METAMORPHIC SOFTWARE FOR BUFFER OVERFLOW MITIGATION
A Thesis

Presented to

The Faculty of the Department of

Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Xufen Gao

May 2005

(2005

Xufen Gao

ALL RIGHTS RESERVED

ABSTRACT

METAMORPHIC SOFTWARE FOR BUFFER OVERFLOW MITIGATION

By Xufen Gao

Today, buffer overflow is the most frequently exploited security vulnerability in computer systems. Our project presents an approach for reducing the severity of buffer overflow vulnerabilities by embedding software transformations in assembly code. In this method, we generate unique instances of software, each of which has the same functionality but different internal structure.

In this project we first give an overview of buffer overflows and metamorphic software, which are the basic concepts related to our project. We then present example to illustrate the feasibility of our technique. We also provide empirical evidence of the effectiveness of this approach in reducing the severity of buffer overflow attacks.

Keywords: metamorphic software, buffer overflow, software transformation, assembly code.

ACKNOWLEDGEMENTS

I would like to thank Dr. Mark Stamp for his guidance, patience and insights without which my project would not have been possible.

Table of Contents

11
Introduction

42
Buffer Overflow

42.1
What Is Buffer Overflow?

42.1.1
Buffer

52.1.2
Stack

92.1.3
Buffer Overflow on Stack

123
Possible Buffer Overflow Defenses

133.1
Writing Correct Code

143.2
Non-executable Stacks

143.3
Array Bounds Checking by Compiler

154
Software Uniqueness

154.1
Code Transformation

164.2
Taxonomy of Code Transformation

164.2.1
Inserting NOP Instructions

164.2.2
Inserting JUMP Instructions

174.2.3
Logical And Arithmetic Instructions

174.2.4
Using PUSH and POP Instructions

175
Metamorphic Software Implementation

185.1
Source code – HelloWorld.c

215.2
Metamorphism using Code Transformations

225.2.1
Inserting NOP Instructions

235.2.2
Inserting JUMP Instructions

235.2.3
Using Logical Instructions

245.2.4
Using Arithmetic Instructions

255.2.5
Using PUSH and POP Instructions

256
Automatic Transformation Tools

266.1
tranxTool.c

286.2
proj.bat

297
Effectiveness in Reducing the Severity of Buffer Overflow Attack

338
Program Execution Performance Test

359
Conclusion

3510
References

3611
Appendix A

3611.1
HelloWorld.c

4011.2
bobcat.h

4011.3
bobcat.c

4311.4
tranxTool.h

4411.5
tranxTool.c

5711.6
ATM.c

6411.7
betterATM.c

7111.8
bubbleSort.c

7212
Appendix B

7212.1
Transformation Type List

7312.2
proj.bat

List of Figures

5Figure 1 Organization of Process in Memory [5]

8Figure 2 A Program Example with A Function

9Figure 3 Stack Organization of foo

9Figure 4 The Result of Inputting A Correct Serial Number for bo.exe

10Figure 5 The Result of Inputting A Wrong Serial Nuber for bo.exe

10Figure 6 Result of bo.exe After Buffer Overflowed

11Figure 7 The Stack Organization of foo After Buffer Overflowed

11Figure 8 bo.exe Attack Result

11Figure 9 The Stack Organization After Attack bo.exe

12Figure 10 bo.exe Disassembled by IDA Pro

19Figure 11 Execute helloWorld.exe with A Correct Password

19Figure 12 Execute helloWorld.exe with An Incorrect Password

19Figure 13 Function login() in helloWorld.c

20Figure 14 Stack Organization of login()

20Figure 15 helloWorld.exe Disassembled by IDA Pro

21Figure 16 Attack Result of helloWorld.exe

29Figure 17 ms.log File Segment

31Figure 18 Effectiveness Experiment Results

34Figure 19 Performance Experiment Results

List of Tables

23Table 1 Code Comparison of Inserting NOP Instructions

23Table 2 Code Comparison of Inserting JUMP Instructions

24Table 3 Code Comparison of Inserting Logical Instructions

24Table 4 Code Comparison of Inserting Arithmetic Instructions

25Table 5 Code Comparison of Inserting PUSH/POP Instructions

30Table 6 Effectiveness Experiment Results

34Table 7 Performance Experiment Results

1 Introduction

Buffer overflow has been called the “attack of the decade”, and it is widely agreed that buffer overflow attacks remain the most commonly exploited vulnerability in computing systems today [1]. A buffer overflow generally occurs due to a programming flaw that allows more data to be written to a buffer than the buffer was designed to hold. As a result, the memory following the buffer is overwritten. This overflow can overwrite useful information, but what makes these attacks particularly damaging is that an attacker can often overflow the buffer in such a way that code of the attacker’s choosing executes on the victim’s machine. Such buffer overflow attacks are somewhat delicate, and developing such an attack is usually time-consuming, and requires a significant amount of trial and error. In this project, we provide a method that takes advantage of these factors in order to reduce the likelihood of a widespread buffer overflow attack.

Software uniqueness, or metamorphism, is the process of transforming a piece of software into unique instances. In this research, we require that all metamorphic instances have the same functionality, but that each version has a different internal structure. The paper [4] includes a general discussion of the potential benefits of metamorphic software, as well as techniques to generate metamorphic software from source code. Here, we focus specifically on the impact of metamorphism on buffer overflow attacks.
Consider the following analogy between software and a biological system. In a biological system, a large percentage of the population will survive when attacked by a disease. This is due, in part, to the genetic diversity of the population. Software, on the other hand, tends toward a monoculture, and as a result, a successful attack on one instance of a software program will succeed on every instance. It has become fashionable to theorize that metamorphic software will provide a degree of “genetic diversity” and thereby provide software a similar degree of protection as is found in biological systems [9,10]. However, little empirical evidence has been provided to date.

To test the effectiveness of metamorphic software, we have created four software applications each of which contains an exploitable buffer overflow vulnerability. If we simply clone software into multiple instances—as is standard practice today—then the same attack will be effective against all cloned copies. On the other hand, if we generate metamorphic copies of the software instead of cloned copies, then an attack designed for one specific instance of the software will only work against some percentage of the copies. In order to attack all metamorphic copies, an attacker would need to produce multiple attacks. As a result, software uniqueness may have significant security value in reducing the overall severity of a buffer overflow attack.

Our project’s goal is to estimate the effectiveness of metamorphic software in reducing the overall damage caused by a buffer overflow attack. It is important to note that each metamorphic instance of our software will almost certainly still contain a buffer overflow vulnerability, and that a large percentage of these will remain exploitable. However, an attack designed for one instance of the software will not necessarily work on other instances. We show below that this simple defense is highly effective at reducing the chance of a successful attack. As a result, an attacker would have to do a great deal more work and develop multiple attacks in order to inflict widespread damage. Note that metamorphism is not designed to make it any more difficult to attack one specific instance, but instead it is designed to limit the number of instances that are vulnerable to a specific attack. In a sense, the goal of metamorphism is somewhat analogous to that of a vaccination against a specific pathogen.

In this project, we present a method based on applying metamorphism at the assembly code level. This method results in metamorphic copies of a piece of software, with each transformed copy having an identical function as the original code, but containing a distinct internal code implementation. Since the original code contains an exploitable buffer overflow, this flaw almost certainly persists in the metamorphic copies.

In this paper, we begin with a discussion of the concept of “buffer overflow” and we discuss the main buffer overflow defenses that are presently used. We then introduce a software uniqueness scheme for buffer overflow protection. We present the implementation of our project, including examples of source code containing buffer overflow vulnerabilities and our automatic transformation tool. We analyze the effectiveness our technique in reducing the severity of buffer overflow attack. We conclude with experimental results that show the impact of our technique on program performance.

2 Buffer Overflow

In November 1988, the “Morris worm”, attacked VAX and Sun machines and prevented a great number of users from accessing machines via the Internet. In July 2001, the “Code Red” worm successfully exploited more than 300,000 computers that used Microsoft’s IIS Web Server. In January 2003, another worm, “Slammer”, attacked Microsoft SQL Server 2000. Slammer crashed parts of the Internet in South Korea and Japan, interrupted Finnish phone system, and slowed down the U.S. networks for airline reservation as well as credit card transaction [13]. All these attacks exploited buffer overflow vulnerabilities. Although computer technology has advanced, the buffer overflow vulnerability remains a major problem. Moreover, with the increasing number of computers used in daily life, buffer overflow attacks have the potential to do even greater damage.

The following section gives a detailed description of a buffer overflow attack.

2.1 What Is Buffer Overflow?

Before we study buffer overflow attacks, we first provide some basic definitions.

2.1.1 Buffer

In computer science, a buffer is usually a contiguous computer memory block to store data of the same type [6]. This data can be integers, floating points, characters, or even user defined data types. In most computer languages, a buffer is represented as an array.

2.1.2 Stack

In computer memory, a process is organized into four regions: text, data, heap and stack [6]. These regions are located in different places and have different functionalities. Figure 1 shows the organization of a process in memory. Although all of them are important, we only give a brief introduction of the text, data and heap regions. We focus on the stack region, which is the key region related to the buffer overflow vulnerability discussed in this project.

[image: image10.wmf]0

5

10

15

20

0

10

20

30

40

Density

Slow Down (%)

bubbleSortTranx.exe

Figure 1 Organization of Process in Memory [5]

The text region stores instructions and read-only data. Typically, the text region is designed to read instead of write and any writing attempt will cause a segmentation violation. The data region consists of initialized and uninitialized data. Its size is not fixed. The heap is the memory location reserved for the dynamic memory allocation. A Buffer overflow can also happen on heap, but it is more complex to exploit than a stack-based buffer overflow.

A stack is a widely used abstract data type in computer science. A stack has the unique property of last in, first out (LIFO), which means that the object that is placed in last will be moved out first. There are many operations associated with a stack, of which the most important are PUSH and POP. PUSH puts an element on the top of the stack and POP takes an element from the top of the stack. The kernel dynamically adjusts the stack size at run time [6].

Modern computer languages are high-level. Such languages apply functions or procedures to change a program’s execution flow. In a low-level language (such as assembly), a jump statement changes program flow. Unlike jump instruction, which jumps to another place and never go back, functions and procedures will return control to the appropriate location in order to continue the execution. The stack is used to achieve this effect. More precisely, in memory, a stack is a consecutive block that contains data, which can be used to allocate the function’s local variables, pass function’s parameters, and return a function’s result.

In memory, the stack boundary is represented by the Extended Stack Pointer (ESP) register. The ESP points to the top of the stack. In most of architectures, including Intel Architecture 32bit (IA32), the ESP points to the most recently used stack address. In other architectures, the ESP points to the first address that is free. When a PUSH or POP instruction is used to add or remove data, respectively, the ESP moves to indicate where the new top of the stack is in memory. Based on the different implementations, the stack can either grow down toward the lower memory addresses or up toward the higher memory addresses. In this report, we assume that the stack grows down since this is the method commonly used by Intel, Motorola, SPARC and MIPS processors. As a result, when a PUSH instruction is executed, ESP decreases; in contrast, when a POP is called, ESP increases [3].

The Extended Base Pointer (EBP) register is designed to store the original ESP value because the value of the ESP register changes during the program execution. Since the EBP register points to a fixed location, it is often used to reference both local variables and function parameters. Because of the way the stack grows, conventionally, a parameter has a positive offset and a local variable has a negative offset.

Figure 2 demonstrates a simple C program, bo.c, which contains a function called foo that illustrates what happens in the stack when a function is called.

