APTPFS: Anonymous Peer-to-Peer File Sharing

A Writing Project

Presented to

The Faculty of the Department of

Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Computer Science

By

Jianning Yang

April, 2005
APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

_____________________________________________________________

Dr. Mark Stamp

_____________________________________________________________

Dr. Chris Pollett

_____________________________________________________________

Dr. Melody Moh

_____________________________________________________________

APPROVED FOR THE UNIVERSITY
ACKNOWLEDGEMENTS

I would like to thank Dr. Mark Stamp for his guidance, patience and insights without which my project would not have been possible.

ABSTRACT

APTPFS: Anonymous Peer-to-Peer File Sharing

By Jianning Yang
This project presents an anonymous peer-to-peer (P2P) file sharing system, i.e., APTPFS. A P2P network consists of a large number of peers interconnected together to share all kinds of digital content. A key weakness of most existing P2P systems is the lack of anonymity. Without anonymity, it is possible for third parties to identify the participants involved. In their seminal article, Bennet and Grothoff [4] conclude that there are three basic anonymity requirements in P2P system. First, anonymous P2P system should make it impossible for third parties to identify the participants involved. Second, anonymous P2P system should guarantee that only the content receiver knows the content. Third, anonymous P2P system should allow the content publisher to plausibly deny that the content originated from him or her.  

Inside this report, various techniques of P2P networking and cryptography are presented. This is followed by a discussion on the design of our APTPFS system and the issues associated with implementation. The testing environment and analysis of the results are then fully discussed. We conclude by mentioning future work.

Table of Contents

91
Introduction


91.1
P2P Network Overview


111.2
File Sharing on P2P Networks


121.3
Anonymity Issues in P2P File Sharing


141.4
Cryptography and Secure Sockets Layer (SSL)


172
APTPFS – An Anonymous P2P File Sharing System


172.1
System Architecture


182.2
Anonymity Techniques


192.2.1
Virtual Addresses


202.2.2
Hop-by-Hop Connection


212.2.3
Query Hashing


222.2.4
Forward Routing


242.2.5
Drop Chain Routing


262.2.6
Anonymous Content Publishing


272.2.7
Anonymous Content Retrieval


282.2.8
Miscellaneous


292.3
System Design


292.3.1
System Layers


302.3.2
SSL and Cryptography Services


312.3.3
Protocol Messages


322.3.4
Multi-Threaded Processing


332.3.5
Anonymous Routing


342.3.6
Unified Messaging Algorithm


353
Test Result


353.1
Test Environment


363.2
Test Results


363.2.1
SSL Connections


383.2.2
Anonymous File Publishing


393.2.3
Virtual Addresses


393.2.4
Hop-by-Hop Connections


403.2.5
Forward Routing


403.2.6
Drop Chain Routing


413.2.7
Maximum Number of Registrations


423.2.8
Unified Message Size and Bogus Messages


434
Conclusion and Future Work


434.1
Conclusion


434.2
Future Work


434.2.1
Proxy Peer


444.2.2
Wild-Card Search


444.2.3
File Splitting


454.2.4
Host Caching


465
Appendix


465.1
APTPFS Protocol Messages


496
References



List of Figures

   








                             Page

Figure 1 APTPFS System Architecture



                                              18
Figure 2 APTPFS Sample Network Topology

                                                          19


Figure 3 APTPFS Forward Routing     

                                                                      23


Figure 4 APTPFS Drop Chain Routing

                                                                      25


Figure 5 APTPFS File Publishing and Retrieval

                                                          27
Figure 6 APTPFS System Modules                                                                                                  30
Figure 7 APTPFS Test Environment Diagram                                                                                 35
List of Tables

   








                            Page

Table 1 APTPFS Routing Table






                      20
Table 2 APTPFS SSL and Cryptography Services                                                                     30-31
Table 3 APTPFS Message Format                                                                                                    32
Table 4 APTPFS Routing Algorithm                                                                                                33
Table 5 APTPFS Unified Messaging Algorithm                                                                              34
Table 6 APTPFS Test Configuration                                                                                                36
Table 7 APTPFS SSL Test Result                                                                                                    37                                                                 

Table 8 APTPFS SSL Initialization                                                                                             37-38
Table 9 APTPFS Forward Routing Test Result                                                                                40
Table 10 APTPFS Drop Chain Routing Test Result                                                                        41
Table 11 APTPFS Protocol Messages                                                                                         46-48
Acronyms

APTPFS – Anonymous P2P File Sharing System

DES – Data Encryption Standard

LRU – Least Recently Used

P2P – Peer-to-Peer

PLS – Peer Listing Server

RTT – Round Trip Time

RSA – Rivest, Shamir and Adleman public key cryptosystem

SHA-1 – Secure Hash Standard

SSL – Secure Sockets Layer

TTL – Time-to-Live

1 Introduction

The aim of this project is to develop an anonymous file sharing system on a P2P network, which allows files to be stored, requested and transmitted anonymously.

This chapter presents necessary background information that is helpful for the reader to understand the design of APTPFS. Section 1.1 gives a brief overview of P2P network. To facilitate testing, APTPFS includes its own P2P network environment. Section 1.2 presents basic concepts of file sharing, which are fully implemented by APTPFS. Section 1.3 discusses anonymity issues in P2P File Sharing, which are the major concerns of this project. Section 1.4 presents some of techniques (e.g., cryptography, SSL) that are used by APTPFS to address those anonymity issues.
1.1 P2P Network Overview

Wilson gives the following definition of peer-to-peer (P2P): "peer-to-peer technology enables any network-aware device to provide services to another network aware device" [2]. In a P2P system, peers may join and leave the system on their own without affecting the overall functionality of the system. 

There are two major P2P network topologies: centralized topology, and decentralized topology. In a centralized topology, network functionality depends largely on a central server and each peer accesses the central server to upload and download information. The central server coordinates the communication among peers. Napster is a classic example of centralized P2P network where a central server maintains a database of shared music files. The main drawback of centralized P2P network is that the central server is a single point of failure. In a decentralized P2P topology, there is no central server and peers are normally organized in an unstructured fashion. Each peer can only communicate directly with a few neighbor peers; however a peer can communicate with the rest of network through hop-by-hop message propagation. Presently the most popular decentralized P2P systems are Freenet, GNUnet, Gnutella, and MUTE. Decentralized networks have some advantages over centralized networks. One of the advantages is that decentralized networks have no  single point of failure. Another benefit is that decentralized networks are very scalable.

Like other kinds of networks, a P2P network must have an addressing scheme to identify each individual peer. Because communication among peers can be done hop-by-hop, peers are not required to have static addresses. For example, each peer in the MUTE network is identified by a randomly generated virtual address [9]. Non-static addresses are very useful for achieving anonymity since such addresses can effectively hide peer identity.

