Tamper Resistant Software

Design and Implementation

A Writing Project

Presented to

The Faculty of the Department of

Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Computer Science

By

Konstantin N. Skachkov

December, 2003

Table of Contents

 Page

Introduction

3

Chapter 1: General Design

4

Brief Abstract

5

Introduction to the Problem of TRS

5

No Simple Answer

7

Making a program hard to read

7

Guards

8

Static Analysis Prevention Using Encryption

9

Hardware Solution

10

Execution and Static Analysis

11

Basic Design

13

Forced Execution

15

The Bootstrapping Problem

17
Quick List of Features

17

More Specific Design

19

Two Alternative Designs

20
Combination Is Required

21

Chapter 2: Specific Implemetation

22

Introduction

23

Execution Environment

23

Instruction Set

24

TRS Design

26

Deterministic First Execution

30

Alternative Instruction Set

31

Guards Design (Alternative Design)

31

Guard Example

32

Further Enhancements

33

Encryption

34

GUI

35

Conclusion

36

References

37

Appendices

Appendix A: Code of the first implementation

Appendix B: Code of the second implementation

Introduction

During two different stages of our project, we have designed a general TRS system, and then realized a more specific implementation of it. This report describes both stages of the project. First, we describe the general design in Chapter 1. Then, the implementation is discussed in more detail in Chapter 2. The rest of the report includes the code of the implementation, and other complimentary material.

Chapter 1

General Design

Brief Abstract

The goal of our project was to design a TRS (Tamper Resistant Software) system. The primary objective was to make tampering with code impossible or at least difficult. This chapter contains the description of the general design.

The key elements of our TRS system are encrypted code and a tamper checking technique. Encrypted code is decrypted in blocks, so that only a relatively small section of the code is in the clear at any given time. This approach eliminates any static analysis of the code and makes dynamic analysis more difficult, particularly when combined with anti-debugging measures. For example, such measures may include checking if a particular debugger is running, and refusing to continue execution in that a case. Tamper checking is used, so that if someone tries to change any part of the code, it will be detected.

Introduction to the Problem of TRS

The idea is to create a program execution environment in which it is very hard to hack a given program. By hacking we mean determining the internal structure of the program, or changing the program even slightly so that it does what a hacker desires.

As the paper [2] suggests, this task is at some level, almost hopeless, since attackers have access to the machine code of the program. Intuitively, given an unlimited amount of resources, an attacker can break any given scheme that is protecting a program from tampering. One obvious way would be to redesign the program from scratch. Since nobody can be prevented from doing so, we focus on making the task of hacking the program harder or more expensive than that of initial creation of the program.

Let us make a distinction between the general concept of Tamper Resistant Software, and the TRS system. A TRS system provides a description of a format of a program that could be executed by a mechanism. The mechanism would be another important part of the system. There could be both software and hardware solutions to the TRS problem. In a software solution, the execution environment will be a program that interprets our TRS. Tamper Resistant Software is the program itself, and it is being protected by a certain mechanism.

No Simple Answer

While there are several approaches to creating programs that are hard to tamper with, the effectiveness of any given approach if used alone is not clear. An attempt to create a TRS system that would be easy to analyze in terms of its usefulness was made in [20]. But we follow a generic approach based on common sense by including several techniques that we know of and that would be helpful in our design. Basically each technique will provide a solution for a small “sub-problem” of our big problem – to create a TRS system. See the bibliography section for more details on some of the techniques that we discuss briefly.

Making a program hard to read

Some ideas on how to make a program hard to read are discussed in the paper by Mambo, Mirayama, and Okamoto [16]. The basic components of their solution are shuffling the code instructions, and introducing dummy code into the program (code that does something unrelated to the program’s workflow). Perhaps of more interest is another general idea introduced in the same paper – the idea of having each copy of the program look different from the others, so that when a cracking solution is found for one copy, it would not be applicable to the other copies of the code. Making a program hard to read is valuable, but not sufficient for a TRS – we require that programs are hard to modify.

Guards

Part of the problem we struggled with was how to prevent somebody from changing a program’s code. Several attempts are discussed in the literature. One is to protect code by inserting “guards” into it. This interesting approach uses techniques described in detail in a paper by Chang and Atallah [9].

The basic idea of [9] is to insert pre-written sections of code that calculate checksums of other sections of the code. When such a guard encounters a changed section of code, it will detect it through a change in a checksum. There are additional details that need to be considered. However this approach provides us with a way to spread the “single point of failure” into an “area of failure”. One would need to modify the whole area in order to modify even one instruction in the code and keep the program running. Also it is important to have as many guards detect a given instruction of code as possible without losing too much performance. The paper [9] discusses performance issues as well, and, in fact, shows that such a system with low “checking overhead” is possible to construct.

While guards are a very interesting idea, the concept has some fundamental weakness. The most obvious issue is that an attacker may find all the guards and disable them at the same time, thus breaking the protection system. On the execution graph (or data dependency graph) of the program all the guards would look like instances of a virus, each attached to the main graph. Steps could be taken to make guards look different from each other (introducing various classes of guards with different structure, etc.) However, due to the common task that is being performed by each guard, as well as due to the great number of instances of a given guard class, the structure of a guard might be determined by an attacker.

Different approaches for dealing with this problem are possible. Having many classes of guards is one such approach. In the next section, we discuss a simpler idea that achieves a similar result. In conclusion, guards provide a way to ensure that the code has not been altered only in the case when guards themselves are not detectable. One of the two alternative implementations discussed in Chapter 2 includes guards.

Static Analysis Prevention Using Encryption

It is critical to prevent static analysis of the code. If an attacker cannot look at the code and build its graph of execution, then he or she cannot detach guards, for example. Ideally, we would like to ensure that an attacker will not be able to observe or change the code at all. As a partial solution, we encrypt the code with a cipher.

Encryption introduces some issues. Question such as “Which cipher to use?” or “Should we use a symmetric ciphers or a public key encryption system?” are all relevant. A more critical issue is where to store the key. In our case, the key cannot be stored on the same computer, since the attacker could find it and decrypt the code, thus removing this layer of protection.

Hardware Solution

It is very tempting to try to achieve tamper-resistance by using specialized hardware. For example, a processor could be modified, so that it uses a public-key crypto-system. Imagine such a processor with two additional instructions: to create a private key, and to generate a public key. The private key remains inside the processor physically at all times. The public key is sent to the program’s creator, and there the program is encrypted using the public key. Later, the encrypted program is sent to the destination computer. There it remains encrypted on the hard drive, but once it reaches the internals of the processor, it is decrypted using the private key and executed.