Here, when foo is called, there are four steps that need to be done in the stack [3].

(1) PUSH the parameters x and y of the function foo backwards onto the stack.

(2) The return address, RET, is put into the stack. RET stores the value of Extended Instruction Point (EIP), which contains the address of next machine instruction to be executed. Once the execution of the foo function has completed, execution returns to the instruction address stored in RET. In our example, the instruction address of return 0 is stored in RET.

[image: image11.wmf]y

x

4^p@

array

High Memory Addresses and Bottom of Stack

Low Memory Addresses and Top of Stack

Figure 2 A Program Example with A Function

(3) Before executing instructions in foo, the prolog is executed. During the prolog process, register EBP is first pushed into stack with the current value. Then, the value of ESP is copied into EBP. Now, the addresses located on the stack can be referenced easily by EBP. Finally, the prolog calculates and reserves the address space required for the local variables in foo.

(4) Finally, any local variable in foo (in the example in Figure 2, array) is pushed onto the stack.

Figure 3 shows the stack organization when foo is called. Here, we do not show the EBP register because the prolog is not automatically turned on in the compiler. For simplicity, we leave the prolog turned off for this project.

[image: image12.wmf]RET

pw

[0]

pw

[1]

….

….

pw

[18]

pw

[19]

High Memory Addresses and Bottom of Stack

Low Memory Addresses and Top of Stack

ui

[0]

….

….

ui

[7]

Figure 3 Stack Organization of foo
2.1.3 Buffer Overflow on Stack

In languages like C and C++, there is no build-in mechanism for buffer boundary checking and consequently, the task of bounds-checking falls to the programmer. If a C language developer allows more data to be copied to an array than it can hold, the data will fill the array and overwrite the contents following the array. The program will compile but might crash or otherwise behave badly when it is executed.

An attacker can sometimes take advantage of a buffer overflow flaw. To illustrate the concept of a buffer overflow attack, we use the example C program bo.c discussed above. When bo.exe is executed, it prints out message “Serial number is correct.” after the user inputs the correct serial number “S123”. Otherwise, program terminates without

[image: image1.png]C:\thesis\cs297report\example\Release>bo
Enter Serial Number
SES

Serial number is correct.

Figure 4 The Result of Inputting A Correct Serial Number for bo.exe

[image: image2.png]C: \thesis\cs297reporti\exanple\Release>bo
Enter Serial Number
aaaa

Figure 5 The Result of Inputting A Wrong Serial Nuber for bo.exe

a message. Figure 4 shows the output when the user gives the correct serial number. Figure 5 shows the case where the user inputs the wrong serial number.

Now, if we input a string of “A” with the length greater than 8, most of the time we get an error message shown as in Figure 6. This is because we fill array up with 8 bytes of A and overwrite the value of RET. In Figure 6, message shows that the offset is 41414141, which is the hexadecimal representation of AAAA. After foo is executed, bo.exe attempted to jump to this address. However, this address is invalid, which caused program to crash. Figure 7 is the stack organization of foo after the buffer is overflowed.

[image: image3.png]1206/
.
foans o opie0100 Nt wiacm

Fepang e
T i fomaion e ool i e b
i s s e

oo oy et o el o e ol
e e e R

e ol lon e Ao ot s it ol v

Bemlae e

thesis\ce29Treportiexanple\Relessesbo
cntor Sorial Numbor

Figure 6 Result of bo.exe After Buffer Overflowed

[image: image13.png]toxt
toxt.
toxt
text
toxt
toxt.

toxt.

toxt

text.
toxt.
text.

toxt

text.

toxt

text.

toxt

text.

toxt

00401017
ooso101C
0040101E
00401022
60401027
00401025
60401020
00401030
0401032
00401034
00101039
0040103E
041041
00401641
ooue1o1
0401044
0040104
040108

Toc 40104

<ub_401000

call
puch
Tea
puch
push
call
add
test
jnz.
push
carl
add

add
rotn

endp

—scent.
i sizet
ocx, [osp*isheuar 5]
offiet asizs : char x
oo + char x
_strneap

osp, 130

Short 1oc_uo10u1
offset aSeriallumberls ; “\nSorial nusber is correct.\nin’
printr
osp. 4

| CODE XREF: oub_401000+321j
esp. 8

Figure 7 The Stack Organization of foo After Buffer Overflowed
A hacker can carefully design a buffer overflow attack in such a way to execute the attacker’s chosen code. When we run bo.exe input “AAAAAAAA4^P@”, bo.exe will run fine even though the buffer array in foo is overflowed and tells us that the serial number is correct. Figure 8 is the result with a “serial number” of “AAAAAAAA4^P@”.

[image: image4.png]C:\thesis\cs297reportiexample\Release>bo
Enter Serial Number
nnnnARaAL PR

Serial number is correct.

Figure 8 bo.exe Attack Result
[image: image14.wmf]AAAA

AAAA

AAAA

array

High Memory Addresses and Bottom of Stack

Low Memory Addresses and Top of Stack

Figure 9 The Stack Organization After Attack bo.exe
Figure 9 is the memory stack organization for foo after bo.exe is attacked. From this figure, we can see that RET now holds a value of 4^p@. In order to understand how this attack works, we use a disassemblier, IDA Pro, to obtain the assembly code from bo.exe. A segment of the result is shown in Figure 10. From Figure 10, we see that the instruction address of “Serial Number is Correct.” is 00401030, which is the hexadecimal representation of @^P4. Because X86 processor is little endian, the byte order is reversed. Thus, 4^P@ is stored in RET. By using this approach, attackers can control what gets loaded in RET and therefore change the execution path to their desired code. Indeed, attackers use similar techniques to get root privileges, cause denial of service [3], and gain partial or whole control of a host.

[image: image15.wmf]y

x

RET

array

High Memory Addresses and Bottom of Stack

Low Memory Addresses and Top of Stack

Figure 10 bo.exe Disassembled by IDA Pro

The above attack occurs when used to overwrite the return address of the function. This buffer overflow attack is called a stack smashing attack [6]. But, buffer overflows can also occur on the heap. In this project, we focus on the stack buffer overflow.

3 Possible Buffer Overflow Defenses

Since buffer overflow is the most serious vulnerability in computer security, many computer scientists have been working on it trying to solve the problem. Presently, there are three common ways to defend against buffer overflow vulnerabilities and exploits: writing correct code, non-executable buffers, and array bounds checking by the compiler. Although these can prevent buffer overflow vulnerabilities to a certain degree, they are not cure-alls. There are disadvantages in each approach, as discussed below.

3.1 Writing Correct Code

In order to prevent buffer overflow attacks, the first line of defense is to carefully write code to ensure there are no buffer overflow vulnerabilities. However, this is surprisingly difficult, especially in a language like C.

C language programmers have been advised to use more secure functions, such as strncpy rather than strcpy. Nevertheless, the C language is subtle and such “safer” code can still contain buffer overflow vulnerabilities.

Moreover, the C language is error prone and favors performance over correctness. Although programmers have been trained to write secure programs, vulnerable code is still prevalent. Under these circumstances, some tools, like Splint and ITS4 [14], have been developed to help programmers to write code with less potential buffer overflow problems. Although these tools are helpful in developing more secure software, they are not mature enough. They cannot eliminate all buffer overflow vulnerabilities; and, they cannot find all buffer overflow flaws [1].

3.2 Non-executable Stacks

Many of the most devastating buffer overflow exploits work because the attacker can execute instructions on the stack. To prevent this attack, some operating systems, such as Solaris, OpenBSD, and Windows XP Service Pack 2, can forbid programs from executing codes on the stack. This protection can reduce the number of buffer overflow attacks.

But, some illegitimate code does not execute on the stack. In addition, some buffer overflow attacks do not need to execute code on the stack. For example, instead of returning control to the instruction on the stack, attackers are able to force the function to return to a dynamic library function address that is located outside the stack. A non-executable stack would have no effect on this attack [3].

3.3 Array Bounds Checking by Compiler

A compiler primarily contains array bounds checking is another option for preventing some buffer overflow problem. This approach has been applied in some compliers, such as Compaq C Compiler, Jones & Kelly and Purity [1].

Unlike non-executable buffers, array bounds-checking completely prevents buffer overflow vulnerabilities. However, since it checks all reads and writes to arrays, its impacts performance.

In summary, although there are ways to prevent buffer overflow attack, they all have limitations. None of these approaches is an ideal solution to the problem.

4 Software Uniqueness

As mentioned above, software uniqueness, or metamorphism, is the process of transforming a piece of software into unique versions. All of these versions have the same functionality but each version has different internal structure. Metamorphism has received considerable attention from virus and malware creators who see it as an effective way to avoid signature-based detection. However, it has also been conjectured that metamorphism may be of significant benefit in protecting systems from attack as well. In this project, we provide empirical evidence of the effectiveness of this mechanism in reducing the severity of buffer overflow attacks.
4.1 Code Transformation

To achieve metamorphism, the key task is to apply code transformations to the original source code to generate various unique versions. Such transformations must be carefully chosen so that the function of the code does not change. To prevent buffer overflow attacks, we need to embed transformations that will change the address of some particular instruction, which we call the targeted instruction. We define the targeted instruction as the one that the attacker attempts to jump to by overflowing the buffer. In principle, transformations can be used in any languages, either high-level or low-level. In order to have more fine-grained control over the transformed code, we have applied our transformations to assembly code.

4.2 Taxonomy of Code Transformation

There are many different potential code transformation types. But care must be taken in order to fulfill our goal of changing the targeted instruction address while leaving the program function unaltered. The following are transformations that we employ in our implementation.

4.2.1 Inserting NOP Instructions

NOP means “no operation”. It is a dummy instruction that has no effect on a program’s functionality. NOP instructs the CPU to skip this instruction [2]. It is usually used as an explicit “do nothing” instruction after a then or else statement to delay the execution of instructions. Inserting a large number of NOP instructions might adversely affect program performance. But in our implementation, only a small number of NOP instructions can be inserted.

4.2.2 Inserting JUMP Instructions

JUMP is an assembly language instruction that takes a memory address as an argument. In assembly language, this argument is specified as a label. The JUMP forces the execution path to the specified address. We use the JUMP to change the targeted instruction address but leave the program flow unchanged. The way we accomplish this is to add a JUMP statement to the very next instruction following the insertion point [11].
4.2.3 Logical And Arithmetic Instructions

There are many logical instructions that leave the register value unchanged. One obvious technique is to OR (or XOR) a register value with 0. Another example is to NEG the value two consecutive times. In a similar manner, we can use arithmetic instructions for transformation. There are many such approaches available including ADD/SUB and INC/DEC pairs of instructions. For example,

INC eax

DEC eax

adds 1 then subtracts 1 to the value of the eax register.

4.2.4 Using PUSH and POP Instructions

PUSH and POP are two commonly used instructions in assembly language. The PUSH instruction puts the register value onto the stack and POP returns a value from the stack. It is feasible to insert a PUSH/POP pair as a transformation to change the targeted instruction address. One of the examples we use in our implementation is

PUSH eax

MOV eax, 2CH

POP eax

5 Metamorphic Software Implementation

Metamorphism has been suggested as a way to provide software protection in analogy to biological systems. However, little, if any, empirical evidence has been given to support this position. Our project’s goal is to prove the feasibility of metamorphism as a technique to mitigate in buffer overflow attacks. In order to illustrate our metamorphic software method, we implemented a C language program, named helloWorld.c, which contains an exploitable buffer overflow vulnerability. The original source code of helloWorld.c is listed in Appendix A. We generated five different transformed versions of helloWorldTranx.exe according to the code transformation approaches we presented in the previous section. We also tested all these versions using the original attack method and none of the transformed versions could be exploited.

