to 

replace the bits of random data.  Thus when developing a method that 

transforms data into text that looks like English, we first determined what rules 

and patterns of English language our transformed data should follow.  When 

looking at how English sentences are structured we observed certain patterns.  

For example, we saw that often in a sentence we have a noun followed by a 

verb, followed by an adverb.  Or we also often found an adjective being followed 



 

by a noun, followed by a verb.  We took into account these patterns when 

designing a technique for transforming encrypted data into an "English-like" text.   

 

We aimed for simplicity of our data transformation method, and so we empirically 

determined that, when analyzed by our tool for measuring "Englishness", a text 

passes as English when it consists of words in this order: 

 

noun

period

verb

period

verb

noun

adjective

period

adverb

preposition

noun

noun

verb

Start here

OR Start here

OR Start here
 

 
Figure 2.  English text conforming to this pattern passes our HMM test for  

     "Englishness" 
 

 



 

We employed the chart above to develop a method that transforms random data 

into "English-like" text by replacing groups of bits in a way that the resulting text 

follows the pattern below. 

 

noun

period

verb

period

verb

noun

adjective

period

adverb

preposition

noun

noun

verb

Start here

 

 

Figure 3.  Pattern employed in our syntactical substitution method 
 

 

That is, our method starts by replacing bits of random text by a noun, if there are 

still bits of encrypted data left, then it replaces the next group of random bits with 



 

a verb, if there are still bits of encrypted data left, it replaces the next group of 

bits by an adverb followed by a period, and so on.  When transforming random 

data in this way, we need to be able to find the word of the desired word group in 

the dictionary.  For this purpose, our method uses several dictionaries--each of 

the dictionaries contains words belonging only to a certain word group, i.e., we 

have a dictionary of nouns, a dictionary of verbs, a dictionary of adjectives, a 

dictionary of prepositions, a dictionary of adverbs, a dictionary of pronouns, a 

dictionary of interjections, and a dictionary of conjunctions.   

 

 

Syntactical Substitution in More Detail 

 

In this section we show how the ciphertext is transformed into the pattern:  

[noun] [verb] [adverb]. 

 

1. Read in x bits of ciphertext, where  

x = floor(log2 (size of  dictionary of nouns)) 

Calculate D = decimal value of those x bits  

Output Dth word from dictionary of nouns 

2. If unprocessed bits of ciphertext left, read in next y bits of ciphertext, 

where  

y = floor(log2 (size of dictionary of verbs)) 



 

Calculate D = decimal value of those y bits  

Output Dth word from dictionary of verbs 

Else, output period 

3. If unprocessed bits or ciphertext left, read in next z bits of ciphertext, 

where  

z = floor(log2 (size of dictionary of adverbs)) 

Calculate D = decimal value of those z bits  

Output Dth word from dictionary of adverbs 

4. Output period 

5. Make the first letter of the sentence capital. 

 

The transformation of ciphertext into patterns other than "[noun] [verb] [adverb]." 

is implemented similarly.  The number of bits of random data replaced each time 

depends on the size of dictionary that is being used.  For example, if the 

dictionary of nouns contains E entries, then we can transform n bits of encrypted 

data into a noun, where  

n = floor(log2 (E)) 

 

 



 

An Example of Syntactical Substitution 

 

Random data (in hexadecimal) such as:  

FE CC 50 EF 5B D1 F5 60 47 E9 D2 4C 65 40 2E 22 A2 76 3B BF 

 

Might get transformed into a text that looks like this:  

Inverter cicatrize creamily. Insectile curfew refreshen. Cineole earn ex 

hemiparasite. Galley glide nohow. Agrarian.  

 

While this text would not pass human analysis, we show below that it does pass 

both Shamir's entropy test and our HMM test for English.   

 

 

Reversal of Syntactical Substitution 

 

In order to recover the hidden data, the sender and receiver must agree on which 

dictionaries are to be used.  The receiver of the data must also know the pattern 

that was used to hide the ciphertext.  The decryption method is implemented as 

follows: 

1. Read in a word of the received data 

2. Based on the pattern and the dictionaries used, determine, the number 

of bits of random data n that this word hides 



 

3. Find the word in the dictionary for that word type and record its position 

P in the dictionary  

4. The value of P is a decimal representation of the value of n bits, so 

convert P into a binary number of n bits  

5. If all words from the transformed message have not been analyzed, go 

back to Step 1 

 

 

To recover only a certain portion of the ciphertext, it is not necessary to decode 

the entire data.  The bth bit of ciphertext can be recovered as follows: 

1. Determine which word of the transformed data hides the bth bit of the 

ciphertext by adding one by one the numbers of bits each of the 

transformed words hides (following the pattern), until we find:   

b  ≤ sum of bits 

(The last word which bits were added into the sum hides the bth bit) 

2. Based on the pattern used to hide the ciphertext, determine the type of 

the word that hides the bth bit, find it in the appropriate dictionary and 

record its position P in the dictionary 

3. Based on the type of the word, determine n (the number of bits of 

ciphertext that the word hides) 