We do not have to encrypt the whole program this way. It is sufficient to encrypt the first instruction, and then use the hash code of the decrypted first instruction, which also needs to be stored only inside the processor, to decrypt the second instruction and so on. A better explanation of such a chain-like dependency can be found in the software solution we present in section Basic Design of Chapter 1.

Introducing new hardware to the market has its disadvantages. It is possible, that people would refuse to buy such hardware, which imposes considerable control over what they can do. Anyway, this approach is not the one we pursue in this paper. For more information about public key cryptography see [15]. Another interesting hardware solution is examined in [17]. There also exists a proposal by Intel and Microsoft to embed security within the CPU and OS.

Execution and Static Analysis

To make tampering hard we need to obscure the internal structure of the program. If we can force an attacker to execute a program at least once before he can observe the internal structure, this would afford us a layer of protection and control.

It is not an easy problem to force someone to execute a program before they can examine it. First, we need to define what we mean by “execute”. Then, a way to force execution is needed. The goal then, is forced execution. Of course, we also need to examine what kind of protection this new concept provides, if implemented.

How do we know that a program is being executed? An obvious practical answer to this question is in terms of the actual process of execution on a specific computer or simulator. During such execution, an executable program, usually contained in a file, is loaded into memory. Then a processor takes control by executing instructions in the program sequentially. But, this particular interpretation is too narrow for our purposes.

We are more interested in determining in what ways execution differs from static analysis. Through encryption we are planning to ensure that static analysis is not sufficient to observe the raw code. In particular, now we need to specify what occurs during execution of a program that differs from what occurs during static analysis. Knowing that difference, we can introduce some such elements into our design.

One fundamental difference between static analysis and execution is that during execution, some data is being stored in memory, and the process depends on that data. During execution, a processor reads instructions of the program, interprets them, loads arguments into registers, performs the operation required inside the processor, and stores some information back into memory. Then, the same process happens with subsequent instructions. In static analysis, a similar thing occurs. We could imagine a person looking at instructions one by one, analyzing each instruction, and going to the next one if an instruction is encrypted, that person or computer could calculate the key and decrypt the next instruction.

So, the crucial point is that the access that the processor has to the data is the only difference between execution and static analysis. Therefore, the important question for a particular design is what kind of data and what kind of dependency on that data exists. Later in the paper, we see how this is related to the idea of forced execution.

Basic Design

Our design is similar to the one mentioned in the hardware section above. We use information from an unencrypted block number i (such as a hash code of it) as a key to encrypt block number i+1. One important thing to note is that blocks are ordered not in the sense of their physical location in the file or on the disc, but in the logical sense – the one that is executed first comes first. After executing block number i, the mechanism is also able to calculate its checksum, which is necessary to decode block i+1 (in order of execution). After that is done, the process repeats for subsequent blocks.

The order of the blocks is important. Of course, if the code is “linear” (i.e., no jumps), the order is the same as the order in which the blocks are located in the file. However, it is likely that there will be one or more jump instructions inside a block. Execution of such instructions leads to the potential necessity of a jump to any other location. Therefore, we might not only need to store one key in each block for encrypting the next block, but several keys to any possible next blocks. Obviously, we also need to store (or compute) information about which block to jump to.

We can imagine a graph structure with our blocks treated as nodes of the graph. The keys associated with the nodes could be hash values, or arbitrary numbers. When the decision to jump to a particular destination is made, the proper key is utilized to encrypt the next block.

One advantage of this approach is that we use different keys for different blocks. Another is that keys are not stored in the clear. Also, our interpreter is only accessing one data block at a time. After one block finishes execution, the next block is encrypted and written into the memory on top of the old one. Consequently, with this approach we leave only one block in the clear at a time. Another significant feature of our scheme is that no block is ever re-encrypted. Re-encrypting a block would introduce a significant security flaw, because it may be easy to locate places that do encryption, and thus acquire the “plaintext” version of the block, or to replace a block prior to its re-encryption.

Forced Execution
Since the protection measures discussed so far are of a static nature, the possibility of static analysis still remains. To deal with this problem, we could make encryption of the i+1 block of code depend not only on block i, but also on some data stored in the memory. Doing so would make static analysis in its strict sense impossible to perform. Instead, a hacker would have to actually run the program (at least conceptually) and trace all the memory values.

If this approach is used, the whole execution process and the keys depend on the data, which is dynamic. How can we implement this and obtain the same keys regardless of the execution path through the code? We need to assume that the first run of the program always does the same thing, thus producing the same dynamic data. For example, all values of variables, introduced in the current block of code can provide us with such dynamic data. In order to ensure that they are the same for every first execution, the program run needs to be controlled by a certain parameter. For example, we might have a test suite, developed together with the program, which always works the same way, and thus produces the same dynamic data at all steps of the execution.

The first run of the program is crucial and also very different from the subsequent runs. During the first run, the program is decrypted with keys based on certain dynamic values, while during the rest of the runs the keys are static. The first run is the one that is being enforced. Without it, no one is able to access the code of the program directly. Let us stress again the reason why this is the case. To access the code of the program block by block, the attacker (or our own mechanism) needs the key from the previous block. The keys are not available in the initial state of the program after installation. To obtain them, the attacker needs to go through a process of computations to get the data on which the key depends. We believe this is as close as we can come to implementing forced execution.

If we are successful in implementing forced execution, we could also worry about controlled execution. It seems feasible to introduce certain code into the program so that it is run when the program is run the first time. For example, such code might implement some anti-debugging features. We do not pursue this further in this paper.

The Bootstrapping Problem

One important question is what to do with the first block. Do we encrypt it? If yes, then where do we store the key? This problem is well known and referred to as the bootstrapping problem.

We believe that bootstrapping problem is being partially countered by forced execution feature. To use the weakness introduced by not encrypting the first block of code, an attacker would still have to execute the program at least once, which promises to be a difficult task. In addition, we could encrypt the first block and store the key somewhere else.

Quick List of Features

In this section we present the general design of our proposed TRS system in a form of a list of features. The crucial features include:

· Program code is divided into blocks of variable length

· Each block is encrypted with a symmetric cipher (such as DES or TEA [19]), where the secret key is stored as a part of the previous block (and possibly some other dynamically generated data)

· The first block is not encrypted. We believe that the bootstrapping problem can be countered by forced execution feature.

· The encryption of the next block also depends on some dynamic data generated during execution (for a simple function it could be local variables and their values)

This feature provides dynamic dependence of the cipher-text on execution details of the program, thus forcing execution to be performed at least once.