In the following sections, we give a more detailed explanation of our implementations. Again, we must point out that metamorphic software is not a way to completely eliminate buffer overflow vulnerabilities; instead, it is designed to make the attacker’s job more difficult.

5.1 Source code – HelloWorld.c

The C program helloWorld.c is a modified version of classic “Hello World”, which contains a buffer overflow vulnerability. Our helloWorld.c authenticates the user by requiring a username and password before printing the “Hello World!” message. The authentication is achieved via hashing the password using bobcat.c (source code is listed in Appendix A), which is implemented by Dr. Mark Stamp. The username/hashed password pair is compared to values stored in the password file password.txt. Figure 11 shows an execution result of helloWorld.exe with the correct password. Figure 12 shows a result with an incorrect password.

[image: image5.png]C:\thesis\cs298\hello>hellollorld
Enter the user ID: Alice
Enter the password: wonderland

Hello World!

Figure 11 Execute helloWorld.exe with A Correct Password

[image: image6.png]C:\thesis\cs298\hello>hellollorld
Enter the user ID: Alice
Enter the password: 1234

login failed.
incorrect password.

Figure 12 Execute helloWorld.exe with An Incorrect Password
The authentication routine of helloWorld.c, which appears in Figure 13, contains a buffer overflow flaw. The array pw stores the password given by the user. Note that there

[image: image16.wmf]Text

(

Uninitialized

)

Data

(Initialized)

Heap

Stack

Low Memory Address

High Memory Address

Figure 13 Function login() in helloWorld.c

is no bounds check to verify that the entered password will fit within the 20 bytes allocated for array pw.

Figure 14 is a simplified illustration of the stack when function login() is executed. If an attacker inputs a password string longer than the buffer size, the return address will be overwritten. After disassembling the executable, and with some trial and error, an attacker can overwrite the return address with the address where “Hello World!” is printed. This allows the attacker to effectively bypassing the authentication procedure.

Figure 14 Stack Organization of login()

[image: image7.png]E DA View-A

:0040143F pop esi
100401440 retn -
OOHOTHAT ¢ = o
100401441
00401441 loc_401441: ; CODE XREF: _main+171j
00401441 push offset aHellollorld : "Hello Worldt\n"
00401446 call _printf
00401448 add esp, 4
0040144E xor eax, eax
00401450 pop esi
* 100401451 retn
100401451 _nain endp
100401451
100401452
100401452 SUBROUTINE
100401452
100401452
100401452 sub_401452 proc near ; CODE XREF: sub_40107C+15
<

Figure 15 helloWorld.exe Disassembled by IDA Pro

[image: image8.png]C:\thesis\cs298\hello>hellollorld

Enter the user ID: Alice

Enter the password: AAAARAARRARARAARAAARAA"TE
Hello lWorld?

Figure 16 Attack Result of helloWorld.exe

Figure 15 gives a segment of helloWorld disassembled by IDA Pro. In helloWorld.c, we use “AAAAAAAAAAAAAAAAAAAAA^T@” as our attacking string. In Figure 16,

we successfully attacked helloWorld.exe. For a more detailed discussion, including buffer overflow examples, see [8].

5.2 Metamorphism using Code Transformations

In this section, we will show how to generate unique versions of helloWorld.c by using code transformations. Here, we utilized the five transformations we have illustrated in the previous section. In every test, we only insert one transformation to demonstrate the metamorphism mechanism. Of course, we can insert multiple transformations and we will do so in the next section.

In our project, we employ four steps to generate metamorphic software. During the transformation process, we first compile helloWorld.c to obtain an assembly code file, helloWorld.asm. There are various compilers available and they generate different assembly files. In our experiments, we used Microsoft 32-bit C/C++ Optimizing Compiler Version 12.00.8168. The following are a list of our four steps and a brief description for each step.

· Give the command:

 cl /nologo /c /Fa /O2 helloWorld.c

 cl /nologo /c /Fa /O2 bobcat.c

These commands compile helloWorld.c and bobcat.c to obtain an assembly code file helloWorld.asm.

· Insert code transformations

We add transformations into the original helloWorld.asm to create a new transformed helloWorld.asm file.

· Give the command:

ml /nologo /c /coff helloWorld.asm

This command compiles the program but does not link.

· Give the command:

link /nologo /DEFAULTLIB:LIBC.LIB /SUBSYSTEM:CONSOLE /machine:I386 /out:helloWorldTranx.exe helloWorld bobcat

This command links files and generate a new helloWorldTranx.exe file, which is one of the metamorphic versions of helloWorld.c.
We repeat the steps above N times to generate N versions with different transformation types. The next five sections give more details for each transformed version.

5.2.1 Inserting NOP Instructions

To insert NOP instructions, we simply add three lines of NOPs into the assembly code helloWorld.asm. Table 1 compares the assembly code before and after inserting this code transformation. After inserting NOP instructions, the original attack does not work because the targeted instruction address has changed.

	Original helloWorld.asm
	Transformed helloWorld.asm

	_TEXT
SEGMENT

_pw$ = -20

_ui$ = -28

_login
PROC NEAR

; COMDAT

; File helloWorld.c

; Line 35

 sub
esp, 28
; 0000001cH

; Line 36

xor
ecx, ecx
	_TEXT
SEGMENT

_pw$ = -20

_ui$ = -28

_login
PROC NEAR

; COMDAT

; File helloWorld.c

; Line 35

 NOP ; three lines of NOPs are added

 NOP

 NOP

 sub
esp, 28

; 0000001cH

; Line 36

xor
ecx, ecx

Table 1 Code Comparison of Inserting NOP Instructions

5.2.2 Inserting JUMP Instructions

In order to insert JUMP instruction to change the targeted instructions address but keep the program flow unchanged, we simply added a JUMP to the next instruction.
Table 2 shows the difference between the original helloWorld.asm and transformed helloWorld.asm. After inserting this JUMP instruction, the original attack also failed.
	 Original helloWorld.asm
	Transformed helloWorld.asm

	_TEXT
SEGMENT

_pw$ = -20

_ui$ = -28

_login
PROC NEAR

; COMDAT

; File helloWorld.c

; Line 35

sub
esp, 28
; 0000001cH

; Line 36

xor
ecx, ecx
	_TEXT
SEGMENT

_pw$ = -20

_ui$ = -28

_login
PROC NEAR

; COMDAT

; File helloWorld.c

; Line 35

sub
esp, 28
 ;0000001cH

; Line 36

 jmp proc_xor ; JUMP instruction is added

 proc_xor:

 xor
ecx, ecx

Table 2 Code Comparison of Inserting JUMP Instructions

5.2.3 Using Logical Instructions

To demonstrate inserting logical instructions, we XOR an EAX register value with 0. Table 3 shows the helloWorld assembly file segments before and after adding this logical instruction. After embedding this logical instruction, the original attack does not work because the targeted instruction address has changed.

	Original helloWorld.asm
	Transformed helloWorld.asm

	_TEXT
SEGMENT

_pw$ = -20

_ui$ = -28

_login
PROC NEAR

; COMDAT

; File helloWorld.c

; Line 35

sub
esp, 28

; Line 36

xor
ecx, ecx
	_TEXT
SEGMENT

_pw$ = -20

_ui$ = -28

_login
PROC NEAR

; COMDAT

; File helloWorld.c

; Line 35

sub esp, 28
 ; 0000001cH

 xor eax, 0 ; code transformation

; Line 36

xor ecx, ecx

Table 3 Code Comparison of Inserting Logical Instructions

5.2.4 Using Arithmetic Instructions

	Original helloWorld.asm
	Transformed helloWorld.asm

	_TEXT
SEGMENT

_pw$ = -20

_ui$ = -28

_login
PROC NEAR
; COMDAT

; File helloWorld.c

; Line 35

sub
esp, 28

; Line 36

xor
ecx, ecx
	_TEXT
SEGMENT

_pw$ = -20

_ui$ = -28

_login
PROC NEAR ; COMDAT

; File helloWorld.c

; Line 35

sub esp, 28
 ; 0000001cH

 add eax, 42 ; add add/sub pair

 sub eax, 42

; Line 36

xor
ecx, ecx

Table 4 Code Comparison of Inserting Arithmetic Instructions

We can also use arithmetic instructions for transformation. Here, we apply add/sub pair

on an EAX register to add transformations. Table 4 shows the helloWorld assembly code segments before and after using this arithmetic instruction. After adding this transformation, the program crashes when the original attack is attempted.
5.2.5 Using PUSH and POP Instructions

PUSH and POP instructions are potential transformation candidates. To illustrate this code transformation, we inserted a push/pop pair into helloWorld.asm. Table 5 shows the original and transformed helloWorld assembly code segments. The embedded PUSH and POP instructions change the targeted instruction address and therefore prevent the original attack.

	Original helloWorld.asm
	Transformed helloWorld.asm

	_TEXT
SEGMENT

_pw$ = -20

_ui$ = -28

_login
PROC NEAR
; COMDAT

; File helloWorld.c

; Line 35

sub
esp, 28

; Line 36

xor
ecx, ecx
	_TEXT
SEGMENT

_pw$ = -20

_ui$ = -28

_login
PROC NEAR
; COMDAT

; File helloWorld.c

; Line 35

sub
esp, 28

; push/pop instructions are added

push eax

 mov eax, 2CH

pop eax

; Line 36

xor
ecx, ecx

Table 5 Code Comparison of Inserting PUSH/POP Instructions

6 Automatic Transformation Tools

As we mentioned above, the central ideal of software metamorphism is to generate various code versions with the same functionality but different internal structure. This task can be done manually. However, it is time consuming and error prone to do so. Therefore, we have developed some tools to create metamorphic versions automatically.

Our automatic tool contains two parts: a C application program tranxTool.c to insert transformations into assembly code (see Appendix A) and a Windows shell script, named proj.bat (see Appendix B), to create any number of metamorphic executable versions. In the following sections, we give a detailed description of these tools.

6.1 tranxTool.c

The tool tranxTool.c is an application program implemented in C that inserts transformations into the assembly file automatically. When we implemented tranxTool.c, we kept two important issues in mind: diversity and reliability. This means that tranxTool.c should create metamorphic copies with the same functionality.

Reliability is an importance factor in our project. Reliability depends on what kinds of the transformations we insert and we insert these in the appropriate locations.

The selected transformations have to maintain the program’s function. Appendix B lists ten different types of transformations we used in our project. TranxTool.c chooses the types randomly.

The insertion location is another significant issue that affects reliability. A segment is an essential concept of programming in assembly language. In the 8086-based processor family, a segment is a variable-sized block of memory that contains a program’s code, data or the stack [8]. A code segment is a particular section in memory occupied by an executing program’s machine code instructions. The data segment stores both the initialized and uninitialized data. The stack segment contains the called procedure’s parameters and local variables. In order to insert the transformations as well as preserve the meaning of the program, we decided to add transformations only in the code segment. In assembly language programs written with the Microsoft Macro Assembler (MASM) version 6.1, the code segment is enclosed between statement “_TEXT SEGMENT” and “_TEXT ENDS”. Then, tranxTool.c finds out all the code regions and store these regions in an array.

Not all the positions in the code segment are suitable to insert transformations. During testing, we found some limitations. For example, an arithmetic or a logical instruction cannot be put just before a conditional jump statement or after a test statement since it might change the flag-register value [12].