In a P2P network, a new peer can easily discover existing peers via host listing or host caching. Host listing uses a centralized server to maintain a list of active peers. When a new peer wants to join the network, it first registers with the server. Following the registration, the server will return the contact information of active peers to which the new peer should connect. Because the server randomly select active peers, host listing encourages sparseness and it creates a nearly optimal network structure [1] [6]. In contrast, host caching mechanism does not require any centralized server. In host caching, information about active peers is exchanged among peers. The information is then stored in the local cache and can be used later. The local cache is empty initially so that host listing must be used for the initial peer discovery. Once the initial peers have been discovered, host caching can be used exclusively. Therefore, discovering peers in a P2P networks always relies on some degree of centralization [1].

In most decentralized P2P networks, queries are propagated hop-by-hop. In order to prevent excessive query flooding, each query has a time-to-live (TTL) field, where the TTL is the number of peers the query is allowed to visit. In Gnutella, for example, a query starts with TTL value 7. Each time the query passes from one peer to another, the TTL is decremented by 1. When the TTL reaches 0, the request will be dropped [1]. 

1.2 File Sharing on P2P Networks

File sharing is the most popular application in P2P networks. The main functionalities of file sharing include file publishing, file querying, and file retrieval.

Most P2P file sharing applications (e.g., GNUnet and Freenet) publish file content along with a key. Usually the key is a hash value of the file name or file description, and it is used by queries to search for the published file. In GNUnet, each file is split into small chunks and the chunks are then distributed to other peers. Dividing a file into chunks makes it possible for content receivers to speed up the retrieval process by retrieving various parts of the file from multiple peers simultaneously [4]. 

File publishing must also deal with limited storage capacity. In Freenet, storage is managed as an LRU (Least Recently Used) cache. When a new file arrives and causes the storage to exceed its capacity, the least recently used files are removed [8].

Frequently, file querying is supported by a keyword search engine. Keywords usually consist of filenames or file descriptions. In GNUnet, queries are hashed by query senders so they are not known to intermediate peers during transmission [4]. However, hashed queries only provide limited protection against eavesdropping since an eavesdropper is still able to identify the query content by computing a dictionary of hash values, provided he or she has enough computation power.

File retrieval can be accomplished by using traditional file transfer protocols, such as FTP or HTTP. For example, in Gnutella, a peer simply establishes a HTTP connection directly to the target peer that is holding the desired file [1]. Some P2P systems (e.g., GNUnet and Freenet) also allow for the retrieving of chunks of the file from different peers is parallel [4]. 

1.3 Anonymity Issues in P2P File Sharing

Recently there has been an increasing interest in anonymous P2P file sharing. The reason is due to concerns regarding freedom of speech. Another obvious reason is that anonymity appeals to those who want to share copyrighted files. As a result, more and more P2P file sharing systems are starting to provide anonymity features. 

There are three basic roles involved inside file sharing process: publisher, sender, and receiver. 
A publisher is a peer that publishes files in the system. A system is deemed as publisher-anonymous if it prevents an adversary from linking a publisher to a file [1]. That is, the file publisher should be able to plausibly deny that the file originated from him or her [4]. There are many ways to achieve publisher anonymity. In Freenet, each intermediary peer in the query response path may cache the encrypted file content and use it to serve further requests [8]. Publius splits the file encryption key into n shares and stores them on various peers [1]. Instead of splitting keys, FreeHaven splits a file into n shares and stores the shares on multiple peers [1].

In addition to a publisher, an anonymous P2P file sharing system also includes receivers and senders. A receiver is a peer that receives published files from the system while a sender is a peer that can send published files to the receiver. The goal of receiver and sender anonymity is to guarantee that a message cannot be traced back to the real sender or receiver. Many systems achieve receiver and sender anonymity by having messages go through a number of intermediary peers to form a path. In Onion, the sender determines the path, and encrypts messages in a layered manner starting from the last stop of the path [1]. In Crowds, a path is formed in such a way that its previous peer randomly selects the next peer [12]. Another popular P2P system, Tarzan, offers sender anonymity through message relay [11].

Even if a P2P file sharing system provides anonymity for all the participants, an adversary can still exploit the system via traffic analysis. Therefore, a truly anonymous system must also be able to thwart traffic analysis attacks. The most common traffic analysis attacks include colluding peers, timing analysis, and eavesdropping. 

One way to attack the system is to populate a target peer’s neighbor list with colluding peers. The target peer is then exposed since messages to or from it can be easily detected by a colluder. However, in reality this kind of attack is not feasible since it requires a huge number of colluding peers to pollute the neighbor list [1]. 

An adversary may also attempt to identify a peer as a message initiator by analyzing round trip time (RTT) delays. Peers are exposed by immediately responding to a message since RTT is larger for more distant peers. To deter this kind of timing attacks, some P2P systems delay responses for some random interval to blind them with other messages including bogus messages [7].  

An eavesdropper is an adversary who can monitor traffic to or from peers in a P2P network. Normally an eavesdropper will only be able to intercept communications over a small fraction of a network. Most P2P systems use secure communication channels (e.g., SSL or HTTPS) to prevent an eavesdropper from determining message contents. 

1.4 Cryptography and Secure Sockets Layer (SSL)

Cryptography algorithms and Secure Sockets Layer (SSL) are key components to ensure security and anonymity in P2P file sharing system. 

The main purpose of cryptography is to keep communications private in the presence of an adversary by taking advantage of problems that are difficult to solve [15]. In addition to encrypting and decrypting messages, cryptography also deals with other security related features such as secure hashing and message digest [15].

Secure hashing has two essential characteristics: firstly it is very resistant to collisions so that it is computationally infeasible to find two different messages that hash to the same value; secondly it is a one-way function so it can not be reversed. A message digest is simply a unique hash value of the message and it serves as a proof that the received message was not altered in transmission. MD5 and SHA1 are two popular hash algorithms that can be used to compute message digests. To encrypt and decrypt messages, either public-key cryptosystem or symmetric cryptosystem can be used.

RSA is a popular public-key cryptosystem.  In RSA, data is encrypted with a public key and decrypted using a private key. The private key is kept secret and public key is generally available to the public. The key pair has a mathematical relationship so that if data is encrypted with the private key then it can be decrypted with public key and vice versa. Because RSA requires 100-1000 times more computation than symmetric cryptosystems, it is not suitable for bulk encryption and decryption. Instead, RSA is widely used to distribute keys for symmetric cryptosystems [15].
DES is a symmetric cryptosystem with a 64-bit block assize and a 56-bit key length. Compared to RSA, DES is a very fast and efficient algorithm. Similar to other symmetric cryptosystem, DES requires that both sender and receiver must know the same secret key [15]. Because of its short key length, DES is not secure today. As a result, the US National Institute of Science and Technology (NIST) approved AES as a replacement for DES. “The design and strength of all key lengths of the AES algorithm (i.e., 128, 192 and 256) are sufficient to protect classified information up to the SECRET level. TOP SECRET information will require use of either the 192 or 256 key lengths. The implementation of AES in products intended to protect national security systems and/or information must be reviewed and certified by NSA prior to their acquisition and use." [13] 

Secure Sockets Layer (SSL) is a protocol layer that is placed between a transportation layer protocol (e.g., TCP) and an application layer protocol (e.g., HTTP). SSL uses a combination of a symmetric-key cipher (e.g., DES or AES) and a public-key cipher (e.g., RSA) to maintain secure communication [16]. SSL relies on a handshake protocol to establish a secure connection. During the SSL handshake, the client and server exchange a symmetric session key. The session key itself is encrypted by a public-key cipher so that only the intended recipient can decrypt it. Once the SSL handshake establishes the encrypted connection, the SSL session begins. In this phase, client and server transmit the messages that are encrypted by the session key. To determine if a message was altered during the SSL session, a message digest is sent along with the message to allow the receiver to verify the message integrity [16].