· The steps for encrypting the code:

a. The plaintext code is broken into parts.

b. The first part is executed, and the value of it and its data’s hash is computed (plus dynamic data).

c. The second part is encrypted with the computed/generated value.

d. The same process is repeated iteratively for all the blocks of code

· To execute the encrypted program, the following is needed:

a. The execution mechanism mentioned above does not know the key values, so it is not able to decrypt the code. However, it can execute the first block that is in the clear.

b. Next, the mechanism can decrypt the remaining code by first executing previous blocks, calculating the hash of data and the code block, and thus acquiring the key for decryption of the next block.

· Of course the encrypted version of the program should be stored in a file, and it should be decrypted by the mechanism any time it is executed (block by block).

More Specific Design

There are several questions that need to be asked and answered if an implementation of our design is to be built. We must determine what kind of encryption to apply to the blocks and what kind of blocks to use. This depends primarily on a specific design and a specific system. Blocks could be of the same size or of different sizes. They could be acquired by chopping the program into parts, or by using some higher level logical structure (for example, each function can be a block). However, as long as we are breaking the program into parts and making the attacker deal with a complex puzzle of pieces, we are increasing the attacker’s work factor.

Other important questions include what kind of programs to encrypt, what kind of an interpreter to build, and how to provide integrity protection?

Our answers to these and several other related questions appear in Chapter 2.

Two Alternative Designs

During the course of the project, we have planned to incorporate a dynamic tamper resistant feature, described earlier as guards. Unfortunately there is no way to directly combine guards with the TRS design described in the previous section. As we explained earlier, guards are pieces of code that are introduced into a program in order to verify that the program itself has not been dynamically replaced. This is accomplished by calculating checksums of certain sections of code and then comparing them with pre-stored values. It is indeed a very useful idea. However, if the program is encrypted in blocks, as it is the case with a TRS program, it becomes clear that it is impossible to calculate checksums of the TRS program dynamically. The reason for that is that at some point in time we would have to calculate checksums of code that has not been decrypted yet. So, the guards may be introduced only during a separate step, that does not involve encryption. That is why we have chosen to implement them as a part of a separate alternative design. The basic idea behind guards should be clear at this point, so we concentrate on details of our specific implementation of them later in Chapter 2.

Combination Is Required

Some previous work has been done in the area of TRS. There also are various techniques developed that solve particular parts of the problem with some success. However, we are of the opinion that only a combination of many techniques is strong enough to create a useful TRS. The implementation part of this project demonstrates the importance of such a combination. However, sometimes combination of certain methods is difficult, or impossible to achieve. An example of such situation is guards and our TRS design. Perhaps in the future some way of combining guards with forced execution approaches will be found.

Chapter 2

Specific Implemetation
Introduction

This chapter includes a description of the specific design (and implementation) we developed. Also, some of the challenges introduced during earlier stages have shaped the project in unexpected ways. For instance, we had to split our design into two alternative cases. Reasons for doing so are also explained below.

Execution Environment

We have chosen to implement our TRS system in a restricted execution environment. It consists of a program space, a memory array, and a current instruction pointer. Basically, we have a simple von Neumann architecture implemented as an interpreter. The current instruction is executed, then the pointer is moved to the next one, if it was not a jump. In case of a jump, the next value of the current instruction pointer changes based on a certain condition.

The environment is written in Java. In terms of Java code (see appendix A), there are several core classes. Our Executioner class implements execution of instructions. It has direct access to the memory array, implemented as a simple array of integers. Valid memory addresses start at zero. Our Fetcher class controls the program space, in which instructions are numbered starting from one. Also, it fetches instructions one by one to the Executioner and keeps track of the current instruction pointer. Additional classes are Block, Instruction, Encoder and Decoder. The Instruction class allows representation of various instructions, listed in the next section. The remaining classes will be discussed below.

Instruction Set

In an architecture of von Neumann type there usually are three types of instructions present. One type allows us to perform arithmetic operations, such as addition, subtraction, multiplication, and division. Instructions of another type perform memory related operations. They store values in the computer’s memory, and retrieve values from it. The third type is also very important. These instructions control the flow of execution. We shall refer to these three types as arithmetic, memory, and jump instructions respectively. In our basic environment the distinction between these three types is not that explicit. Nevertheless, all three types of semantic are covered by our instruction set.

We implemented eight instructions, of which the last one is optional. The instructions are: if, write, copy, add, mult, sub, div, and icopy (optional). The meanings of these are explained in the following table:

	Syntax
	Explanation

	if arg1 arg2
	If memory cell at arg1 is not zero jump to instruction arg 2. Else go to the next instruction.

	write arg1 arg2
	Write value arg2 to the memory location arg1.

	copy arg1 arg2
	Copy value from memory location arg2 into memory location arg1.

	add arg1 arg2 arg3
	Add arg2 and arg3, and put the sum into memory location arg1.

	sub arg1 arg2 arg3
	Subtract arg3 from arg2, and put the result into memory location arg1.

	mult arg1 arg2 arg3
	Multiply arg2 and arg3 and put the result into memory location arg1.

	div arg1 arg2 arg3
	Divide arg2 by arg3 and put the result into memory location arg1.

	icopy arg1 arg2
	Copy the content of the instruction (number stored at memory location arg2) into memory location arg1.

Instruction if is obviously a jump instruction. write, and copy are memory access instructions. add, mult, sub, div are arithmetic instructions. icopy is a special kind of a memory access instruction that allows direct read access to the program space. The reasons why this instruction was implemented, as well as why it is optional will be explained below.

A program in our execution environment consists of the instructions listed above. We chose to store our programs in files with “.smpl” extention. This comes from the word “Simple”. Here is an example of a small program written in the Simple language:

write 3 1

mult 2 1 1

add 0 0 2

sub 1 1 3

if 1 2

TRS Design

Our general TRS design was explained in the Chapter 1. This section covers the specifics of the implementation. Generally speaking there are two parts to the process we present – encryption and decryption.

During encryption, the program written in Simple is broken into parts. One of the important questions is how big the parts should be. The tradeoff is clear. The more parts we have, the more keys we have to store or calculate, and the more the computational overhead is. On the other hand, the more parts we have, the better the effect of the TRS system, because each part has to be analyzed in order to crack the code. Baring these considerations in mind, we have chosen to make each block equal to one instruction. The classes Block and Instruction are used in our implementation to represent these concepts, as well as to allow instructions to be converted among various forms of representation, encrypted, and decrypted.