In our project, the purpose of adding transformations is to change the targeted instruction address in memory so that the attack designed for the original executable file will not succeed on the transformed executables. So, adding even a single transformation might work. However, in testing, we found out that embedding too few transformations might fail to prevent the attack because of the higher probability for adding transformations onto improper location, such as after than the targeted instruction address. In the next section, we will give a detailed description of the effectiveness of our approach in reducing the severity of buffer overflow attack relative to various densities of inserted transformations. From the experimental result, we see that the targeted instruction address plays a significant role in effectiveness. However, by increasing the density value, this problem can be overcome. Therefore, tranxTool.c allows the user to choose a density value to indicate how many transformations will be inserted.

The transformation type and insertion location are randomly chosen, so that tranxTool.c has a high probability of creating distinct assembly code versions, each with the same functionality.

6.2 proj.bat

The file proj.bat is a Windows shell script to generate any number of different executable versions and test that they all retain the same primary functionalities. We used helloWorld.c as the source code example in proj.bat.

In proj.bat, we first create an original assembly and an executable files, called helloWorld.asm and helloWorldOrg.exe. helloWorldOrg.exe is susceptible to attack using AAAAAAAAAAAAAAAAAAAAA^T@. There is a loop to generate 100 copies of metamorphic versions of helloWorld.exe. We name these new versions helloWorldTranxN.exe, where N represents number 1 to 100. Finally, we tested these new versions using the correct user name and password pair. Because in tranxTool.c, random numbers are seeded by time, in order to generate the different random numbers, we pause for 2 seconds after each loop.

Since the output of running proj.bat is long, we put the output in the file ms.log. So, to run the proj.bat, we need to use the command

proj.bat > ms.log

at the command prompt. Figure 17 shows a segment of the ms.log file used to create 100 versions of helloWorldTranx.exe each having 3 inserted transformations.

Figure 17 ms.log File Segment

7 Effectiveness in Reducing the Severity of Buffer Overflow Attack

We define the “effectiveness” in reducing the severity of buffer overflow attack as the percentage of the transformed instances that do not succumb to the original buffer overflow attack. Table 6 and Figure 18 show experimental results with density plotted against effectiveness, where density is simply the number of transformations inserted. Note that the effectiveness depends on the density of the transformations. Of course, this is not surprisingly, since a higher density gives us a greater chance of affecting the targeted address. However, it is perhaps surprising that such low densities can provide such high rates of effectiveness.

	Transformed Executables
	boTranx
	helloWorldTranx
	ATMTranx
	betterATMTranx

	Total Line Number
	114
	660
	1255
	1255

	Targeted Instruction Position
	90
	635
	730
	1183

	
	Effectiveness

	Density

	1
	55%
	95%
	67%
	93%

	
	2
	75%
	99%
	82%
	100%

	
	3
	86%
	100%
	94%
	100%

	
	4
	93%
	100%
	95%
	100%

	
	5
	95%
	100%
	96%
	100%

	
	6
	97%
	100%
	99%
	100%

	
	7
	100%
	100%
	100%
	100%

Table 6 Effectiveness Experiment Results
In our testing, we used four C language application programs, each of which contains an exploitable buffer overflow vulnerability. These four programs are bo.c, helloWorld.c, ATM.c and betterATM.c. The source code for each is listed in Appendix A. The program helloWorld.c, which was discussed above, is a modified version of the classic “hello world” program. This program prints “Hello World!” after a successful login. The program bo.c is the simple example shown in Figure 2 and used to illustrate

the concept of a buffer overflow vulnerability. ATM.c is a relatively complicated program. The program betterATM.c has the same functionality as ATM.c but the targeted instructions are located at different positions. For each program, we used tranxTool.exe
[image: image9.wmf]0%

20%

40%

60%

80%

100%

120%

0

1

2

3

4

5

6

7

8

Density

Effectiveness

helloWorldTranx

betterATMTranx

ATMTranx

boTranx

Figure 18 Effectiveness Experiment Results

to randomly insert the transformations and to generate 100 instances. Then we used the original buffer overflow attack to test the 100 metamorphic copies. Figure 18 is the graphic representation of the effectiveness. The red, black, green and blue lines represent the results for transformed helloWorld.exe, betterATM.exe, ATM.exe and bo.exe, respectively. Again, it is encouraging that such low densities can have such a positive impact on the effectiveness.

According to the testing, we conclude that in general, the size of the program is not the crucial factor; but instead, it is the location of the targeted address. That is, if a transformation occurs before the targeted address, then the buffer overflow is highly likely to fail, but if it occurs after the targeted address, then it will have no effect.

In Figure 18, we see that for small densities, boTranx.exe has a much lower effectiveness than helloWorldTranx.exe. This may seem surprising, particularly since bo.c is the simplest of the four programs. bo.c generates only 114 lines in bo.asm, with the targeted instruction is at line 90. In comparison, helloWorld.asm has 660 lines, with the targeted instruction is at line 635. As a result, the percentage of available transformation insertion points in bo.asm that disrupt the targeted address is much lower than the number for helloWorld.asm.

ATM.c and betterATM.c provide additional evidence of the effectiveness of our approach. ATM.c and betterATM.c have the same function, which is to simulate an Automated Teller Machine (ATM). They both have an authentication process similar to that in helloWorld.c. In addition, both support the operations of

· Deposit

· Withdraw

· Quick withdraw

· Check account

· Exit

Both ATM.c and betterATM.c are programmed in slightly unusual ways. We designed ATM.c so that the targeted instruction is near the middle of the assembly code, while the targeted instruction of betterATM.c is near the end of the assembly code file.

From Table 1, we see that ATM.asm and betterATM.asm both have 1255 lines. The targeted instruction is the printed statement “Welcome to The National Virtual Bank!” In ATM.asm, this instruction is at line 730, while in betterATM.asm, it is at line 1183. Because the percentage of suitable transformation insertion positions in ATM.asm is much lower than the number in betterATM.asm, more transformations are needed (on average) for ATMTranx.exe than betterATMTranx.exe.

Clearly, it would be more effective to concentrate transformations “earlier” in the assembly file. However, it is not easy to automatically determine the “early” positions, since the program flow must be analyzed. Since a relatively low density appears to overcome this problem, it may be simpler and more efficient to increase the density slightly, rather than analyze the code more thoroughly.

8 Program Execution Performance Test

A reasonable concern regarding metamorphic software is the impact of metamorphism on program performance. Table 7 and Figure 19 show our experimental results, where we have plotted the density of transformation against the percentage of performance penalty incurred by the transformed program.

For this test, we implemented a bubble sort program, bubbleSort.c, and used it to sort 25,000 integers. The source code of bubbleSort.c is listed in Appendix A. From Table 7 and Figure 19, we see that, as expected, the density affects the performance. However, when the density is low, the impact is minimal. According to these results, when 10 transformations are inserted, the performance only declines by 5.4%. Even after we insert

20 transformations, there is less than 10% degradation. In the Section 7, where we tested
	Density
	BubbleSort.exe Execution Time (second)
	BubbleSortTranx.exe Execution Time (second)
	Slow Down

(%)

	3
	1.689
	1.692
	0.2

	4
	1.685
	1.690
	0.3

	5
	1.685
	1.715
	1.8

	6
	1.690
	1.734
	2.6

	7
	1.690
	1.748
	3.4

	10
	1.679
	1.770
	5.4

	12
	1.682
	1.772
	5.4

	15
	1.693
	1.806
	6.7

	20
	1.692
	1.853
	9.5

	25
	1.681
	1.910
	13.6

	30
	1.680
	1.918
	14.2

	35
	1.681
	1.946
	15.8

Table 7 Performance Experiment Results

Figure 19 Performance Experiment Results

the effectiveness of our approach in reducing the severity of buffer overflow attacks, we concluded that a low density is highly effective. Consequently, it is probably sufficient to insert a few transformations. We therefore conclude that metamorphic software, when used for buffer overflow mitigation, will not dramatically degrade program performance.

9 Conclusion

Buffer overflow has been the most exploited vulnerability for more than a decade. So far, there is no optional way to completely eliminate this attack. The technique of using metamorphic software as discussed in this paper appears to provide a significant security benefit. Although metamorphism will not eliminate buffer overflow vulnerabilities, it can dramatically reduce the severity of any given attack by limiting the number of susceptible instances of software.

Metamorphism has frequently been suggested as a way to provide an increased level of security. Generally, a loose analogy with biological systems and genetic diversity is given as the rationale for this belief. However, little, if any, empirical evidence has been given to support this position. In this project we have provided empirical evidence that metamorphism is indeed valuable for mitigation of buffer overflow attacks.

10 References

[1] Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J. “Buffer Overflow: Attacks and Defenses for the Vulnerability of the Decade.”
http://www.cse.ogi.edu/DISC/Projects/immunix.
[2] Hyde, R. “Art of Assembly Language Programming”, http://maven.smith.edu/~thiebaut/ArtOfAssembly/artofasm.html.

[3] Koziol, J., Litchfield, D., Aitel, D., Anley, C., Eren, S., Mehta, N., Hassell. R. “The Shellcoder’s Handbook: Discovering and Exploiting Security Holes.” Wiley, 2004.

[4] Mishra, Puneet, Mark Stamp. “Software Uniqueness: How and Why.” http://home.earthlink.net/~mstamp1/papers/iccsaPuneet.doc
[5] Ogorkiewicz, M., Frej, P. “Analysis of Buffer Overflow Attacks.” http://www.windowsecurity.com/articles/Analysis_of_Buffer_Overflow_Attacks.
[6] One, A. “Smashing The Stack for Fun and Profit.” http://www.cs.ucsb.edu/~jzhou/security/overflow.html.

[7] Simpson, B. “Microsoft MASM Programmer’s Guide: Assembly-Language Development System Version 6.1.” http://doc.ddart.net/asm/Microsoft_MASM_Programmers_Guide_v6.1.

[8] Stamp, M. Information Security: Principles and Practice, Wiley, 2005.

[9] Stamp, M. “Risk of Monoculture.” Communications of the ACM, Vol. 47, No. 3,

March 2004, p. 120.
[10] “Taking Cues from Mother Nature to Foil Cyber Attacks.” http://www.newawise.com/articles/view/502136.
[11] Thaker, Smita. “Software Watermarking Via Assembly Code Transformations.” http://www.cs.sjsu.edu/faculty/stamp/students/cs298ReportSmita.pdf

[12] Thaker, Smita, Mark Stamp. “Software Watermarking Via Assembly Code Transformations.” http://www.cs.sjsu.edu/faculty/stamp/papers/iccsaSmita.doc

[13] Wheeler, D. “Preventing Today’s Top Vulnerability.”

http://www-106.ibm.com/developerworks/linux/library/l-sp4.html.

[14] Wheeler, D. “Secure Programming for Linux and Unix HOWTO.” http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/tools.html.

11 Appendix A

11.1 HelloWorld.c

/***

* helloWorld.c

*

* helloWorld.c is a modified version of classic "Hello World!" program.

* It authenticates the user by requiring a username and password

* before printing the "Hello World!" message.

*

* helloWorld.c is a C language program that contains

* buffer overflow vulnerability.

*

* Author: Xufen Gao

* Date: December, 2004 ***/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "bobcat.h"

#define SUCCESS_LOGIN 0

#define ERROR_PASSWORD 100

#define ERROR_OPEN_PASSWD 200

#define ERROR_INVALID_ID 300

int verify(char* ui, char* pw);

int login();

void initabc(int abc[]);

/*

 * login() asks user to input the user ID and the password,

 * then call Verify() function.