RSA, AES, and SSL have been incorporated into the Java Cryptography Extension (JCE) and the Java Secure Socket Extension (JSSE) [14].

2 APTPFS – An Anonymous P2P File Sharing System
APTPFS is the proposed anonymous P2P file sharing system presented in this writing project.  There are five major goals for APTPFS: 

· Design a decentralized P2P file sharing architecture.
· Ensure anonymity for both senders and receivers.
· Secure the communication so that only the receiver knows the content.
· Provide plausible deniability so that the publisher is able to plausibly deny that the content originated from him or her.
· Protect the system against traffic analysis attacks.
2.1 System Architecture

Figure 1 depicts the basic system architecture of APTPFS.  When a new peer wants to join the APTPFS system, it first establishes a SSL connection to a Peer Listing Server (PLS) and sends a registration request to that server. The main purpose of PLS is to maintain a list that contains information regarding current active peers inside the system. Upon receiving the request, PLS registers the new peer’s information (e.g., IP and Port) with an internal data store (i.e., PL table). PLS also randomly selects a few peers from the data store and sends their information back to the new peer. The new peer then establishes and maintains SSL connections to those selected peers, i.e., neighbors of the new peer. 

Because APTPFS is a designed as a decentralized P2P system, there is no central server in the system to coordinate file sharing process. PLS is not considered as a server since it only serves as a registry and is consulted only when a peer wants to join or leave the system. Each peer, identified by a randomly generated virtual address, only keeps direct connections with its neighbors. All queries are propagated through the network hop-by-hop, and responses are routed back through paths discovered by queries.


[image: image1]
Figure 1
2.2 Anonymity Techniques
The network topology shown in Figure 2 is used extensively in this section to illustrate a variety of anonymity techniques implemented in APTPFS. The dotted lines indicate paths through which a query response message may travel while the solid lines indicate query paths.


[image: image2]
Figure 2

2.2.1 Virtual Addresses

Inspired by MUTE [9], APTPFS adopts the concept of a virtual address to hide peer identity. When a peer starts up, it generates a random number as its virtual address, which is the sole identification of the peer.  Because a virtual address is simply a random number, it is not possible to trace a virtual address to a peer’s true identity (e.g., IP address).

In support of virtual addressing, each peer maintains a routing table that maps virtual addresses to its neighbor connections. Each peer extracts routing information from incoming messages to populate its routing table. When the routing table becomes full, the least used entry will be purged.

When a peer receives a message, it checks the destination virtual address inside the message header and tries to match that virtual address with one of the routing table entries. If it finds an entry, it randomly chooses a neighbor connection from that entry and forwards the message to that neighbor; otherwise it simply drops the message.

In Figure 2, peer X received messages originated from peer A through two of its neighbors (peer Y and peer Z). Peer X would then populate its routing table as below (Table 2).

	Peer X’s Routing Table

	Peers
	Neighbor Connections

	
	SSL to Peer Z
	SSL to Peer Y
	SSL to Peer W

	Peer A’s virtual address
	√
	√
	

	Note: √ indicates that messages addressed to a particular peer could be forwarded to this neighbor


Table 1

Later, when peer X receives a message from peer B, it checks the destination virtual address inside the message header. Because the destination address happens to be peer A’s virtual address, peer X then knows that it could forward the message to either peer Z or peer Y. Peer X then randomly chooses one of these neighbors and forwards the message to it. 

2.2.2 Hop-by-Hop Connection

Each peer maintains SSL connections to all of its neighbors, and these connections are used for transporting messages (both queries and responses) hop-by-hop. In other words, there is no direct connection among peers except connections to neighbors.
To establish SSL connections, each peer is responsible for generating its dummy certificate and private key. Furthermore, each peer trusts any received dummy certificate coming from its neighbors. The main purpose of using SSL is to prevent traffic eavesdropping.
In Figure 2, peer A maintains two connections to its neighbors (peer Z and peer Y). Suppose peer A wants to send out a message to peer B, it could not directly establish a connection to peer B since it only knows peer B’s virtual address. Therefore, it inserts peer B’s virtual address into the message header and forwards the message to one of its neighbors. Let’s assume that it forwards the message to peer Z, which in turn forwards the message to peer X. Upon receiving the message from Z, peer X forwards it to peer B that happens to be the message destination. In this example, the route that the message goes through is A->Z->X->B.

2.2.3 Query Hashing

In APTPFS, queries are hashed so that only the query sender knows query content. In Figure 2, let us suppose that peer A wants to download a file called “dreams.mid”. Peer A first calculates the hash value of “dreams.mid”. Then peer A broadcasts the query along with the hash value. When an intermediary peer (e.g., peer Z or peer X) receives that query, it does not know what file peer A is looking for since hashing is a one-way function. When the query is propagated to peer B, peer B finds a match since it has registered a file with the same hash value.  Peer B also does not know the file name that peer A is looking for, even though peer B has the encrypted file. 

One way for an attacker to reveal query content is via a dictionary attack where he or she could pre-compute hash values of some popular keywords and save them in a dictionary for look up. To make the dictionary attack more difficult, APTPFS uses multiple rounds of SHA1 hashing (i.e., Hash(filename) = SHA1(SHA1(filename)+VirtualAddress)). However an attacker could still reveal query content by re-computing a data dictionary provided he or she has enough computation power. Therefore, query hashing only provides a relatively weak form of security. However, exposing query content does not break anonymity as long as the identity of the query sender or query receiver is not exposed. Note that in APTPFS, the identity of sender and receiver is hidden by the use of virtual addresses.
2.2.4 Forward Routing

One problem with query broadcast schemes is that the broadcasts may expose the query sender’s identity. For example, if the maximum value of TTL is 7, then receiving a query with a TTL value of 7 from a neighbor means that that neighbor is the query originator.

MUTE introduces a clever approach to deal with this issue. The idea is to send each broadcast query along with a hash value in FORWARD mode for the first few hops. Each intermediary peer rehashes the value and checks the last 2 digits of the hash value to determine whether or not the message should be switched out of FORWARD mode.  If the FORWARD mode should continue, the new hash value replaces the old hash value. While in FORWARD mode, the TTL is kept intact [9]. 