After a .smpl program is broken into instructions, it is encrypted. Both encryption and decryption of the program require execution of it in our environment. The Executioner class keeps track of a certain secret value, that it calculates based on the instructions executed so far, as well as on certain values which certain memory cells contain at certain times. So, after the first instruction is executed, the secret value is obtained from the Executioner, and is used as a key to encrypt the second instruction. Repeating the process, we obtain an encrypted version of our program. The only instruction that is not encrypted is the first one.

Decryption is very similar to encryption. Since the first instruction is not encrypted, we can execute it. The secret value obtained from the executioner will be exactly the same, so we shall be able to decrypt the second instruction. Repeating this process for other blocks, we obtain the decrypted version of our program.

Several comments are necessary at this point. First, since the execution process is not linear, some of the instructions will be executed more than once. In that case, during encryption such instructions are only encrypted the first time they are executed. Obviously, there is no need to decrypt the same instruction twice as well. (Also, normally not all of the instructions are executed during a given execution process, so it is important that the first run would cover all of them at least once; otherwise some of them will stay encrypted and will not be accessible during consequent runs.)

Second, the program’s first execution on the user’s machine will decrypt the program. The rest of the executions will be somewhat different. So, we need to make sure that our execution process is deterministic, so that the keys match the encrypted blocks. This is achieved through introduction of a controlling parameter into the memory, as well as through the choice of the function that calculates the secret value. We shall explain this in more detail in the next section.

Third, the first block is not encrypted. Our position on necessity of that encryption is explained above. We have previously stated that the bootstrapping problem is compensated for by introducing forced execution. Readers interested in the bootstrapping problem may refer to Chapter 1 for a more detailed explanation. Of course, not encrypting the first block makes the job of an attacker somewhat easier. Naturally, this solution should be avoided in practice, because even if we can make the hacker’s job just a bit harder we achieve better protection for the program.

Finally, other solutions are available that would not leave the program in the open after executing it the first time. Here practice and theory may go different ways. On the one hand, the point of the TRS system is to make static analysis harder. So, we have to encrypt the program. In order to do so, we need keys. If keys are dynamically generated, same keys cannot be acquired during every execution, because each subsequent execution is controlled by a different value of a parameter. So, keys have to be stored somewhere. One alternative design would be to store the keys as we execute the first time, and then use them each time a corresponding instruction is executed. On the other hand, we have chosen to stress the concept of forced execution. So, the question whether the program is encrypted or not after it is executed at least once is, in this sense, irrelevant.

In terms of the actual process implemented, another file is generated during the encryption of the program. It has an extension .trs. This file is the program that is delivered to the user. Thanks to the forced execution, the user has to run the program in a legitimate environment at least once. Here is an example of a .trs file:

131075 65536

435279417 992576704

1235263293 482312397

1743277259 1099615671

136996780 71885379

You may notice, that the first line of this file is somewhat different than the rest of the lines. Each line represents an encrypted block of code. The difference is due to the fact that the first line is not encrypted. Actual details on representation of the block do not matter. After the .trs file is executed, the original .smpl version of the program can be obtained, or it can be left encrypted.

Deterministic First Execution

This section explains why the first execution is deterministic. Basically the function that is involved in calculating the secret value can be any of a great number of functions. We used a superposition of several xor functions to calculate the cumulative xor of the following arguments: the instruction itself, the new values that appear in the memory as the result of this instruction, and the previous secret value. As long as no random memory values from un-initialized locations are used as arguments, execution is deterministic. In other words, our function guarantees us that the keys will be the same any time we arrive to the same place with the same initial conditions.

Another important issue is one of initial memory values and the initial parameter of the program. We chose the first memory cell as a location for such a parameter. We think of it as an argument for the program. The rest of the locations are supposed to contain zeros, but with our choice of the function for calculating the secret value initial zeros are not necessary.

Alternative Instruction Set

The original instruction set included only the first seven instructions. Traditionally, the space for the program and the space for the variables are distinct in the Harvard architecture. For example, the code cannot modify itself. However, in order to implement guards, we need to access the program’s space. That is why we had to implement the icopy instruction. It does not modify the program’s space. However, it makes a copy of a certain instruction and places it into the memory. So, this instruction can be used as a means of calculating checksums of certain areas of the code. All this is done in the separate second implementation version.

Guards Design

Our second design implements guards. We implemented a routine that adds a guard at a specified location of the program. Of course, programs with guards are bigger, and they may require more memory than the original programs. All of the pre-calculated checksums are stored in the end of the memory array. The guard goes through a specific area of code and calculates the checksum. If it is equal to the pre-stored checksum, execution continues. If it is not, correct execution stops. In order to make the fact that an error has been detected less obvious for the user, we could insert a jump to a random position inside the program. That way the program will not terminate, but will continue working in a non-legitimate state.

Due to the differences between designs, we had to implement distinct versions of the Executioner and Fetcher classes for each design. For example, in the guards design an executioner has to access the Fetcher’s fields. So, appropriate getter methods were added. Also, Fetcher passes itself as an argument to the Executioner’s constructor, which lets the Executioner access the Fetcher if it needs to. This is why we have separate versions for some of the classes. The second design’s Java files can be found in Appendix B.

Guard Example

Here is an example of a guard added to our original program:

	write 3 1

mult 2 1 1

add 0 0 2

sub 1 1 3

if 1 2

	write 3 1

mult 2 1 1

add 0 0 2

sub 1 1 3

write 18 1

write 11 26

write 16 2

write 17 5

icopy 12 16

add 13 13 12

add 13 13 15

add 13 13 14

sub 11 11 13

add 16 16 18

sub 19 17 16

if 19 9

if 11 95

if 1 2

It is designed to protect lines 2 through 4 of code. Memory locations 0 through 5 were originally used, so all the memory a guard uses lies beyond that range. A checksum of instructions 2, 3, and 4 is calculated. Then it is compared to a pre-computed checksum value X. If the values are the same, the normal execution process resumes. Notice, that instructions 1 through 4 are the same in both programs, as is the last instruction. The rest of the code in the second program is the guard.

Further Enhancements

We observed that when a guard calculates a checksum of several commands, it doesn’t care about their order. In other words, if we would switch the commands around, the guard would still calculate to the same checksum. This fact introduces additional security problems, since an attacker would be able to change the protected piece any way he or she wants to, as long as the checksum is the same. On a more general note, that might include not only shuffling of instructions around, but altering several of them completely.

In order to counter this problem, we proposed to calculate the hash value of the instruction based not only on the instruction itself, but also on the position of the instruction in the program. That way, each time we switch position of a certain instruction, the checksum would come out differently. A simple example of such a function would be hash value based on the instruction plus the position of the instruction. More complex functions may be involved in calculating the hash values used by the guards if need arises.