 *

 * the local variable pw is the buffer that causes the buffer

 * to overflow

 */

int login()

{

 char pw[20] = {0x0000}; // buffer to cause buffer overflow

char ui[8] = {0x0000};

printf("Enter the user ID: ");

scanf("%s", ui);

printf("Enter the password: ");

scanf("%s", pw);

return verify(ui,pw);

}

/*

 * verify() uses bobcat() to hash the password.

 * Then, it compares the user ID and hashed password

 * that user inputs to the data stored in the password.txt file.

 */

int verify(char* ui, char* pw)

{

char userID[8] = {0x0000};

char password[20] = {0x0000};

int x[50] = {0};

unsigned int i = 0;

unsigned int len = 2;

int abc[3] = {0};

char str1[20] = {0x0000};

 char str2[20] = {0x0000};

 char str3[20] = {0x0000};

char hashStr[20] = {0x0000};

unsigned int found = 0;

FILE *f;

/*

 * Use bobcat to hash the password

 */

for (i=0; i<strlen(pw)/2; i++)

{

x[i] = (pw[2*i]<<8) ^ pw[2*i+1];

}

if (strlen(pw)%2 != 0)

{

x[i] = (pw[2*i]<<8) ^ 0x0000;

}

initabc(abc);

for(i = 0; i < len; ++i)

 {

 /* bobcat() does one outer round */

 bobcat(abc, &x[8*i]);

 }

 itoa(abc[0], str1, 16);

 itoa(abc[1], str2, 16);

 itoa(abc[2], str3, 16);

strcat(str1, str2);

strcat(str1, str3);

strcpy(hashStr, str1);

/* open password.txt file and compare the user ID and

 hashed password */

if((f = fopen("password.txt", "rb")) == NULL)

{

printf("\aerror opening password.txt\n");

return ERROR_OPEN_PASSWD;

}

while(!feof(f))

{

fscanf(f, "%s %s\n", userID, password);

if(strcmp(ui,userID)==0)

{

found = 1;

break;

}

}

fclose(f);

if (!found)

{

/* user id not found, print error */

return ERROR_INVALID_ID;

}

if(strcmp(hashStr,password) != 0)

{

return ERROR_PASSWORD;

}

return SUCCESS_LOGIN;

}

int main()

{

int nReturn = SUCCESS_LOGIN;

nReturn = login();

printf("\n");

if (nReturn)

{

printf("login failed.");

switch(nReturn)

{

 case ERROR_INVALID_ID:

printf("\ninvalid user id.\n");

break;

case ERROR_OPEN_PASSWD:

printf("\ncannot open password database.\n");

break;

case ERROR_PASSWORD:

printf("\nincorrect password.\n");

break;

default:

printf("\nunknown error.\n");

break;

}

}

else

{

 printf("Hello World!\n");

}

 return 0;

}

/*

 * initabc() initiates abc[3] to be used in bobcat()

 */

void initabc(int abc[])

{

 abc[0] = 0xface;

 abc[1] = 0xe961;

 abc[2] = 0x041d;

}

11.2 bobcat.h

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// function prototypes

void abcSave(int abc[], int old[]);

void f(int abc[], int zero, int one, int two, int x, int m);

void F(int abc[], int m, int x[]);

void keySchedule(int x[]);

void feedforward(int abc[], int old[]);

void bobcat(int abc[], int x[]);

11.3 bobcat.c

/*

 * Bobcat hash is a hash approach implemented by Dr. Mark Stamp

 *

 * Bobcat is a 48-bit hash modeled on Tiger

 *

 * Bobcat is based on 16-bit words

 * The hash value is (a,b,c), where each is a 16-bit word

 *

 * Message is divided into 128 bit blocks, that is,

 * each block consists of eight 16-bit words.

 * If necessary, pad message with 0's to fill out

 * final block.

 *

 * Bobcat then has the same structure as Tiger:

 * outer round composed of 3 functions, F_5, F_7 and F_9

 * each inner round consists of 8 functions f_m,i

 * (for a total of 24 rounds for each block)

 * a key schedule algorithm is used

 * there are 2 S-boxes, each mapping 4 bits to 16 bits

 *

 * To compile: gcc bobcat.c -o bobcat

 *

 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/*

 * functions

 */

void abcSave(int abc[], int old[]);

void f(int abc[], int zero, int one, int two, int x, int m);

void F(int abc[], int m, int x[]);

void keySchedule(int x[]);

void feedforward(int abc[], int old[]);

void bobcat(int abc[], int x[]);

/*

 * 2 S-boxes, each mapping 4 bits to 16 bits

 */

int sbox[2][16]={{0xd131,0x0ba6,0x98df,0xb5ac,0x2ffd,0x72db,0xd01a,0xdfb7,

 0xb8e1,0xafed,0x6a26,0x7e96,0xba7c,0x9045,0xf12c,0x7f99},

 {0x24a1,0x9947,0xb391,0x6cf7,0x0801,0xf2e2,0x858e,0xfc16,

 0x6369,0x20d8,0x7157,0x4e69,0xa458,0xfea3,0xf493,0x3d7e}};

/*

 * save the abc values at start of F_m

 * (needed for feedforward)

 */

void abcSave(int abc[], int old[])

{

 old[0] = abc[0];

 old[1] = abc[1];

 old[2] = abc[2];

}// end abcSave

/*

 * inner round functions f_{m,i}

 */

void f(int abc[], int zero, int one, int two, int x, int m)

{

 int aa, bb, cc;

 aa = abc[zero];

 bb = abc[one];

 cc = abc[two];

 cc = (cc ^ x) & 0xffff;

 aa = (aa - (sbox[0][cc & 0xf] ^ sbox[1][(cc >> 8) & 0xf])) &

 0xffff;

 bb = (bb + (sbox[1][(cc >> 4) & 0xf] ^ sbox[0][(cc >> 12) & 0xf]))

 & 0xffff;

 bb = (bb * m) & 0xffff;

 abc[zero] = aa;

 abc[one] = bb;

 abc[two] = cc;

}// end f

/*

 * outer round functions F_m

 */

void F(int abc[], int m, int x[])

{

 f(abc,0,1,2,x[0],m);// a,b,c

 f(abc,1,2,0,x[1],m);// b,c,a

 f(abc,2,0,1,x[2],m);// c,a,b

 f(abc,0,1,2,x[3],m);// a,b,c

 f(abc,1,2,0,x[4],m);// b,c,a

 f(abc,2,0,1,x[5],m);// c,a,b

 f(abc,0,1,2,x[6],m);// a,b,c

 f(abc,1,2,0,x[7],m);// b,c,a

}// end F

/*

 * "key" schedule

 */

void keySchedule(int x[])

{

 x[0] = (x[0] - (x[7] ^ 0xa5a5a5a5)) & 0xffff;

 x[1] = (x[1] ^ x[0]) & 0xffff;

 x[2] = (x[2] + x[1]) & 0xffff;

 x[3] = (x[3] - (x[2] ^ ((~x[1]) << 5))) & 0xffff;

 x[4] = (x[4] ^ x[3]) & 0xffff;

 x[5] = (x[5] + x[4]) & 0xffff;

 x[6] = (x[6] - (x[5] ^ ((~x[4]) >> 6))) & 0xffff;

 x[7] = (x[7] ^ x[6]) & 0xffff;

 x[0] = (x[0] + x[7]) & 0xffff;

 x[1] = (x[1] - (x[0] ^ ((~x[7]) << 5))) & 0xffff;

 x[2] = (x[2] ^ x[1]) & 0xffff;

 x[3] = (x[3] + x[2]) & 0xffff;

 x[4] = (x[4] - (x[3] ^ ((~x[2]) >> 6))) & 0xffff;

 x[5] = (x[5] ^ x[4]) & 0xffff;

 x[6] = (x[6] + x[5]) & 0xffff;

 x[7] = (x[7] - (x[6] ^ 0x235689bd)) & 0xffff;

}// end keySchedule

/*

 * add in the old values to produce new a,b,c

 */

void feedforward(int abc[], int old[])

{

 abc[0] = (abc[0] ^ old[0]) & 0xffff;

 abc[1] = (abc[1] - old[1]) & 0xffff;

 abc[2] = (abc[2] + old[2]) & 0xffff;

}// end feedforward

/*

 * compression function (one outer round)

 */

void bobcat(int abc[], int x[])

{

 int old[3];

 abcSave(abc, old);

 F(abc, 5, x);

 keySchedule(x);

 F(abc, 7, x);

 keySchedule(x);

 F(abc, 9, x);

 feedforward(abc, old);

}// end bobcat

11.4 tranxTool.h

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

#define RANGE_SIZE 1000 // maximum array size for possible

 // transformation insertion range

#define MAX_REPEAT 100 // maximum number to insert

 // transformations

#define TRANX_LOWER_BOUND 1 // thansformation must insert beyond

 // this line

#define TRANX0_LINE 5 // line number added for

 // transformation 0

#define TRANX1_LINE 4 // line number added for

 // transformation 1

#define TRANX2_LINE 5 // line number added for

 // transformation 2

#define TRANX3_LINE 3 // line number added for

 // transformation 3

#define TRANX4_LINE 3 // line number added for

 // transformation 4

#define TRANX5_LINE 3 // line number added for

 // transformation 5

#define TRANX6_LINE 4 // line number added for

 // transformation 6

#define TRANX7_LINE 4 // line number added for

 // transformation 7

#define TRANX8_LINE 4 // line number added for

 // transformation 8

#define TRANX9_LINE 4 // line number added for

 // transformation 9

#define TRUE 1

#define FALSE 0

#define LINE_SIZE 2500 // maximum size in a line

#define MAX_NOP 10 // maximum number of NOP instruction

 // inserted

#define MAX_JUMP 2 // maximum number of jump

 // instruction inserted

typedef struct

{

int upper; // upper bound of the range for

 // inserting transformations

int lower; // lower bound of the range for

 // inserting transformations

} range;

typedef struct

{

int pos; // insertion position

int type; // transformation type inserted

} insert_record;

int tranx_insert(int argc, char asm_name[], int density);

void filecopy(FILE *ifp, FILE *ofp);

void insert(int tranx, FILE *fp, int *tranx_upper_bound);

int find_upper_bound(FILE *fp);

range *tranx_insert_range(FILE *f, range rg[]);

int find_real_range_size(range rg[]);

int range_check(int location, range rg[]);

int jump_check(FILE *f, int location);

int directive_check(FILE *f, int location);

int push_check(FILE *f, int location);

int pop_check(FILE *f, int location);

int pre_comment_check(FILE *f, int location);

int next_comment_check(FILE *f, int location);

void update_record(int record_count, int location, int type, insert_record record[]);

void mySort(insert_record record[], int last);

11.5 tranxTool.c

/***

* tranxTool.c

*

* tranxTool.c inserts transformations into assembly code files

* automatically. It selects the transformation types and locations at

* random within certain ranges to insert transformations.

*

* Since tranxTool selects the transformation types and locations

* randomly, every time the tranxTool is executed, it almost certainly

* creates a distinct assembly file. Therefore, the executable files

* generated from these assemblies are almost certainly different.

* To create N unique versions of hello.exe, we repeat the above steps

* N times. Then all transformed executable files are functionally

* equivalent to hello.c, but differ in the internal code

* implementations.