APTPFS uses a similar approach (i.e., forward routing) to protect the query sender’s privacy. Forward routing is signaled by a ForwardHash flag and a 20-byte SHA1 forward hash value. To switch out of forward routing (with a 1 in 3 chance), each intermediary peer simply rehashes the received hash value and checks whether the new hash is a multiple of 3 or not. SHA1 is a cryptographically secure one-way function, so it is infeasible to obtain the previous forward hash based on the received forward hash. Therefore it is difficult to determine how far a message has traveled [9]. Figure 3 shows an example of how forward routing works in APTPFS. For simplification, we only show the last byte of the forward hash value. The shaded nodes are colluding nodes while the dotted lines indicate the hop-by-hop message propagation paths.


[image: image3]
Figure 3

Suppose that peer A is the query sender in Figure 3. Peer A randomly calculates a forward hash (i.e., 221) and broadcasts a query with the forward hash to peer Z and peer Y. Peer Z and peer Y can not determine the origin of this query based on the forward hash. To decide what to do with the query, they rehash the forward hash to generate a new forward hash (i.e., 155). Because the new forward hash is not a multiple of 3, they broadcast the query to peer X with the new hash. Once X receives the query, peer X again rehashes the forward hash and broadcasts the query with the new hash (i.e., 85) to peer B and peer W. Now suppose peer B rehash the received forward hash and finds that the new hash is 12, which is a multiple of 3. Peer B then removes the ForwardHash flag from the query and broadcasts the query to peer C in normal TTL mode.

2.2.5 Drop Chain Routing

The forward routing scheme ensures that an attacker cannot easily determine the message sender, but it does not ensure the anonymity of peers that are responding to queries. For example, an attacker could send a query message with TTL value 0 to force its neighbors to send back results without passing the message further [9].

MUTE provides an efficient way to thwart this kind of attacks. When a peer startups, it randomly decides whether it will drop chain messages or pass them, and it also randomly chooses one neighbor to pass chain messages to as long as that neighbor remains connected. Once a peer receives a message with a TTL value 0, it will switch the message into CHAIN mode and send it to the chosen neighbor. Consequently, the message may travel through many peers before being dropped. Each of these peers could send back results, so the attacker cannot associate results with its neighbor [9].

APTPFS takes a similar approach (i.e., drop chain routing) to protect message responder’s anonymity. We use a DropChain flag to indicate drop chain routing. When a peer starts up, it randomly decides whether it will drop chain messages or pass them. Each peer has a probability of 70% of accepting chain messages. Therefore the average chain size is 2 peers (70%*70%=49%). Also the query messages will only be forwarded instead of being broadcast under drop chain routing.

Figure 4 shows an example of how drop chain routing works in APTPFS. The shaded node is a colluding node and the dotted lines indicate the drop chain path.


[image: image4]
Figure 4

Suppose that Peer S sends a query with TTL value 0 to peer A. Instead of sending the response back immediately to peer S, peer A sets the DropChain flag inside the message header and forwards the message to one of its neighbors (e.g., peer Z). The query message then travels through peer X before being dropped by peer B. Because any one of the peers in the drop chain path can sends back the response, peer S can not links the response to peer A by simply setting the TTL value to 0 inside the message header.

Putting it all together, a typical APTPFS query message travels through a random number of hops under forward routing, switches to TTL mode and travel through a maximum of 5 hops, and continue to travel through a random number of hops under drop chain routing before being dropped.

2.2.6 Anonymous Content Publishing

Upon receiving a publishing request, the peer first hashes the file name into a value H1. Then it generates a random number as the AES secret key SK to encrypt the file and hashes the encrypted file into a value H2. Finally it invokes a two-steps process to distribute the encrypted file and the secret key. In the first step, it randomly chooses two peers from its routing table, and sends the hash pair H1/H2 and the secret key SK to them. In the second step, it randomly chooses another two peers from its routing table, and sends the hash pair H1/H2 and the encrypted file to them. 

In support of content publishing, each peer keeps two tables: a Hash-to-Key table and a Hash-to-File table. The Hash-to-Key table maps each hash pair (e.g., H1/H2) into a secret key (e.g., SK). Hash-to-File table maps each hash pair (e.g., H1/H2) into an encrypted file. This is similar to GNUnet’s content publishing approach [10]. The difference is that GNUnet splits the file into small chunks and send those chunks to chosen peers so that each of those peers only keeps a portion of the file while in APTPFS each of the chosen peers keeps the entire encrypted file.

Figure 5 illustrates an anonymous content publishing scenario that shows peer A distributing the encrypted file to peers F and H while distributing the secret key to peers G and J. With anonymous content publishing, a content publisher could plausibly deny that the content originated from him or her since the key and the encrypted file reside in other peers. Administrators of other peers also can deny that they have any knowledge about the published file since the key and the encrypted file is sent to peers without the administrator’s knowledge. Furthermore, because it is unlikely that a peer will have both the key and the file, they can correctly claim that they do not have enough information for decryption.

[image: image5]
Figure 5

2.2.7 Anonymous Content Retrieval

To retrieve a file, the content receiver CR first broadcasts a search query with the hashed file name SHA1(SHA1(name), CR’s virtual address). When a peer in the network receives the query, it immediately consults its Hash-to-File table to see if there is a match. If it finds an H1 value that matches SHA1(name) by calculating the hash value SHA1(H1,CR’s virtual address) in Hash-to-File table, it sends back the relevant file information (e.g., file size) along with H1/H2 hash pair to the CR. The search result is routed back hop-by-hop.

Because the CR may receive responses from multiple peers, the CR prompts the user to selects one file to retrieve. After the user selects a file, the CR generates two queries: a search file query and a search key query. The CR first broadcasts the search key query along with SHA1(H1, CR’s virtual address) and H2. When a peer in the network receives the query, it consults its Hash-to-Key table to see if there is a match. If it finds an entry matches with SHA1(H1,CR’s virtual address)/H2 pair in its Hash-to-Key table, it sends back the corresponding secret key to CR. Upon receiving the key, CR sends the search file query along with SHA1(H1, CR’s virtual address) and H2 to the peer that is holding the selected file. Upon receiving the search file query, the peer consults its Hash-to-File table and sends the corresponding encrypted file to CR.

After CR receives both the encrypted file and the secret key, it decrypts the file and copies the decrypted file into a public folder so that the user can use it.

2.2.8 Miscellaneous

All communication links in APTPFS are secured by SSL to prevent network eavesdropping. SSL also guarantees that the received message has not been altered in any way during transmission.

Each APTPFS message size is fixed at 4 KB. For content larger than 4 KB, the system splits the content into 4 KB length messages and delivers those messages one by one. For content smaller than 4 KB, the system adds padding to the message. Uniform message size makes it very difficult for an attacker to differentiate different kinds of messages via traffic analysis. In addition, each peer randomly generates some bogus messages and forwards those messages to its neighbors to further deter traffic analysis attack. 

In APTPFS, whenever a peer sends a registration message to the PLS, the PLS will responds with a short list of peers that can be used as the peer’s neighbors. However, an attacker could easily send many registration messages to collect this critical network topology information. To prevent this kind of attack, PLS keep a timestamp for each registered peer and it only allows a maximum of three registration messages coming from the same peer (e.g., based on IP address of sender ) each day.