Encryption

Encryption is mentioned in the first chapter, as well as discussed in reference [19]. We used TEA, the Tiny Encryption Algorithm, developed by David Wheeler and Roger Needham at the Computer Laboratory of Cambridge University [19]. TEA is a symmetric cipher that is considered to be secure. It also has some computational advantages, is extremely elegant, and can be implemented as just a few lines of code. In our implementation the encryption-related functions are implemented in the tea class. The encode() and the decode() methods of it take as arguments the plain/cipher text, represented as an array of two integers, and the key, an array of four integers. For the code, see Appendix A.

GUI

We developed a graphical user interface for each of the executables. This allows the user to see what happens to the blocks, instructions, and the memory at each step of execution. GUI programs will be used during the defense of the project to help present the material.

Conclusion

There exist various ideas on how Tamper Resistant Software should be designed and implemented. Each idea tends to solve a specific part of the whole problem. Guards, for example, ensure that the code of the program has not been modified. Our TRS design protects the program from tampering by encrypting it with a cipher. By deeper analyzing the idea of encryption, we came up with the forced execution concept. We make sure that our program is run at least once in our execution environment, before the attacker even gets a chance to look at the code. In our design this is achieved by encrypting parts of the program with keys that depend dynamically on the data generated by the program. All these designs are solutions to some part of the TRS problem.

 Not one design solves the whole problem of TRS completely. As long as the user has full access to the program’s code, encrypted or not, there is a chance that he will break through any protection. So, the emphasis in our design was to make the job of an attacker as hard as we could. We have achieved it, for example, by forcing at least one legitimate execution to be performed. However, there is hope that in the future better solutions to the problem of Tamper Resistant Software will be found.

References

1. David Aucsmith, "Tamper Resistant Software: An Implementation",
Proceedings of First International Information Hiding Workshop (IHW), Cambridge, England, 1996, published in Lecture Notes in Computer Science (LNCS), Vol. 1174, pp. 317-333 (1997),

2. B. Barak, O, Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang, “On the (im)possibility of obfuscating programs (extended abstract)”, Advances in Cryptology - CRYPTO `01, vol. 2139 of Lecture Notes in Computer Science, pp. 1-18, Santa Barbara, CA, August 19-23, 2001. Springer-Verlag.

3. F. B. Cohen, “Operating system protection through program evolution”, 1998 paper, also published in Computers & Security, Vol. 12, No. 6, pp. 565-584 (1993).

http://all.net/books/IP/evolve.html

(Last accessed Thursday, May 15, 2003)

4. S. Forrest, A., Somayaji, and D. Ackley, "Building Diverse Computer Systems", Proceeding: 6 workshop on Hot Topics in Operating Systems, IEEE Computer Society Press, Los Alamitos, CA, 1997, pp. 67-72.
http://www.cs.unm.edu/~forrest/publications/hotos-97.pdf
(Last accessed Thursday, May 15, 2003)
5. Cloakware corporation white paper, “Generic Diversity as a defense against automated attacks on software”.

http://www.cloakware.com/resources/
(Last accessed Thursday, May 15, 2003)

6. J. R. Nicherson, S.T. Johnson and Y. Gu, “The encoder solution to implementing tamper resistant software”, Cloakware corporation white paper. http://www.cloakware.com/resources/
(Last accessed Thursday, May 15, 2003)

7. C. Collberg, C. Thomborson and D. Low, “A Taxonomy of Obfuscating Transformations”, Technical report #148, Department of Computer Science, The University of Auckland, Auckland, New Zealand.

http://www.cs.arizona.edu/~collberg/Research/Publications/CollbergThomborsonLow97a/

(Last accessed Thursday, May 15, 2003)
8. B. Horne, L. Matheson, C. Sheehan and R.E. Tarjan, “Dynamic self- checking techniques for improved tamper resistance”, Workshop on Security and Privacy in Digital Rights Management 2001.

http://link.springer.de/link/service/series/0558/bibs/2320/23200141.htm

(Last accessed Thursday, May 15, 2003)
9. H. Chang and M. J. Atallah, “Protecting software code by guards”, Workshop on Security and Privacy in Digital Rights Management 2001.

http://link.springer.de/link/service/series/0558/bibs/2320/23200160.htm

(Last accessed Thursday, May 15, 2003)

10. “Software tamper-proofing deployed” 2 year anniversary report; http://www.cptwg.org/Assets/September%20presentations/Software_Tamper-Proofing.ppt
(Last accessed Thursday, May 15, 2003)
11. Bruce Schneier, “Applied Cryptography”, Wiley and Sons, year 1996.

12. Douglas R. Stinson, “Cryptography. Theory and Practice”, CRC Press, New York, year 1995.

13. Lawrence C. Washington, Wade Trappe, “Cryptography with Coding Theory, Prentice Hall, January 15, 2002.

14. William Stallings, “Cryptography and Network Security”, year Prentice Hall, year 1998.

15. Ian Blake, Gadiel Seroussi, and Nigel Smart, “Elliptic Curves in Cryptography”, Cambridge University Press , year 1999.

16. T. Murayama, M. Mambo and E. Okamoto, “A Tentative Approach to Constructing Tamper-Resistant Software”, Proceedings of New Security Paradigms Workshop, Langdale, United Kingdom, Sep. 23-26, 1997.

17. David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John Mitchell, Mark Horowitz, “Architectural Support for Copy and Tamper Resistant Software”, in Proceedings of the 9th International Conference Architectural Support for Programming Languages and Operating Systems, pages 168--177, November 2000.