*

* Author: Xufen Gao

* Date: March, 2005 **/

#include "tranxTool.h"

int main(int argc, char *argv[])

{

int density;

if(argc != 3)

 {

 fprintf(stderr, "\nUsage: %s AsmFileName Density\n\n",

 argv[0]);

 exit(0);

 }

density = atoi(argv[2]);

tranx_insert(argc, argv[1], density);

return 0;

}

/* Key function to insert transformations into assembly code file */

int tranx_insert(int argc, char *asm_name, int density)

{

int tranx, location, repeat;

int tranx_upper_bound = 0;

FILE *fp; // helloWorld.asm file

FILE *tf1; // to hole the original

 // helloWorld.asm assembly code

 char line[LINE_SIZE];

int i, j, k;

int tranx0_count = 0;

int tranx1_count = 0;

range rg[RANGE_SIZE];

insert_record record[MAX_REPEAT];

int record_count = 0;

int real_range_size = 0;

/* initialize insertion record */

for(k=0; k<MAX_REPEAT; k++)

{

record[k].pos = -1;

 record[k].type = -1;

}

/*

 generate a random number for number of transformations

 inserted

 */

srand(time (NULL));

repeat = density;

printf("Insert transformation %d time(s).\n", repeat);

/* find the line number of original assembly file */

if((fp = fopen(asm_name, "r")) == NULL)

{

printf("cannot open %s\n", asm_name);

return 1;

}

tranx_upper_bound = find_upper_bound(fp);

 printf("%s has %d lines before adding the transformations.\n\n",

 asm_name, tranx_upper_bound);

fclose(fp);

/* add the transformations */

for(j=0; j<repeat; j++)

{

/*

 open helloWorldasm and helloWorldTemp1.asm for

 copying helloWorld.asm into Temp.asm

 */

if((fp = fopen(asm_name, "r")) == NULL)

{

printf("cannot open %s\n", asm_name);

return 1;

}

if((tf1 = fopen("Temp.asm", "w+")) == NULL)

{

printf("cannot open %s\n", "Temp.asm");

return 1;

}

tranx_upper_bound = find_upper_bound(fp);

rewind(fp);

tranx_insert_range(fp, rg);

real_range_size = find_real_range_size(rg);

 rewind(fp);

 /* generate random numbers for transformation locations */

location = rand()%((tranx_upper_bound+1)-

 TRANX_LOWER_BOUND)+TRANX_LOWER_BOUND;

while((range_check(location, rg) == 0) ||

 jump_check(fp, location) ||

 directive_check(fp, location) ||

 push_check(fp, location))

{

location = rand()%((tranx_upper_bound+1)-

 TRANX_LOWER_BOUND)+TRANX_LOWER_BOUND;

}

/*

 copy the contents of the original assembly file into

 Temp.asm

 */

filecopy(fp, tf1);

fclose(tf1);

fclose(fp);

/*

 open the original assembly file and Temp.asm for insert

 transformations

 */

if((fp = fopen(asm_name, "w")) == NULL)

{

printf("cannot open %s\n", asm_name);

return 1;

}

if((tf1 = fopen("Temp.asm", "r")) == NULL)

{

printf("cannot open %s\n", "Temp.asm");

return 1;

}

for(i=1; i<location; i++)

{

fgets(line, LINE_SIZE, tf1);

fputs(line, fp);

}

/*

 generate a random number for choosing transformations to

 be inserted

 */

tranx = rand()%10;

if(tranx == 0)

tranx0_count++;

if(tranx == 1)

tranx1_count++;

/*

 limit the insertion times for NOP instruction and jmp

 instruction to at most 2 times

*/

while(tranx0_count > MAX_NOP)

{

tranx = rand()%10;

if(tranx != 0 && tranx != 1)

break;

}

while(tranx1_count > MAX_JUMP)

{

tranx = rand()%10;

if(tranx != 0 && tranx != 1)

break;

}

insert(tranx, fp, &tranx_upper_bound);

/* update the insertion record */

update_record(record_count, location, tranx, record);

record_count++;

 fclose(fp);

if((fp = fopen(asm_name, "a")) == NULL)

{

 printf("cannot open %s\n", asm_name);

 return 1;

}

else

{

filecopy(tf1, fp);

fclose(tf1);

fclose(fp);

}

/*

 update the insertion range in transformed assembly file

 */

if((fp = fopen(asm_name, "r")) == NULL)

{

 printf("cannot open %s\n", asm_name);

 return 1;

}

else

{

rewind(fp);

tranx_insert_range(fp, rg); // update the range

fclose(fp);

}

}

mySort(record, repeat-1);

printf("***** Transformation Insertion Record *****\n");

k=0;

while(record[k].pos > 0 && k < MAX_REPEAT)

{

printf("Line %d: Transformation type %d\n",

 record[k].pos, record[k].type);

k++;

}

 printf("%s has %d lines after adding the transformations.\n\n",

 asm_name, tranx_upper_bound);

return 0;

}

/* provide 10 different code transformations */

void insert(int tranx, FILE *fp, int *tranx_upper_bound)

{

int i;

switch(tranx)

{

case 0:

fputs("; ***\n", fp);

 for (i=0; i<3; i++)

{

fputs("\tNOP\n", fp);

}

fputs("; ***\n", fp);

 *tranx_upper_bound+=TRANX0_LINE;

 break;

case 1:

fputs("; ***\n", fp);

 fputs("\tjmp jmp_label\n", fp);

 fputs("\tjmp_label:\n", fp);

 fputs("; ***\n", fp);

 *tranx_upper_bound+=TRANX1_LINE;

 break;

case 2:

 fputs("; ***\n", fp);

 fputs("\tpush eax\n", fp);

 fputs("\tmov eax, 2Ch\n", fp);

 fputs("\tpop eax\n", fp);

 fputs("; ***\n", fp);

 *tranx_upper_bound+=TRANX2_LINE;

 break;

case 3:

 fputs("; ***\n", fp);

 fputs("\txor eax, 0\n", fp);

 fputs("; ***\n", fp);

 *tranx_upper_bound+=TRANX3_LINE;

 break;

case 4:

 fputs("; ***\n", fp);

 fputs("\tor esp, 0\n", fp);

 fputs("; ***\n", fp);

 *tranx_upper_bound+=TRANX4_LINE;

 break;

case 5:

 fputs("; ***\n", fp);

 fputs("\tand ecx, ecx\n", fp);

 fputs("; ***\n", fp);

 *tranx_upper_bound+=TRANX5_LINE;

 break;

case 6:

 fputs("; ***\n", fp);

 fputs("\tneg ecx\n", fp);

 fputs("\tneg ecx\n", fp);

 fputs("; ***\n", fp);

 *tranx_upper_bound+=TRANX6_LINE;

 break;

case 7:

 fputs("; ***\n", fp);

 fputs("\tnot ecx\n", fp);

 fputs("\tnot ecx\n", fp);

 fputs("; ***\n", fp);

 *tranx_upper_bound+=TRANX7_LINE;

 break;

case 8:

 fputs("; ***\n", fp);

 fputs("\tinc ecx\n", fp);

 fputs("\tdec ecx\n", fp);

 fputs("; ***\n", fp);

 *tranx_upper_bound+=TRANX8_LINE;

 break;

case 9:

 fputs("; ***\n", fp);

 fputs("\tadd eax, 42\n", fp);

 fputs("\tsub eax, 42\n", fp);

 fputs("; ***\n", fp);

 *tranx_upper_bound+=TRANX9_LINE;

 break;

default:

printf("Invalid transformation.\n");

break;

}

}

/* filecopy: copy file ifp to file ofp */

void filecopy(FILE *ifp, FILE *ofp)

{

int c;

while((c = fgetc(ifp)) != EOF)

fputc(c, ofp);

}

/* find the total line number of assembly file */

int find_upper_bound(FILE *fp)

{

char line[LINE_SIZE];

int count = 0;

while(fgets(line, LINE_SIZE, fp) != NULL)

count++;

return count;

}

/* find the appropriate ranges to insert transformations */

range *tranx_insert_range(FILE *f, range rg[])

{

char line[LINE_SIZE];

int i, count;

for(i=0; i<RANGE_SIZE; i++)

{

rg[i].upper = 0;

rg[i].lower = 0;

}

i = 0;

count = 0;

while(fgets(line, LINE_SIZE, f) != NULL)

{

if(strncmp(line, "_TEXT
SEGMENT",13) == 0)

{

rg[i].lower = count+1;

}

if(strncmp(line, "_TEXT
ENDS",10) == 0)

{

rg[i].upper = count+1;

i++;

}

count++;

}

return rg;

}

/* find the actual range size */

int find_real_range_size(range rg[])

{

int count = 0;

while(rg[count].lower !=0 && rg[count].upper != 0)

{

count++;

}

return count;

}

/* check the randomly generated location is in the text range */

int range_check(int location, range rg[])

{

int i;

int check = 0;

for (i = 0; i < RANGE_SIZE; i++)

{

if ((location > rg[i].lower) && (location < rg[i].upper))

{

check = 1;

return check;

}

}

return check;

}

/* check if the previous line is a test statement or the next line is a jump statement */

int jump_check(FILE *f, int location)

{

int i;

char line[LINE_SIZE];

int check = 0;

for(i=1; i<location; i++)

{

fgets(line, LINE_SIZE, f);

}

if((strncmp(line, " test", 5) == 0) ||

 (strncmp(line, "
j", 2) == 0))

check = 1;

rewind(f);

for(i=1; i<=location; i++)

{

fgets(line, LINE_SIZE, f);

}

if(strncmp(line, "
j", 2) == 0)

check = 1;

rewind(f);

return check;

}

/* check to see if the next line starts a directive of DD, DS, etc. */

int directive_check(FILE *f, int location)

{

int i;

char line[LINE_SIZE];

int check = 0;

for(i=1; i<=location; i++)

{

fgets(line, LINE_SIZE, f);

}

if(strncmp(line, "
D", 2) == 0)

check = 1;

rewind(f);

return check;

}

/* check to see if the previous line is a push statement */

int push_check(FILE *f, int location)

{

int i, j;

char line[LINE_SIZE];

int check = 0;

int isComment = 1;

for(i=1; i<location; i++)

{

fgets(line, LINE_SIZE, f);

}

if(strncmp(line, "
push", 5) == 0)

{

check = 1;

 rewind(f);

}

else

{

j = 0;

while(isComment)

{

isComment = pre_comment_check(f, location-j);

j++;

}

for(i=1; i<location-j+1; i++)

{

fgets(line, LINE_SIZE, f);

}

if(strncmp(line, "
push", 5) == 0)

{

check = 1;

 rewind(f);

}

}

rewind(f);

return check;

}

/* check to see if the next statement is a pop statement */

int pop_check(FILE *f, int location)

{

int i, j;

char line[LINE_SIZE];

int check = 0;

int isComment = 1;

for(i=1; i<=location; i++)

{

fgets(line, LINE_SIZE, f);

}

if(strncmp(line, " pop", 4) == 0)

{

check = 1;

rewind(f);

}

else

{

j = 0;

while(isComment)

{

isComment = next_comment_check(f, location+j);

j++;

}

for(i=1; i<=location+j-1; i++)

{

fgets(line, LINE_SIZE, f);

}

if(strncmp(line, " pop", 4) == 0)

{

check = 1;

rewind(f);

}

}

rewind(f);

return check;

}

/* check to see if the previous line is a comment */

int pre_comment_check(FILE *f, int location)

{

int i;

char line[LINE_SIZE];

int check = 0;

for(i=1; i<location; i++)

{

fgets(line, LINE_SIZE, f);

}

if(strncmp(line, ";", 1) == 0)

check = 1;

rewind(f);

return check;