2.3 System Design

To promote flexibility and reduce the cost of maintenance, the APTPFS design uses a combination of a layered approach and object oriented approach.

2.3.1 System Layers

In a layered approach, each layer adds to the services provided by the lower layers. As a result, the highest layer provides a complete set of services. One important design consideration is to ensure independence of layers in order to permit changes in a layer without affecting other layers. As illustrated in Figure 6, the APTPFS system consists of three layers: the utility layer, the P2P layer, and the file sharing layer.

The utility layer (the bottom layer) provides cryptography services and low-level communication services. The P2P layer (the middle layer) supports basic P2P services by adding more services (e.g., routing, messaging, etc.) to those provided by the utility layer. The file sharing layer (the highest layer) provides a full set of file sharing services on top of the basic P2P services.  


[image: image6] 

2.3.2 SSL and Cryptography Services

APTPFS uses a set of SSL services and cryptography services to ensure anonymous communication. Table 2 summarizes the SSL and cryptography services used in APTPFS.

	Service Name
	Service Description
	Usage

	SSL
	Key Exchange: 2048 bits RSA

Certificate: X.509

Bulk Encryption: 128 bits RC4
	Secure Communication

	Symmetric Cipher
	128 bits AES
	File Encryption/Decryption

	Hashing
	SHA1
	Routing

Query and File Hashing

	Random Number
	Complies with RFC 1750
	Routing

Virtual Address Generation


Table 2

2.3.3 Protocol Messages

The APTPFS protocol messages fall into two categories: P2P messages and file sharing messages. P2P messages are used for peer registration and connection establishment while file sharing messages mainly deal with anonymous file publishing, file searching, and file retrieval. 

There are a total of five types of P2P messages: registration, welcome, bye, ping, and pong. During startup, a peer sends a registration message to the PLS. After the PLS registers the peer, it immediately returns a welcome message with a short list of peers. Once the peer receives the welcome message, it tries to establish SSL connections with those peers. Finally ping and pong messages are exchanged over SSL connections to ensure continued peer connectivity. When a peer decides to leave the system, it sends a bye message to the PLS so that it could un-register the peer. It is possible that a malicious peer can slow downs the registration process by sending lots of bye messages, but it will not break anonymity since the malicious peer can not gain any useful information.
To support anonymous file sharing, APTPFS provides four types of messages: query, query result, publishing, and publishing result. When a peer wants to search for files, it broadcasts query messages to other peers and waits for query result messages. A peer could also use publishing message to distribute files/keys to other peers, and use publishing result message to check the publishing status.

APTPFS protocol message format (see Table 3) is designed in such a way that it is easy to extend. Every message starts with a prefix “BEGIN” and ends with a suffix “END”. Version indicates the current version of message. Content length measures the length of content field in bytes. Header field contains a list of name/value pairs that varies among messages. Those name/value pairs are important since they contain all of necessary information for routing, unified messaging, and file sharing.

	APTPFS Message Format

	“BEGIN”
	Version
	Content Length
	Header
	Content
	“END”


Table 3

2.3.4 Multi-Threaded Processing

APTPFS uses multi-threads to maximize computation power. Because a peer needs to maintain a total of N SSL connections to its neighbors concurrently, it creates N+1 threads: one thread for each SSL connection plus one thread that listens to the peer’s local port. With this approach, each peer could handle messages from different connections at the same time. For example, one thread may write a publishing message into a connection while another thread is reading a query message from a separate connection.

2.3.5 Anonymous Routing

The pseudo code in Table 4 illustrates the anonymous routing algorithm.

	1. Receive a message from SSL connection channel

2. If it is not a valid message

3.     Report error

4. If it is a duplicate message

5.     Drop it

6. If it should be processed locally

7.     Process the message

8. If it should be forwarded or broadcasted to other peers

9.     Check routing flag inside the message

10.     If the routing flag value is “No”

11.         Choose a SSL channel from routing table based on destination address

12.         Forward this message through that SSL connection channel

13.     If the routing flag value is “ForwardHash”

14.         Extract the forward hash from the message header

15.         Calculate a new forward hash

16.         If the forward hash is a multiple of 3

17.               Set the routing flag to “TTL” inside the message header

18.               Set the TTL value to 7 inside the message header

19.               Broadcast the message to its neighbors

20.         Else 

21.               Replace the forward hash with the new hash inside the message header

22.               Broadcast the message to its neighbors

23.      If the routing flag value is “TTL”

24.         Extract the TTL value from the message header

25.         If the TTL value is 0

26.               Set the routing flag to “DropChain” inside the message header

27.               Randomly choose a SSL connection channel from routing table

28.               Forward this message through the SSL connection channel

29.         Else

30.               Decrease TTL value by 1

31.               Set the new TTL value inside the message header

32.               Broadcast the message to its neighbors

33.      If the routing flag value is “DropChain”

34.               If the peer is configured to ignore “DropChain” message

35.                   Drop it

36.               Else

37.                   Randomly choose a SSL connection channel from routing table

38.                   Forward this message through that SSL connection channel


Table 4
2.3.6 Unified Messaging Algorithm

To deter traffic analysis attacks, APTPFS introduces the concept of unified messaging to transfer fixed-length messages over the network. The pseudo code in table 5 outlines the unified messaging algorithm.

	Generate Unified Messages:

1. Calculate header size

2. Calculate content size

3. Calculate message size by adding header size to content size

4. If message size < 4096

5.     Generate (4096-message size) bytes garbage data

6.     Append the garbage data at the end of the content

7.     Send out the message

8. Else

9.     Split the content into chunks

10.     For each chunk, generate a separate message.

11.         Each chunk then becomes content

12.         Specify number of chunks and chunk index inside the header

13.         Send out the message

	Process Unified Messages:

1. Receive a message

2. Parse the header 

3. Extract the chunk information from the header

4. If number of chunk = 1

5.     Get the content size from the message header

6.     Retrieve the message content based on the content size

7. Else

8.     Get the content size from the message header

9.     Retrieve the content based on the content size

10.     Register the content along with chunk information inside a hash table

11.     If not all of the chunks have been received

12.         Wait to read next message

13.     Else

14.          Combine all of contents inside the hash table


Table 5
3 Test Result

The purpose of the tests discussed below is to prove that APTPFS works as a truly anonymous P2P file sharing system.

3.1 Test Environment

Test environment is shown in Figure 7. The implemented system was tested on a local area network comprising 5 PCs. The testing platform was Windows 2000. The machines had Intel Pentium II processors, at least 1 GB RAM and 3.2 GHz clock speed. The bandwidth of network is 100 MB.


[image: image7.emf]Peer B

Peer A

Peer C

Peer D

Peer X

PLS


Figure 7
Inside the test environment, there is one PLS server and five peers. Among those five peers, four peers (e.g., peer A, peer B, peer C, and peer D) are benevolent and one peer (e.g., peer X) is malicious. Configuration of those peers is recorded in Table 6. For simplicity, each peer can only establish one outgoing connection to its neighbors.