18. Mark Stamp, “Digital right management: The technology behind the hype”, year 2002.

home.earthlink.net/~mstamp1/papers/DRMpaper.pdf

(Last accessed Thursday, May 15, 2003)
19. David Wheeler, Roger Needham, “Tiny Encryption Algorithm.”

http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html (Last accessed Thursday, May 15, 2003)
20. Stanley Chow, Yuan Gu, Harold Johnson, Vladimir A. Zakharov, “An approach to the obfuscation of control-flow of sequential computer programs.” http://www.cloakware.com/pdfs/ISC-01%20-%20An%20Approach%20to%20Obfuscation.pdf

Appendix A

import java.io.*;

import java.util.StringTokenizer;

//implements a block of code that can be either encrypted or non-ecrypted

public class Block

{

 //creates an unencrypted block

 public Block(Instruction i)

 {

 value = new int[2];

 i.getInt(value);

 }

 //Creates a block out of 2 numbers - the internal representation

 //of the block. Numbers are in a string and separated by a space.

 public Block(String s, boolean encrypted)

 {

 value = new int[2];

 //String[] broken = new String[4];

StringTokenizer t = new StringTokenizer(s);

value[0] = Integer.parseInt(t.nextToken());

value[1] = Integer.parseInt(t.nextToken());

this.encrypted = encrypted;

}

 public int[] getInt()

 {

 return value;

 }

 //string representation

 public String toString()

 {

 return "" + value[0] + " " + value[1];

 }

 //encrypts the block with a given key

 public void encrypt(int[] key)

 {

 tea.encode(value, key);

 encrypted = true;

 }

 //decrypts the block with a given key

 public void decrypt(int[] key)

 {

 tea.decode(value, key);

 encrypted = false;

 }

 public boolean encrypted()

 {

 return encrypted;

 }

 int[] value;

 private boolean encrypted=false;

}

import java.util.ArrayList;

import java.io.DataInputStream;

import java.io.FileInputStream;

import java.io.EOFException;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.io.*;

/**

 Builds a program from an array of blocks

*/

public class Decoder

{

public Decoder(Block[] from)

{

 //read only

 blocks = from;

 list = new Instruction[from.length];

 //create an executioner

exec= new Executioner();

//start with instruction number 0

current = 0;

//note current block

 currentBlock = blocks[current];

 //decrypt it if we can

 if(currentBlock.encrypted())

currentBlock.decrypt(exec.getSecret());

if(list[current]==null)

 {

 list[current]=new Instruction(currentBlock.getInt());

}

}

public int getSize()

 {

 return list.length;

}

public int getCurrent()

{

 return current + 1;

}

public Instruction getInstruction(int i)

{

 return list[i-1];

}

public Block[] getBlocks()

{

 return blocks;

}

public Block getBlock(int i)

{

 return blocks[i-1];

}

//initializes from a file

public Decoder(String from)

{

 try

{

 boolean encrypted = false;

 //read only

 ArrayList tmp = new ArrayList();

 BufferedReader in

= new BufferedReader(new FileReader(from));

 String str = in.readLine();

 while(str!=null){

 if(str.equals("")){

 str = in.readLine();

 continue;

 }

tmp.add(new Block(str, encrypted));

encrypted = true;

 str = in.readLine();

 }//while

 blocks = new Block[tmp.size()];

 for(int i=0; i< tmp.size(); i++)

 {

 blocks[i] = (Block)tmp.get(i);

 }

 list = new Instruction[tmp.size()];

 //create an executioner

 exec= new Executioner();

 //start with instruction number 0

 current = 0;

}

catch(Throwable ex)

{

System.out.println(ex.toString());

System.out.println("Exiting");

System.exit(1);

 }

 //note current block

 currentBlock = blocks[current];

 //decrypt it if we can

 if(currentBlock.encrypted())

currentBlock.decrypt(exec.getSecret());

if(list[current]==null)

 {

 list[current]=new Instruction(currentBlock.getInt());

}

}

public Executioner getExecutioner()

 {

 return exec;

}

//decodes the current instruction

public boolean decodeNext()

throws InvalidNextInstruction

{

 if(first)

 {

 try

 {

 ret = exec.execute(list[current]);

 }

 catch(Throwable ex)

 {

 System.out.println(ex.toString());

 System.exit(1);

 }

 first = false;

 return true;

 }

 else

 {

 //get new current instruction

 if(ret == 0) current++;

else current = ret-1;

 //Attempting to jump outside of the program

if(ret <0 || ret >= list.length)

 throw new InvalidNextInstruction();

 if(current == list.length)

 {

 //System.out.println("End of the program.");

 return false;

 }

 currentBlock = blocks[current];

 //decrypt it if we can

 if(currentBlock.encrypted())

currentBlock.decrypt(exec.getSecret());

if(list[current]==null)

 {

 list[current]=new Instruction(currentBlock.getInt());

}

 try

 {

 ret = exec.execute(list[current]);

 }

 catch(Throwable ex)

{

 System.out.println(ex.toString());

 System.exit(1);

}

return true;

 }

 }

 //to decode instructions one by one

public void decode()

{

 try

 {

 while(decodeNext()){}

 }

 catch(Throwable ex)

{

 System.out.println(ex.toString());

 System.exit(1);

}

}

//combines functionality of decode and decodeNext

public void decode2()

throws InvalidNextInstruction

{

 try

{

 Block currentBlock = blocks[0];

 list[0] = new Instruction(currentBlock.getInt());

 int ret;

 ret = exec.execute(list[0]);

 boolean done = false;

 while(!done)

 {

 if(ret == 0) current++;

 else current = ret-1;

 if(ret <0 || ret >= list.length)

 //Attempting to jump outside of the program

 throw new InvalidNextInstruction();

 if(ret==0 && current == list.length-1)

 //last instruction and it wasn't a jump

 done=true;

 currentBlock = blocks[current];

 //this is not good

 if(currentBlock.encrypted())

 currentBlock.decrypt(exec.getSecret());

 if(list[current]==null)

 {

 list[current]=new Instruction(currentBlock.getInt());

 }

 ret = exec.execute(list[current]);

}

 }

 catch(Throwable ex)

{

 System.out.println(ex.toString());

 System.exit(1);

}

 }

 public void setBlocks(Block[] newBlocks)

{

 blocks = newBlocks;

}

//save instructions to a file

public void saveInstructions(String filename)

throws IOException

{

 DataOutputStream out = new DataOutputStream(

 new FileOutputStream(filename));

 for(int i=0;i<list.length;i++)

 {

 out.writeChars(list[i].toString()+"\n");

 }

 out.close();

}

//this represents the program code

private Instruction[] list;

private Block[] blocks;

private Executioner exec;

//current instruction

private int current;

private int ret;

private Block currentBlock;

private boolean first = true;

public static void main(String[] args)

throws Throwable

{

Encoder e;

 //int instr = 0;

 if(args.length > 0) e = new Encoder(args[0]);

else e = new Encoder("in.smpl");

//set the argument

 e.exec.setMem(1,3);

 //run the whole encryption thing

 e.encode();

 Decoder d;

 if(args.length > 1)

 {

 e.saveBlocks(args[1]);

 d = new Decoder(args[1]);

 }

 else

 {

 e.saveBlocks("out.trs");

 d = new Decoder("out.trs");

 }

 e.exec.setMem(1,3);

 d.decode();

 e.exec.printMem();