}

/* check to see if the next line is a comment */

int next_comment_check(FILE *f, int location)

{

int i;

char line[LINE_SIZE];

int check = 0;

for(i=1; i<=location; i++)

{

fgets(line, LINE_SIZE, f);

}

if(strncmp(line, ";", 1) == 0)

check = 1;

rewind(f);

return check;

}

/* update the insertion record after every insertion operation */

void update_record(int record_count, int location, int type, insert_record record[])

{

int line_add;

int i;

switch(type)

{

case 0:

line_add = TRANX0_LINE;

break;

case 1:

line_add = TRANX1_LINE;

break;

case 2:

line_add = TRANX2_LINE;

break;

case 3:

line_add = TRANX3_LINE;

break;

case 4:

line_add = TRANX4_LINE;

break;

case 5:

line_add = TRANX5_LINE;

break;

case 6:

line_add = TRANX6_LINE;

break;

case 7:

line_add = TRANX7_LINE;

break;

case 8:

line_add = TRANX8_LINE;

break;

case 9:

line_add = TRANX9_LINE;

break;

default:

printf("Invalid transformation.\n");

break;

}

 for(i=0; i<record_count; i++)

{

if(location <= record[i].pos)

{

record[i].pos = record[i].pos+line_add;

}

}

record[record_count].pos = location;

record[record_count].type = type;

}

/* sort the insertion record according to the line number */

void mySort(insert_record record[], int last)

{

int current;

int walker;

int located;

int temp_pos;

int temp_type;

for(current = 1; current <= last; current++)

{

located = FALSE;

temp_pos = record[current].pos;

temp_type = record[current].type;

for(walker = current-1; walker >= 0 && !located;)

{

if(temp_pos < record[walker].pos)

{

record[walker+1].pos = record[walker].pos;

record[walker+1].type = record[walker].type;

walker--;

}

else

located = TRUE;

record[walker+1].pos = temp_pos;

record[walker+1].type = temp_type;

}

}

}

11.6 ATM.c

/**

 * ATM.c

 *

 * ATM.c is a relative complex C language program that contains

 * buffer overflow vulnerability.

 *

 * ATM.c has the same authentication features as helloWorld.c.

 * But, after the successful authentication, ATM.c simulates

 * an Automatic Teller Machine (ATM). It has the following operations:

 * -- Deposit

 * -- Withdraw

 * -- Quick Withdraw

 * -- Check Account

 * -- Exit

 *

 * The arrangement of the code is a little abnormal

 * because we need an attackable buffer overflow vulnerability.

 * meanwhile, we need that the targeted instructions address

 * sits at the middle of the assembly code file.

 *

 * Author: Xufen Gao

 * Date: March, 2005

 **/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "bobcat.h"

#define SUCCESS_LOGIN 0

#define ERROR_PASSWORD 100

#define ERROR_OPEN_PASSWD 200

#define ERROR_INVALID_ID 300

#define INVALID_DEPOSIT_AMOUNT 400

#define INSUFFICIENT_BALANCE 500

#define QUICK_WITHDRAW_AMOUNT 20

int verify(char* ui, char* pw);

int login();

void initabc(int abc[]);

void atm();

void menu();

int deposit(int *balance);

int withdraw(int *balance);

int quickWithdraw(int *balance);

void checkAccount(int balance);

int exit_atm();

void receipt(int preBalance, int amount, int currBalance);

/*

 * login() asks user to input the user ID and the password,

 * then call Verify() function.

 *

 * the local variable pw is the buffer that causes the buffer

 * to overflow

 */

int login()

{

 char pw[20] = {0x0000}; /* buffer to cause buffer

 overflow */

char ui[8] = {0x0000};

printf("Enter the user ID: ");

scanf("%s", ui);

printf("\nEnter the password: ");

scanf("%s", pw);

return verify(ui,pw);

}

/*

 * verify() uses bobcat() to hash the password.

 * Then, it compares the user ID and hashed password

 * that user inputs to the data stored in the password.txt file.

 */

int verify(char* ui, char* pw)

{

char userID[8] = {0x0000};

char password[20] = {0x0000};

int x[50] = {0};

unsigned int i = 0;

unsigned int len = 2;

int abc[3] = {0};

char str1[20] = {0x0000};

 char str2[20] = {0x0000};

 char str3[20] = {0x0000};

char hashStr[20] = {0x0000};

unsigned int found = 0;

FILE *f;

/*

 * Use bobcat to hash the password

 */

for (i=0; i<strlen(pw)/2; i++)

{

x[i] = (pw[2*i]<<8) ^ pw[2*i+1];

}

if (strlen(pw)%2 != 0)

{

x[i] = (pw[2*i]<<8) ^ 0x0000;

}

initabc(abc);

for(i = 0; i < len; ++i)

 {

// bobcat() does one outer round

 bobcat(abc, &x[8*i]);

 }

 itoa(abc[0], str1, 16);

 itoa(abc[1], str2, 16);

 itoa(abc[2], str3, 16);

strcat(str1, str2);

strcat(str1, str3);

strcpy(hashStr, str1);

if((f = fopen("password.txt", "rb")) == NULL)

{

printf("\aerror opening password.txt\n");

return ERROR_OPEN_PASSWD;

}

while(!feof(f))

{

fscanf(f, "%s %s\n", userID, password);

if(strcmp(ui,userID)==0)

{

found = 1;

break;

}

}

fclose(f);

if (!found)

{

/* user id not found, print error */

return ERROR_INVALID_ID;

}

if(strcmp(hashStr,password) != 0)

{

return ERROR_PASSWORD;

}

return SUCCESS_LOGIN;

}

int main()

{

int nReturn = SUCCESS_LOGIN;

nReturn = login();

printf("\n");

if (nReturn)

{

printf("login failed.");

switch(nReturn)

{

 case ERROR_INVALID_ID:

printf("\ninvalid user id.\n");

break;

case ERROR_OPEN_PASSWD:

printf("\ncannot open password database.\n");

break;

case ERROR_PASSWORD:

printf("\nincorrect password.\n");

break;

default:

printf("\nunknown error.\n");

break;

}

}

else

{

/* Targeted instruction */

 printf("Welcome to The National Virtual Bank!");

 atm();

}

 return 0;

}

/*

 * initabc() initiates abc[3] to be used in bobcat()

 */

void initabc(int abc[])

{

abc[0] = 0xface;

 abc[1] = 0xe961;

 abc[2] = 0x041d;

}

/* controls the ATM machine function calls */

void atm()

{

int flag = 1; /* turn the loop on/off */

int transition; /* transition type */

 int balance = 300; /* account balance initialize to 300 */

int result; /* indicates if function runs

 successful or fail */

while(flag)

{

menu();

printf("Choose Transition Type: ");

scanf("%d", &transition);

switch(transition)

{

case 1:

result = deposit(&balance);

if(result)

printf("Deposit Error Occur.\n");

break;

case 2:

 result = withdraw(&balance);

if(result)

printf("Withdraw Error Occur.\n");

break;

case 3:

result = quickWithdraw(&balance);

if(result)

printf("Quick Withdraw Error Occur.\n");

break;

case 4:

checkAccount(balance);

break;

case 5:

flag = exit_atm();

break;

default:

printf("Invalid Transition Type.\n");

break;

}

}

}

/* prints transition types */

void menu()

{

 printf("\n******************** Transitions

 ********************\n");

 printf("* 1. Deposit

 *\n");

 printf("* 2. Withdraw

 *\n");

 printf("* 3. Quick Withdraw

 *\n");

 printf("* 4. Check Account

 *\n");

 printf("* 5. Exit

 *\n");

 printf("***\n");

}

/* deposits money into account */

int deposit(int *balance)

{

int preBalance;

int amount;

 preBalance = *balance;

printf("\nInput the deposit amount: \n");

scanf("%d", &amount);

if(amount > 0)

{

*balance = *balance + amount;

 receipt(preBalance, amount, *balance);

return 0;

}

else return INVALID_DEPOSIT_AMOUNT;

}

/* withdraws money from account */

int withdraw(int *balance)

{

int preBalance;

int amount;

preBalance = *balance;

 printf("\nInput the withdraw amount: \n");

scanf("%d", &amount);

if(amount > 0 && *balance >= amount)

{

*balance = *balance - amount;

receipt(preBalance, amount, *balance);

 return 0;

}

else

{

if(amount < 0)

return INVALID_DEPOSIT_AMOUNT;

else return INSUFFICIENT_BALANCE;

}

}

/* withdraws 20 from account */

int quickWithdraw(int *balance)

{

int preBalance;

 preBalance = *balance;

if(*balance >= QUICK_WITHDRAW_AMOUNT)

{

*balance = *balance - QUICK_WITHDRAW_AMOUNT;

receipt(preBalance, QUICK_WITHDRAW_AMOUNT, *balance);

return 0;

}

else return INSUFFICIENT_BALANCE;

}

/* checks the current balance */

void checkAccount(int balance)

{

printf("\n=============== Account Balance ===============\n");

printf("| Balance: %d |\n",

 balance);

printf("===\n");

}

/* exits the ATM machine */

int exit_atm()

{

printf("\nThank you!\n");

return 0;

}

/* prints the receipt for transitions */

void receipt(int preBalance, int amount, int currBalance)

{

printf("--------------- Receipt ---------------\n");

printf("Previous Balance: %d\n", preBalance);

printf("Transition Amount: %d\n", amount);

printf("Current Balance: %d\n", currBalance);

printf("---------------------------------------\n");

}

11.7 betterATM.c

/**

 * betterATM.c

 *

 * betterATM.c is a relative complex C language program that contains

 * buffer overflow vulnerability. It has the same functionality as

 * ATM.c.

 * The difference between ATM.c and betterATM.c is the code arragement.

 *

 * betterATM.c has the same authentication features as helloWorld.c.

 * But, after the successful authentication, atm.c simulates

 * an Automatic Teller Machine (ATM). It has the following operations:

 * -- Deposit

 * -- Withdraw

 * -- Quick Withdraw

 * -- Check Account

 * -- Exit

 *

 * The arrangement of the code is a little abnormal

 * because we need an attackable buffer overflow vulnerability.

 * meanwhile, we need that the targeted instructions address

 * sits near the end of the assembly code file.

 *

 * Author: Xufen Gao

 * Date: March, 2005

 **/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "bobcat.h"

#define SUCCESS_LOGIN 0

#define ERROR_PASSWORD 100

#define ERROR_OPEN_PASSWD 200

#define ERROR_INVALID_ID 300

#define INVALID_DEPOSIT_AMOUNT 400

#define INSUFFICIENT_BALANCE 500

#define QUICK_WITHDRAW_AMOUNT 20

int verify(char* ui, char* pw);

int login();

void initabc(int abc[]);

void atm();

void menu();

int deposit(int *balance);

int withdraw(int *balance);

int quickWithdraw(int *balance);

void checkAccount(int balance);

int exit_atm();

void receipt(int preBalance, int amount, int currBalance);

/*

 * login() asks user to input the user ID and the password,

 * then call Verify() function.

 *

 * the local variable pw is the buffer that causes the buffer

 * to overflow

 */

int login()

{

 char pw[20] = {0x0000}; // buffer to cause buffer overflow

char ui[8] = {0x0000};

printf("Enter the user ID: ");

scanf("%s", ui);

printf("\nEnter the password: ");

scanf("%s", pw);

return verify(ui,pw);

}

/*

 * verify() uses bobcat() to hash the password.