	Peer Name
	IP
	Port
	Virtual Address
	Neighbors

	Peer A
	133.164.98.33
	9222
	91858ab9c16e4833f435d6ff0dcce43fe46646e7
	B, D

	Peer B
	133.164.98.64
	9302
	0f727678584c01ace98fb300bfebf9fb00789e93
	A, C

	Peer C
	133.164.99.78
	8890
	2103e73e3ce0a59295b8a7e1cf5ab25ed84ac490
	B, D

	Peer D
	133.164.99.81
	8803
	fd1a5847995e573e5a3e649e590bf419662c9949
	A, C, X

	Peer X
	133.164.99.95
	9000
	30479a3c0d137e2878887ebcddb4bb42a4ae7413
	D


Table 6

3.2 Test Results

3.2.1 SSL Connections

With the PLS and peers running, network traffic was monitored by a network traffic monitoring tool (i.e., tcpdump). The results (see Table 7) show that all of the connections among system components (peers and PLS) are encrypted by SSL. The intruder (peer X) is able to capture messages sent between peer C and peer D. However the intruder could not gain any insight of those messages because they are SSL encrypted. Also the initial SSL connection would reveal identities, anonymity remains provided there is no association between virtual addresses and identities used in SSL connection.
	Connections
	SSL Enabled

	Peer A -> Peer B
	Yes

	Peer A -> PLS
	Yes

	Peer B -> Peer C
	Yes

	Peer B -> PLS
	Yes

	Peer C -> Peer D
	Yes

	Peer C -> PLS
	Yes

	Peer D -> Peer A
	Yes

	Peer D -> PLS
	Yes


Table 7

For completeness, the SSL initialization log on peer A is shown in Table 8.

	SSL Initialization on Peer A

	chain [0] = [

[

  Version: V1

  Subject: CN="LteyMWyjDpKAuEv9nr5p4g=="

  Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

  Key:  SunJSSE RSA public key:

  public exponent:

    010001

  modulus:

    aea9c87e 3c874742 985158a4 ed7439bb 13bafdad 1c798c5e cc953101 5701e2c1

    7f2ea4e6 ff040b2c c5edda34 773a0f77 34bb52e2 b9ecc4cd 4655726d 5033bf64

    4f0334e2 1dfbae58 59dba6bc e6db6455 c85afc35 8465965a 0eeb13a1 56cc4c51

    eb0d6224 7e5c655b 5875bfbf ce44157e 67e35d2d 4b707061 f0e924d6 a0d4b52d

  Validity: [From: Mon Mar 21 21:45:12 PST 2005,

               To: Sun Jun 19 22:45:12 PDT 2005]

  Issuer: CN="LteyMWyjDpKAuEv9nr5p4g=="

  SerialNumber: [    423fb0e8]

]

  Algorithm: [MD5withRSA]

  Signature:

0000: 4D 61 0F D4 E1 99 72 F7   04 75 92 E3 E1 0C 4B 3C  Ma....r..u....K<

0010: 17 DD 59 69 A9 13 96 7F   69 71 CE 31 44 F6 8A 03  ..Yi....iq.1D...

0020: 29 04 40 28 1D 88 2A 17   51 26 EA A8 33 7F 0A 56  ).@(..*.Q&..3..V

0030: 53 41 5D EA A8 F7 90 65   8E 35 DD 74 5F 7E 27 A0  SA]....e.5.t_.'.

0040: 29 3D 02 FB 06 73 FA C1   B1 B0 FE D5 1F 3F 5D 04  )=...s.......?].

0050: 16 12 03 D5 F0 FB 50 8F   89 0F 09 06 56 93 F8 3E  ......P.....V..>

0060: 0D 3D 7F 93 6A 62 42 89   3D 2E 54 4C E6 F7 A9 5B  .=..jbB.=.TL...[

0070: AB 8A DE 87 CC AB 0C 21   FF F7 0B 2D F4 48 F7 68  .......!...-.H.h

]

***

adding as trusted cert:

  Subject: CN="LteyMWyjDpKAuEv9nr5p4g=="

  Issuer:  CN="LteyMWyjDpKAuEv9nr5p4g=="

  Algorithm: RSA; Serial number: 0x423fb0e8

  Valid from Mon Mar 21 21:45:12 PST 2005 until Sun Jun 19 22:45:12 PDT 2005

trigger seeding of SecureRandom

done seeding SecureRandom

matching alias: b0890c


Table 8

3.2.2 Anonymous File Publishing

With the PLS and peers running, peer A published a file called “test.doc”. The file repository shows that both peer C and peer D have an encrypted copy of this file after the publishing process is complete. Also the secret key is sent to peer B. Furthermore, the encrypted files on peer C and peer D are renamed based on timestamp so there is no relationship between file name and file content. For example, the encrypted file is saved as “1109563182122” on peer C.  The intruder (e.g., peer X) then retrieves the encrypted file from C and the secret key from B. However, the intruder does not have any information that could link the file to the original publisher (peer A).  The only information that the intruder has is peer D has an encrypted copy of “test.doc”. Because peer D does not have the secret key to decrypt the file, administrator of peer D can plausibly deny that he or she knows anything about that file. Therefore the file publisher’s identity remains anonymous.

3.2.3 Virtual Addresses

Each time when a peer starts up, it is identified by a unique virtual address. The following are the virtual addresses that peer A gets when it is restarted for a total of five times.

· c66b592e58559072e25fbd83fce8c0bae9ecb6e0

· 93150ab7e4c16ba3c40bae5e168e8e20d0eb619c

· 080028e32821519888ad675d9804a3852a49c008

· 29042eeb7baa7a526d5f58fdfc985671e7692a75

· ce7dd2a276dbb1853be5ca570efff0f7aa3da074

Because these virtual addresses are random numbers, there is no way to trace them back to peer A’s static IP address. Therefore, the peer’s identity remains anonymous.

3.2.4 Hop-by-Hop Connections

With the PLS and peers running, peer A broadcast a query to search for a file called “abc.doc” that resides on peer C. Based on the peer log files, the query and the query result went through following paths.

· Query Path 1: A -> B -> C 

· Query Path 2: A -> D -> X

· Query Result Path: C -> B -> A

As shown above, both query and query result are propagated through the system hop-by-hop. Consequently, the receiver (i.e., peer A) does not know the exact location of the sender (i.e., peer C) and the sender (i.e., peer C) also does not know the location of the receiver (i.e., peer A). That is, hop-by-hop connections ensure anonymity of senders and receivers.

3.2.5 Forward Routing

With the PLS and peers running, peer D broadcasts a query to search for a file called “abc.doc” that resides on peer C. Since the intruder (peer X) is a neighbor of peer D, it immediately receives the query message. Suppose the intruder reverse-engineers the code and knows how to retrieve messages over the SSL channel. The intruder can then look for the routing information inside the message header as shown below.