}

}

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import java.io.*;

public class DecoderGUI

{

 public static void main(String[] args)

 {

 final JFrame frame = new JFrame("Decoder Application");

 frame.setSize(750, 500);

 Container cp = frame.getContentPane();

 try

 {

 //Creating encoder, executioner

 final Decoder d;

 Executioner ex;

 //int instr = 0;

 if(args.length > 0) d = new Decoder(args[0]);

 else d = new Decoder("out.trs");

 ex = d.getExecutioner();

 ex.setMem(1,3);

 //creating panels

 DecoderPanel decoderPanel = new DecoderPanel(d);

 DecryptedPanel decryptedPanel = new DecryptedPanel(d);

 ExecutionerPanel executionerPanel = new ExecutionerPanel(ex);

 cp.setLayout(new GridLayout(3,2));

 cp.add(decoderPanel);

 cp.add(decryptedPanel);

 cp.add(executionerPanel);

 JPanel buttons = new JPanel();

 cp.add(buttons);

 JButton next = new JButton("Next");

 next.addActionListener(

 new ActionListener()

 {

 private boolean done = false;

 public void actionPerformed(ActionEvent ev)

 {

 if(!done)

 {

 try

 {

 done = !d.decodeNext();

 frame.repaint();

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

 }

 }

);

 buttons.add(next);

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 frame.show();

 frame.addWindowListener

 (

 new WindowAdapter()

 {

 public void windowClosing(WindowEvent e)

 {

 System.exit(0);

 }

 }

);

 }

}

//draws the decoder

class DecoderPanel extends JPanel

{

 private static final int PANEL_X_SIZE = 100;

 private static final int PANEL_Y_SIZE = 400;

 private Decoder decoder;

 public DecoderPanel(Decoder d)

 {

 super();

 this.decoder = d;

 setSize(PANEL_X_SIZE,PANEL_Y_SIZE);

 }

 public void paint(Graphics g)

 {

 //super.paintComponent(g);

 g.clearRect(0, 0, PANEL_X_SIZE, PANEL_Y_SIZE);

 if(decoder.getBlocks() == null) return;

 for(int i = 1; i <= decoder.getSize(); i++)

 {

 try

 {

 if(i == decoder.getCurrent())

 g.setColor(Color.red);

 Block tmpb = decoder.getBlock(i);

 if(tmpb!=null)

 g.drawString(tmpb.toString(), 20,20 + i*11);

 //g.drawString(decoder. getInstruction(i).toString(), 20,20 + i*11);

 g.setColor(Color.black);

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

 }

}

//draws the decrypted program

class DecryptedPanel extends JPanel

{

 private static final int PANEL_X_SIZE = 100;

 private static final int PANEL_Y_SIZE = 400;

 private Decoder decoder;

 public DecryptedPanel(Decoder d)

 {

 super();

 this.decoder = d;

 setSize(PANEL_X_SIZE,PANEL_Y_SIZE);

 }

 public void paint(Graphics g)

 {

 try

 {

 g.clearRect(0, 0, PANEL_X_SIZE, PANEL_Y_SIZE);

 if(decoder.getBlocks() == null) return;

 for(int i = 1; i <= decoder.getSize() ; i++)

 {

 if(i == decoder.getCurrent())

 g.setColor(Color.red);

 Instruction tmpi = decoder.getInstruction(i);

 if(tmpi!=null)

 g.drawString(tmpi.toString(), 20,20 + i*11);

 g.setColor(Color.black);

 }

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

}

public class DivisionByZero extends java.lang.Throwable{}

import java.util.ArrayList;

import java.util.Vector;

import java.io.DataInputStream;

import java.io.FileInputStream;

import java.io.EOFException;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.io.*;

/**

Builds a list of blocks for a given program

(execution required)

*/

public class Encoder

{

 //initializes the list of commands reading from a file

public Encoder(String from)

throws FileNotFoundException, IOException

{

list = new ArrayList();

BufferedReader in

= new BufferedReader(new FileReader(from));

String str = in.readLine();

//System.out.println("reading from the file");

while(str!=null){

 if(str.equals("")){

 str = in.readLine();

 continue;

 }

 try

{

//System.out.println("trying to add an instruction");

list.add(new Instruction(str));

//System.out.println("instruction added");

}

catch(Throwable ex)

{

System.out.println(ex.toString());

System.out.println("Exiting");

System.exit(1);

}

str = in.readLine();

}//while

//create an executioner

exec= new Executioner();

//start with instruction number 0

current = 1;

//create an array of Blocks

 blocks = new Block[list.size()];

 //set the first block unencrypted

 currentBlock = new Block((Instruction)list.get(0));

 blocks[0] = currentBlock;

}

//fetches the current instruction and moves the pointer(current) to the next one

public boolean fetch()

throws InvalidNextInstruction

{

 boolean returnValue;

//if(current < 1 || currebt > list.size())

int ret=-1;

try

{

ret = exec.execute((Instruction)(list.get(current-1)));

}

catch(Throwable ex)

{

System.out.println(ex.toString());

System.exit(1);

}

 if(ret <0 || ret >= list.size())

 //Attempting to jum outside of the program

throw new InvalidNextInstruction();

else

if(ret==0 && current == list.size())

//we just executed the last instruction and it wasn't a jump

{

 //System.out.println("end o the program");

 returnValue = false;

}

else

{

 if(ret==0)current++;

 else current=ret;

 returnValue = true;

}

//create a block

 currentBlock = new Block((Instruction)list.get(current - 1));

 currentBlock.encrypt(exec.getSecret());

 if(blocks[current-1] == null)

 {

 blocks[current-1] = currentBlock;

 }

return returnValue;

}

//creates a list of encrypted Blocks

//assuming the list is already there

public void encode()

throws InvalidNextInstruction

{

 while(fetch());

}

public void saveBlocks(String filename)

throws IOException

{

 PrintStream out = new PrintStream(

 new FileOutputStream(filename));

 for(int i=0;i<blocks.length;i++)

 {

 out.println(blocks[i]);

 //out.writeObject("\n");

 }

 out.close();

}

public Block[] getBlocks()

{

 return blocks;

}

public Block getBlock(int i)

{

 //if(blocks[i])

 return blocks[i-1];

}

//this represents the program code

private ArrayList list;

private Block[] blocks;

public int getSize()

 {

 return list.size();

}

 public Executioner getExecutioner()

 {

 return exec;

}

public int getCurrent()

{

 return current;

}

public Instruction getInstruction(int i)

throws InvalidInstructionNumber

{

 return (Instruction)list.get(i-1);

}

 public Executioner exec;