 * Then, it compares the user ID and hashed password

 * that user inputs to the data stored in the password.txt file.

 */

int verify(char* ui, char* pw)

{

char userID[8] = {0x0000};

char password[20] = {0x0000};

int x[50] = {0};

unsigned int i = 0;

unsigned int len = 2;

int abc[3] = {0};

char str1[20] = {0x0000};

 char str2[20] = {0x0000};

 char str3[20] = {0x0000};

char hashStr[20] = {0x0000};

unsigned int found = 0;

FILE *f;

/*

 * Use bobcat to hash the password

 */

for (i=0; i<strlen(pw)/2; i++)

{

x[i] = (pw[2*i]<<8) ^ pw[2*i+1];

}

if (strlen(pw)%2 != 0)

{

x[i] = (pw[2*i]<<8) ^ 0x0000;

}

initabc(abc);

for(i = 0; i < len; ++i)

 {

// bobcat() does one outer round

 bobcat(abc, &x[8*i]);

 }

 itoa(abc[0], str1, 16);

 itoa(abc[1], str2, 16);

 itoa(abc[2], str3, 16);

strcat(str1, str2);

strcat(str1, str3);

strcpy(hashStr, str1);

if((f = fopen("password.txt", "rb")) == NULL)

{

printf("\aerror opening password.txt\n");

return ERROR_OPEN_PASSWD;

}

while(!feof(f))

{

fscanf(f, "%s %s\n", userID, password);

if(strcmp(ui,userID)==0)

{

found = 1;

break;

}

}

fclose(f);

if (!found)

{

// user id not found, print error

return ERROR_INVALID_ID;

}

if(strcmp(hashStr,password) != 0)

{

return ERROR_PASSWORD;

}

return SUCCESS_LOGIN;

}

/*

 * initabc() initiates abc[3] to be used in bobcat()

 */

void initabc(int abc[])

{

abc[0] = 0xface;

 abc[1] = 0xe961;

 abc[2] = 0x041d;

}

/* controls the ATM machine function calls */

void atm()

{

int flag = 1; /* turn the loop on/off */

int transition; /* transition type */

 int balance = 300; /* account balance initialize to 300 */

int result; /* indicates if function runs successful or

 fail */

while(flag)

{

menu();

printf("Choose Transition Type: ");

scanf("%d", &transition);

switch(transition)

{

case 1:

result = deposit(&balance);

if(result)

printf("Deposit Error Occur.\n");

break;

case 2:

 result = withdraw(&balance);

if(result)

printf("Withdraw Error Occur.\n");

break;

case 3:

result = quickWithdraw(&balance);

if(result)

printf("Quick Withdraw Error Occur.\n");

break;

case 4:

checkAccount(balance);

break;

case 5:

flag = exit_atm();

break;

default:

printf("Invalid Transition Type.\n");

break;

}

}

}

/* prints transition types */

void menu()

{

 printf("\n******************** Transitions

 ********************\n");

 printf("* 1. Deposit

 *\n");

 printf("* 2. Withdraw

 *\n");

 printf("* 3. Quick Withdraw

 *\n");

 printf("* 4. Check Account

 *\n");

 printf("* 5. Exit

 *\n");

 printf("***\n");

}

/* deposits money into account */

int deposit(int *balance)

{

int preBalance;

int amount;

 preBalance = *balance;

printf("\nInput the deposit amount: \n");

scanf("%d", &amount);

if(amount > 0)

{

*balance = *balance + amount;

 receipt(preBalance, amount, *balance);

return 0;

}

else return INVALID_DEPOSIT_AMOUNT;

}

/* withdraws money from account */

int withdraw(int *balance)

{

int preBalance;

int amount;

preBalance = *balance;

 printf("\nInput the withdraw amount: \n");

scanf("%d", &amount);

if(amount > 0 && *balance >= amount)

{

*balance = *balance - amount;

receipt(preBalance, amount, *balance);

 return 0;

}

else

{

if(amount < 0)

return INVALID_DEPOSIT_AMOUNT;

else return INSUFFICIENT_BALANCE;

}

}

/* withdraws 20 from account */

int quickWithdraw(int *balance)

{

int preBalance;

 preBalance = *balance;

if(*balance >= QUICK_WITHDRAW_AMOUNT)

{

*balance = *balance - QUICK_WITHDRAW_AMOUNT;

receipt(preBalance, QUICK_WITHDRAW_AMOUNT, *balance);

return 0;

}

else return INSUFFICIENT_BALANCE;

}

/* checks the current balance */

void checkAccount(int balance)

{

printf("\n=============== Account Balance ===============\n");

printf("| Balance: %d |\n",

 balance);

printf("===\n");

}

/* exits the ATM machine */

int exit_atm()

{

printf("\nThank you!\n");

return 0;

}

int main()

{

int nReturn = SUCCESS_LOGIN;

nReturn = login();

printf("\n");

if (nReturn)

{

printf("login failed.");

switch(nReturn)

{

 case ERROR_INVALID_ID:

printf("\ninvalid user id.\n");

break;

 case ERROR_OPEN_PASSWD:

printf("\ncannot open password database.\n");

break;

case ERROR_PASSWORD:

printf("\nincorrect password.\n");

break;

default:

printf("\nunknown error.\n");

break;

}

}

else

{

/* Targeted instruction */

 printf("Welcome to The National Virtual Bank!");

 atm();

}

 return 0;

}

/* prints the receipt for transitions */

void receipt(int preBalance, int amount, int currBalance)

{

printf("--------------- Receipt ---------------\n");

printf("Previous Balance: %d\n", preBalance);

printf("Transition Amount: %d\n", amount);

printf("Current Balance: %d\n", currBalance);

printf("---------------------------------------\n");

}

11.8 bubbleSort.c

/***

* bubbleSort.c

*

* bubbleSort.c is to sort 25,000 integers. It is used to test the

* impact of metamorphic software to a program's execution performation.

*

* Author: Xufen Gao

* Date: May, 2005

*

**/

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

#define NUM 25000

void bubbleSort(int list[], int last);

void bubbleUp(int list[], int current, int last);

int main()

{

int list[NUM] = {0};

int i;

srand(997);

for (i=0; i<NUM; i++)

{

list[i] = rand();

}

bubbleSort(list, NUM);

return 0;

}

/*

Sort list using bubble sort. Adjacent elements are compared and

 exchanged until list is completely ordered.

*/

void bubbleSort(int list[], int last)

{

int current;

for(current=0; current<last; current++)

bubbleUp(list, current, last);

}

/*

Move the lowest element in unsorted portion of an array to the

 current element in the unsorted portion.

*/

void bubbleUp(int list[], int current, int last)

{

int walker;

int temp;

for(walker=last; walker>current; walker--)

{

if(list[walker] < list[walker-1])

{

temp=list[walker];

list[walker]= list[walker-1];

list[walker-1]=temp;

}

}

}

12 Appendix B

12.1 Transformation Type List

type 0: NOP

 NOP

 NOP

type 1: jmp jmp_label

 jmp_label

type 2: push eax

 mov eax, 2ch

 pop eax

type 3: xor eax, 0

type 4: or esp, 0

type 5: and ecx, ecx

type 6: neg ecx

 neg ecx

type 7: not ecx

 not ecx

type 8: inc ecx

 dec ecx

type 9: add eax, 42

 sub eax, 42

12.2 proj.bat

@echo off

echo ****************** Time To Run Project ******************

del /f /q *.asm *.exe

FOR /L %%i IN (1 1 100) DO (

echo %%i. helloWorldTranx%%i.exe

del /f /q *.obj bobcat.asm helloWorld.asm tranxTool.asm bobcat.exe helloWorldOrg.exe tranxTool.exe

echo ---- Create helloWorldTranx%%i.exe ----

cl /nologo /c /Fa /O2 helloWorld.c > junk.txt

cl /nologo /c /Fa /O2 bobcat.c > junk.txt

ml /nologo /c /coff helloWorld.asm > junk.txt

link /nologo /DEFAULTLIB:LIBC.LIB /SUBSYSTEM:CONSOLE /machine:I386 /out:helloWorldOrg.exe helloWorld bobcat > junk.txt

rem Run tranxToo.c to add transformations

cl /nologo tranxTool.c > junk.txt

tranxTool helloWorld.asm 3

rem Compile and link to obtain helloWorldTranx.exe

ml /nologo /c /coff helloWorld.asm > junk.txt

link /nologo /DEFAULTLIB:LIBC.LIB /SUBSYSTEM:CONSOLE /machine:I386 /out:helloWorldTranx.exe helloWorld bobcat > junk.txt

rename helloWorld.asm helloWorld%%i.asm

rename helloWorldTranx.exe helloWorldTranx%%i.exe

if exist helloWorldTranx%%i.exe (

echo ---- Run helloWorldTranx%%i.exe Using Correct Password ----

helloWorldTranx%%i < input1.hex

echo.

echo ---- Run helloWorldTranx%%i.exe Using Original Attacking Password ----

helloWorldTranx%%i < input2.hex

)

echo.

echo ---

sleep 2

)
#include <stdio.h>

#include <string.h>

void foo (int x, int y)

{

 char array[8];

 printf("Enter Serial Number\n");

 scanf("%s", array);

 if(!strncmp(array, "S123", 4))

 printf("\nSerial number is correct.\n\n");

}

int main()

{

 foo(3, 4); // the parameters has no effects in the function.

 // Just to show the memory organization.

 return 0;

}

� EMBED Excel.Chart.8 \s ���

****************** Time To Run Project ******************

1. helloWorldTranx1.exe

---- Create helloWorldTranx1.exe ----

Insert transformation 3 time(s).

helloWorld.asm has 661 lines before adding the transformations.

***** Transformation Insertion Record *****

Line 97: Transformation type 6

Line 299: Transformation type 3

Line 580: Transformation type 3

helloWorld.asm has 671 lines after adding the transformations.

---- Run helloWorldTranx1.exe Using Correct Password ----

Enter the user ID:

Enter the password:

Hello World!

---- Run helloWorldTranx1.exe Using Original Attacking Password ----

2. helloWorldTranx2.exe

---- Create helloWorldTranx2.exe ----

Insert transformation 3 time(s).

helloWorld.asm has 661 lines before adding the transformations.

***** Transformation Insertion Record *****

Line 184: Transformation type 3

Line 410: Transformation type 1

Line 645: Transformation type 5

helloWorld.asm has 671 lines after adding the transformations.

---- Run helloWorldTranx2.exe Using Correct Password ----

Enter the user ID:

Enter the password:

Hello World!

---- Run helloWorldTranx2.exe Using Original Attacking Password ----

int login()

{

 char pw[20] = {0x0000}; // overflowed buffer

 char ui[8] = {0x0000};

 printf("Enter the user ID: ");

 scanf("%s", ui);

	

 printf("Enter the password: ");

 scanf("%s", pw);

 return verify(ui,pw);

}

�

�

�

�

�

�

PAGE

_1176971617.xls
Chart1

		3

		4

		5

		6

		7

		10

		12

		15

		20

		25

		30

		35

bubbleSortTranx.exe

Density

Slow Down (%)

0.2

0.3

1.8

2.6

3.4

5.4

5.4

6.7

9.5

13.6

14.2

15.8

Sheet1

		3		0.2

		4		0.3

		5		1.8

		6		2.6

		7		3.4

		10		5.4

		12		5.4

		15		6.7

		20		9.5

		25		13.6

		30		14.2

		35		15.8

Sheet1

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

bubbleSortTranx.exe

Density

Slow Down (%)

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