	MessageType=Query

MessageID= 680f1b31ae6c4f836a98e226c46ccaec10e7787fcf889043 

Type=Search

From= fd1a5847995e573e5a3e649e590bf419662c9949

To=Any

Flags=ForwardHash 

TTL=0 

ForwardHash=92 

Length=40 

Status=successful 


Table 9

As long as the intruder does not know that peer D’s virtual address is fd1a5847995e573e5a3e649e590bf419662c9949, he or she can not conclude that this message originated from peer D since the message is transferred under forward routing. 

3.2.6 Drop Chain Routing

Suppose that the intruder (peer X) suspects that peer D has a file called “secrets.doc”. Suppose the intruder reverse-engineers the code and knows how to send messages over the SSL connection channel and he broadcasts a query with TTL value 0. When the query arrives at peer D, it is forwarded to peer A in drop chain mode. Table 10 shows the message headers received at peer D and peer A.

	Peer D
	Peer A

	MessageType=Query 

MessageID=

fbda7a4f36fe623622c3da8f4d36f0d0194b44f8ab86cc84 

Type=Search

From=

30479a3c0d137e2878887ebcddb4bb42a4ae7413

To=Any 

Flags=TTL

TTL=0

ForwardHash=0 

Length=68 

Status=successful 


	MessageType=Query

MessageID= 

fbda7a4f36fe623622c3da8f4d36f0d0194b44f8ab86cc84 

Type=Search

From=

30479a3c0d137e2878887ebcddb4bb42a4ae7413

To=Any 

Flags=DropChain 

TTL=0 

ForwardHash=0 

Length=68 

Status=successful 




Table 10

When the intruder receives the query result from peer D, he or she can not conclude that the query result originated from peer D since it is possible that peer A is the originator of the result.

3.2.7 Maximum Number of Registrations

Suppose that the intruder (peer X) tries to learn the network topology by sending many registration messages to the PLS. The test results show that the PLS only accepts up to three registration request from the intruder. Therefore the intruder can not easily get all of the IP addresses through multiple registrations. 
3.2.8 Unified Message Size and Bogus Messages

The intruder (peer X)’s log file shows that each received message has a fix length of 4096 bytes. Also the intruder receives some bogus messages at random interval. As a result, it is very difficult for an intruder to differentiate messages by simply monitoring the traffic.

4 Conclusion and Future Work

4.1 Conclusion

This paper presents an anonymous P2P file sharing system called APTPFS, which ensures anonymity for both producers and consumers of file. With the help of SSL, APTPFS effectively prevents network eavesdropping. Because each APTPFS peer uses a virtual address to hide its identity and always avoids direct connections to others, it is highly unlikely that third parties can identify the participants involved in a file sharing session [4]. Additionally, APTPFS anonymous content publishing allows the publisher to plausibly deny that the content originated from him or her [5] [3]. Finally, APTPFS takes many measures (forward hash [9], drop chain [9]) to protect the system against traffic analysis attacks.

4.2 Future Work

4.2.1 Proxy Peer

P2P applications should have the potential to accommodate thousands of machines. A potential bottleneck in APTPFS is network bandwidth.  The APTPFS system achieves anonymity via SSL and hop-by-hop connection. However both SSL and the use of hop-by-hop connections introduce network overhead.  A proxy peer is a step in the direction of resolving this issue. The purpose of a proxy peer is to cache the most popular files so that those files can be retrieved as quickly as possible. The entire P2P network is divided into areas that share similar network characteristics; each area may contain many proxy peers. Network bandwidth could be saved by retrieving files from proxy peer since proxy peer are normally located inside the same sub-network as the receiver. The security concern of this approach is that a malicious proxy could cause more damage to the system than a malicious peer. Therefore, proxy must be well-known and be placed in a secured place. 

4.2.2 Wild-Card Search

Often, a user may not be able to remember the exact name of a desired file. In order to download the file, he or she may want to first view a list of files that have similar name. GNUnet introduces a new hashing algorithm that can support wild-card search [7]. In the future, APTPFS will address this requirement by using the same hashing algorithm. 
4.2.3 File Splitting

During the publishing process, the publisher could split the file into chunks and send the chunks to separate peers so that each peer holds only a piece of the file. This approach would make it more difficult to trace a particular file back to its original publisher.

4.2.4 Host Caching

Currently APTPFS peers rely on the PLS to locate their neighbors. In the future, APTPFS could also support peer caching. With peer caching, each peer will save its neighbors’ information in a local data store after initial discovery. At the next use of APTPFS, the peer will simply load its neighbors’ information from the local data store and use that information to establish SSL connections. Host caching can effectively reduce the threat of a single point of failure within the system. When a neighbor is no longer available, the peer again contacts the PLS to retrieve a new list of neighbors.
5 Appendix

5.1 APTPFS Protocol Messages

	Message
	Description
	Format
	Example

	Registration
	Used to announce the peer’s presence to the PLS. PLS receiving.
	MessageType: Registration

Port: <Port Number>
	MessageType: Registration

Port: 7900

	Welcome
	The response to a Registration message. Includes neighbors’ information. 
	MessageType: Welcome

Neighbors: <IP>:<Port>;<IP>:<Port>…

Status: [successful | error]
	MessageType: Welcome

Neighbors: 135.164.99.77:8091;133.178.101.21:9600

Status: successful

	Ping
	Used to announce the peer’s presence to a neighbor. 
	MessageType: Ping

Status: [successful | error]
	MessageType: Ping

Status: successful

	Pong
	The response to a Ping message. 
	MessageType: Pong

Status: [successful | error]
	MessageType: Pong

Status: successful

	Query
	Used to look up files or keys in the network. A peer receiving a Query message will respond with a QueryResult message in case a match is found against its local data store.
	MessageType: Query

MessageID: <ID string>

From: <Query sender’s virtual address>

To: [<Query Receiver’s virtual address> | All]

Flags: [No | ForwardHash | DropChain]

TTL: <hop count>

ForwardHash: <forward hash>

Length: <body length in bytes>

Type: [Search | SearchKey | SearchFile]

Status: [successful | error]

<query string>
	MessageType: Query

MessageID: f076c96da9409b8f69dceeb1cf2b7296e89583c487065c78

From:  2ea8a632f21e036d49024afc21c7d72183d33786

To: Any 

Flags: ForwardHash

TTL: 0 

ForwardHash: 115 

Length: 40

Type: Search 

Status: successful 

<query string>

	QueryResult
	The response to a Query message. This message provides the recipient with information needed to get the data matching the corresponding Query.
	MessageType: QueryResult

MessageID: <ID string>

QueryID: <the corresponding query message ID>

From: <vitual address>

To: <virtual address>

Type: [SearchResult| SearchKeyResult | SearchFileResult]

TotalChunks: [total chunks]

ChunkIndex: [Index of the chunk in this message]

Flags: No 

Length: <body length in bytes>

Status: [successful | error]