4. Convert P into a binary number of n bits 



 

5. If (b mod n) = 0, then the desired bit b is the nth (last) bit of the 

recovered n bits, otherwise, the desired bit b is the (b mod n)th bit of 

the recovered n bits 

 

 

Data Expansion 

 

The amount of data expansion associated with our syntactical substitution 

method depends on the size of each of the dictionaries used.  The larger each of 

the used dictionaries, the more bits of random data can be replaced by a 

dictionary word and hence the smaller amount of data expansion.  We need to 

keep this in mind when coming up with new patterns for replacement of random 

bits.  There are, in the English language, far fewer interjections, pronouns, 

conjunctions, and prepositions than nouns, adjectives, verbs, or adverbs.  

Therefore, in order to minimize the amount of data expansion, our patterns for 

random bit replacement should only rarely include interjections, pronouns, 

conjunctions, or prepositions.  See Table 2 for the comparison of dictionaries and 

the expansion associated with their use in our syntactical substitution method. 



 

 

Dictionary 

type 

Dictionary 

size 

Average word length  

(in characters) 

n Expansion  

Noun 29,271 8.1 14 420 

Adjective 10,751 8.7 13 497 

Pronoun 72 5.4 6 753 

Verb 5,290 7.1 12 440 

Adverb 893 7.7 9 673 

Preposition 73 4.6 6 646 

Conjunction 40 6.6 5 1,116 

Interjection 73 4.8 6 673 

 
Table 2.  Dictionaries available for syntactical substitution (n is the number of bits  

of ciphertext that can be replaced by a dictionary word.  Expansion 
includes space or period, which is appended to the word during syntactical 
substitution.) 

 

 

As a result, our syntactical substitution that hides ciphertext using the pattern in 

Figure 3 expands data by about 460% of its original size.   

 

 

Entropy of Transformed Data 

 

To determine whether our syntactical substitution method would defeat 

automated tools that filter out ciphertext, we measured the entropy (using 

Shamir's approximation) of the transformed data.  Our measurements show that 



 

on average, a window of 64 bytes of data transformed by this technique contains 

about 25 unique byte values.  Recall that a window of 64 bytes of structured data 

contains about 26 unique byte values.  Therefore, the entropy of the transformed 

data is very close to the entropy of structured data and so it is unlikely that the 

transformed data would be filtered out by automated random data detection tools 

based on an entropy calculation.   

 

 

HMM Test of Syntactical Substitution 

 

To verify the effectiveness of our syntactical substitution method, we used the 

HMM test for "Englishness" to determine how close the transformed ciphertext is 

to English.  Our tests show that using this method, the probability of the 

transformed text being English is, on average, calculated to be 0.97, which 

matches the results we found for legitimate English text.  That means that our 

syntactical substitution technique for a random data transformation produces 

data indistinguishable from English using either Shamir's measure of entropy or 

our HMM test for English. 

 

 



 

Summary of Results 

 

The tables below summarize our findings related to our methods for ciphertext 

hiding. 

 

Data  Entropy 

Random data 58 

English text 26 

Base-64 encoded random data 42 

Base-64 encoded English text 36 

Data generated by our word substitution method 24 

Data generated by our syntactical substitution method 25 

 
Table 3.  Entropy of data (using Shamir's approach of measuring entropy) 
 
 
 
 

Data  Probability of the transformed text 
being English (on average) 

English text 0.97 

Data generated by our word 
substitution method 

0.68 

Data generated by our syntactical 
substitution method 

0.97 

 
Table 4.  "Englishness" of the transformed data (using our HMM test for English)  
 

 

 



 

Conclusion 

 

We explained that it is often desirable to hide the existence of an encrypted 

communication.  We then discussed Shamir's entropy approximation, which 

provides an efficient test to automatically detect ciphertext.  This is due to the 

high entropy of ciphertext as compared to plaintext data.  We then discussed a 

simple word substitution method of converting ciphertext into data with less 

entropy.  This technique would avoid automated screening based on an entropy 

calculation. 

 

We then presented an approach, based on a Hidden Markov Model (HMM), 

which was able to defeat the word substitution method.  By including English 

syntactical information into our transformation tool, we were able to defeat this 

HMM detection tool.  That is, our syntactical substitution method converts 

ciphertext into transformed text that is sufficiently "English-like" to overcome a 

simple entropy calculation as well as a more sophisticated HMM analysis.   

 

Of course, this is only the beginning of an "arms race".  The next step would be 

to build an analysis tool that can automatically detect that the output of our 

syntactical transformation tool is not sufficiently "English-like".  Then we could 

attempt to design a more effective transformation tool so that its output would not 

be detected by this new detector, and so on.  However, at each iteration the cost 



 

of detection is likely to be significantly higher that at the previous level.  If we can 

drive the cost up sufficiently high, then we will have made large-scale automated 

detection impractical.   
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