<encrypted query result> 
	MessageType: QueryResult

MessageID: b6e64628638d3ff971b166d46036fc0cbd95411a2b419a5c

QueryID: 45fe13a5d53376cb39c0006218481bc8bad07ba43a0d4624

From: 214295802849a6d64b3a5d9d8240cd16f2b42465, 

To: 2ea8a632f21e036d49024afc21c7d72183d33786

Type: SearchKeyResult,AES,fe955d35447c168960760448715b63faba23405d

TotalChunks: 1

ChunkIndex: 0

Flags: No

Length: 16 

Status: successful

<encrypted query result>

	Publishing
	Used to publish files in the network. A peer receiving a Publish message will respond with a PublishingResult message
	MessageType: Publishing

MessageID: <ID string>

From: <vitual address>

To: <virtual address>

KeyAlgorithm: <Key Algorithm>

FileDigest: <File digest>

Flags: No

H1: <hash value of the file name>

H2: <hash value of the file>

Length: <body length in bytes>

Type: [Key | File]

TotalChunks: [total chunks]

ChunkIndex: [Index of the chunk in this message]

Status: [successful | error]

<encrypted file content>


	MessageType: Publishing

MessageID: bd7fa9f15138a7f4a92643810f4ec2307a7e3f3f753f7e08

From: 2ea8a632f21e036d49024afc21c7d72183d33786

To: 214295802849a6d64b3a5d9d8240cd16f2b42465

KeyAlgorithm: - 

FileDigest: - 

Flags: No

H1: 334b8a06cfca351960f21dcb63a74aa0a81e9e28

H2: 2191189af4256e1eb1ebb8911d869c0699c390e2

Length: 1520

Type: File

TotalChunks: 1

ChunkIndex: 0 

Status: successful

<encrypted file content> 

	PublishingResult
	The response to a Publishing message. This message informs the recipient with the status of publishing process.
	MessageType: PublishingResult

MessageID: <ID string>

PublishingID: <the corresponding publishing message ID>

From: <vitual address>

To: <virtual address>

Flags: No

Status: [successful | error]


	MessageType: PublishingResult

MessageID: 7a983f42a370b83d67c8031231f95845293c121f99f44b00

PublishingID: bd7fa9f15138a7f4a92643810f4ec2307a7e3f3f753f7e08

From: 214295802849a6d64b3a5d9d8240cd16f2b42465 

To: 2ea8a632f21e036d49024afc21c7d72183d33786

Flags: No

Status: successful

	Bye
	Used to announce the peer’s absence to the PLS.
	MessageType: Bye

Port: <Peer Port>

Address: <Peer Address>

Status: [successful | error]
	MessageType: Bye

Port: 9001

Address: 127.0.0.1

Status: successful

	Note: Flags inside the message could be one of the following values:

· No

· ForwardHash

· DropChain

NONE: Indicates that the message is a non-broadcast one.

ForwardHash: Indicates that a broadcast message should be forwarded through a random number of hops. The "hash" is a 40-character hex-encoded SHA1 hash value.

DropChain: Indicates that a message should be processed and sent to a neighbor. Each peer should decide randomly at startup whether to drop or pass DropChain messages.

Note: 

· TTL field, ForwardHash, and DropChain are only applicable in Query messages.


Table 11

6 References

1. Andy Oram, Peer-To-Peer: Harnessing the Power of Disruptive Technologies, O’Reilly & Associates, 2001

2. Brendon Wilson, JXTA, New Riders Publishing, 2002

3. Christian Grothoff, An Excess-Based Economic Model for Resource Allocation in Peer-to-Peer Networks, Purdue University, 2003

4. Christian Grothoff, Ioana Patrascu, Krista Bennett, Tiberiu Stef, and Tzvetan Horozov, The GNet Whitepaper, Purdue University, 2002

5. David Goldschlag, Michael Reed and Paul Syverson, Onion Routing for Anonymous and Private Internet Connections, Naval Reaearch Laboratory, 1999

6. Dana Moor, John Hebeler, Peer-to-Peer: Building Secure, Scalable, and Manageable Networks, McGraw-Hill Osborne Media, 2001

7. Dennis Kügler, An Analysis of GNUnet and the Implications for Anonymous, Censorship-Resistant Networks, Federal Office for Information Security, 2003

8. Ian Clarke, Oskar Sandberg, Brandon Wiley, Theodore W. Hong, Freenet: Distributed Anonymous Information Storage and Retrieval System, In Proc. of the ICSI Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA, 2000

9. Jason Rohrer, MUTE: Simple, Anonymous File Sharing, http://mutenet.sourceforge.net, 2004

10. Krista Bennet, Christian Grothoff, Tzvetan Horozov, Ioana Patrascu, and Tiberiu Stef, GNUNET – A truly anonymous networking infrastructure, Purdue University, 2002

11. Michael J. Freedman, Emil Sit, Josh Cates, and Robert Morris, Introducing Tarzan: A Peer-To-Peer Anonymizing Network Layer, MIT Laboratory for Computer Science, 2002

12. Michael K. Reiter and Aviel D. Rubin, Crowds: Anonymity for Web Transactions, AT&T Labs, 1998

13. National Security Agency, CNSS Policy No. 15, Fact Sheet No. 1, National Security Agency, 2003

14. Rags Srinivas, Using AES with Java Technology, http://java.sun.com/developer/technicalArticles/Security/AES/AES_v1.html, 2003

15. RSA Laboratories, RSA Laboratories' Frequently Asked Questions About Today's Cryptography, Version 4.1, http://www.rsasecurity.com/rsalabs/node.asp?id=2152, 2004

16. Taher Elgamal, The Secure Sockets Layer Protocol (SSL), Danvers IETF Meeting, 1995

APTPFS





File





File





Query





Query





Query





Query





Query





Query





Registration





Registration





     SSL





Socket I/O





                                                             Utility Layer





SSL





Hashing





AES





Random Numbering





                                                      File Sharing Layer





                                                            P2P Layer





PLS Server





P2P Server





Messaging





Routing








    SSL





Registration





     SSL





     SSL





     SSL





     SSL





     SSL





     SSL





     SSL





Peer F





Peer D





Peer B





Peer E





Peer C





Peer A





Peer Listing Server (PLS)








Figure 6








File Retrieval





File Publishing





File Searching





Peer W





Peer Y





Peer Z





Peer B





Peer X





Peer A





  TTL: 4





TTL: 5





FORWARD_85








FORWARD_155





FORWARD_155





FORWARD_221








Peer W





Peer Y





Peer Z





Peer B





Peer X





Peer A





Peer C





Peer S





DropChain





DropChain








TTL: 0





Peer Y





Peer Z





Peer B





Peer X





Peer A





H1: The hash of file name 


H2: The hash of encrypted file 


RN: The random AES key


AES (file, RN): the encrypted file


Note: Dotted lines form file distribution paths while thick links form key distribution paths








H1/H2


RN





H1/H2


RN





Peer J





H1/H2


AES (file, RN)





Peer G





Peer E





Peer F





Peer A





H1/H2


AES (file, RN)





Peer C





Peer D





Peer H





Peer I





Peer B





DropChain





























  TTL: 5








PAGE  
10

_1173030891.vsd