 //current instruction

private int current;

private int encryptedSize = 0;

 Block currentBlock;

public static void main(String[] args)

throws Throwable

{

Encoder e;

 //int instr = 0;

 if(args.length > 0) e = new Encoder(args[0]);

else e = new Encoder("in.smpl");

//set the argument

 e.exec.setMem(1,3);

 //run the whole encryption thing

 e.encode();

 Decoder d;

 if(args.length > 1)

 {

 e.saveBlocks(args[1]);

 d = new Decoder(args[1]);

 }

 else

 {

 e.saveBlocks("out.trs");

 d = new Decoder("out.trs");

 }

 e.exec.setMem(1,3);

 d.decode();

 e.exec.printMem();

}

}

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import java.io.*;

public class EncoderGUI

{

 public static void main(String[] args)

 {

 final JFrame frame = new JFrame("Encoder Application");

 frame.setSize(750, 500);

 Container cp = frame.getContentPane();

 try

 {

 //Creating encoder, executioner

 final Encoder en;

 Executioner ex;

 int instr = 0;

 if(args.length > 0) en = new Encoder(args[0]);

 else en = new Encoder("in.smpl");

 en.exec.setMem(1,3);

 ex = en.getExecutioner();

 //creating panels

 EncoderPanel encoderPanel = new EncoderPanel(en);

 EncryptedPanel encryptedPanel = new EncryptedPanel(en);

 ExecutionerPanel executionerPanel = new ExecutionerPanel(ex);

 cp.setLayout(new GridLayout(3,2));

 cp.add(encoderPanel);

 cp.add(encryptedPanel);

 cp.add(executionerPanel);

 JPanel buttons = new JPanel();

 cp.add(buttons);

 JButton next = new JButton("Next");

 next.addActionListener(

 new ActionListener()

 {

 private boolean done = false;

 public void actionPerformed(ActionEvent ev)

 {

 //Object o = e.getSource();

 if(!done)

 {

 try

 {

 done = !en.fetch();

 frame.repaint();

 //frame.update();

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

 }

 }

);

 buttons.add(next);

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 frame.show();

 frame.addWindowListener

 (

 new WindowAdapter()

 {

 public void windowClosing(WindowEvent e)

 {

 System.exit(0);

 }

 }

);

 }

}

//draws the encoder

class EncoderPanel extends JPanel

{

 private static final int PANEL_X_SIZE = 100;

 private static final int PANEL_Y_SIZE = 400;

 private Encoder encoder;

 public EncoderPanel(Encoder e)

 {

 super();

 this.encoder = e;

 setSize(PANEL_X_SIZE,PANEL_Y_SIZE);

 }

 public void paint(Graphics g)

 {

 g.clearRect(0, 0, PANEL_X_SIZE, PANEL_Y_SIZE);

 for(int i = 1; i <= encoder.getSize(); i++)

 {

 try

 {

 if(i == encoder.getCurrent())

 g.setColor(Color.red);

 g.drawString(encoder.getInstruction(i).toString(), 20,20 + i*11);

 g.setColor(Color.black);

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

 }

}

//draws the encrypted program

class EncryptedPanel extends JPanel

{

 private static final int PANEL_X_SIZE = 100;

 private static final int PANEL_Y_SIZE = 400;

 private Encoder encoder;

 public EncryptedPanel(Encoder e)

 {

 super();

 this.encoder = e;

 setSize(PANEL_X_SIZE,PANEL_Y_SIZE);

 }

 public void paint(Graphics g)

 {

 try

 {

 g.clearRect(0, 0, PANEL_X_SIZE, PANEL_Y_SIZE);

 if(encoder.getBlocks() == null) return;

 for(int i = 1; i <= encoder.getSize() ; i++)

 {

 if(i == encoder.getCurrent())

 g.setColor(Color.red);

 Block tmpb = encoder.getBlock(i);

 if(tmpb!=null)

 g.drawString(tmpb.toString(), 20,20 + i*11);

 g.setColor(Color.black);

 }

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

}

/**

Executioner class simulates environment for running basic programs written in the Small language.

*/

public class Executioner

{

 public void setMem(int i, int value)

 {

 memory[i] = value;

 }

 public int getMem(int i)

 {

 return memory[i];

 }

public Executioner()

{

memory = new int[max_mem];

secret = new int[4];

secret[0]=0;

secret[1]=0;

secret[2]=0;

secret[3]=0;

}

public int[] getSecret()

{

 return secret;

}

/**

@param instruction that has to be executed

@return 0 if jump to the next instruction or new jump location if there is a jump

*/

public int execute(Instruction instruction)

throws InvalidMemoryLocation, InvalidInstruction, DivisionByZero

{

int arg1 = instruction.getArg1();

int arg2 = instruction.getArg2();

int arg3 = instruction.getArg3();

int code = instruction.getCode();

//update the secret register

int[] tmp;

tmp = instruction.getInt();

secret[0] = secret[0] & tmp[0];

secret[1] = secret[1] & tmp[1];

secret[2] = secret[2] & memory[arg1];

 //modify secret with the new value

secret[3] = secret[3] & memory[arg1];

switch(code)

{

case 1:
//if_condLoc_ifDest

if(memory[arg1] == 0) return 0;

else return arg2;

case 2:
//write_loc_value

if(arg1 >= max_mem || arg1 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

memory[arg1] = arg2; //?????

return 0;

case 3:
//copy_locto_locfrom

if(arg1 >= max_mem || arg1 < 0 || arg2 >= max_mem || arg2 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

memory[arg1] = memory[arg2];

return 0;

case 4:
//add_toLoc_arg1_arg2

if(arg1>= max_mem||arg1<0||arg2>=max_mem||arg2<0||arg3>=max_mem||arg3 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

memory[arg1] = (char)(memory[arg2] + memory[arg3]);

return 0;

case 5:
//sub_toLoc_arg1_arg2

if(arg1>= max_mem||arg1<0||arg2>=max_mem||arg2<0||arg3>=max_mem||arg3 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

memory[arg1] = (char)(memory[arg2] - memory[arg3]);

return 0;

case 6:
//mult_toLoc_arg1_arg2

if(arg1>= max_mem||arg1<0||arg2>=max_mem||arg2<0||arg3>=max_mem||arg3 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

memory[arg1] = (char)(memory[arg2] * memory[arg3]);

return 0;

case 7:
//div_toLoc_arg1_arg2

if(arg1>= max_mem||arg1<0||arg2>=max_mem||arg2<0||arg3>=max_mem||arg3 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

if(memory[arg3]==0) throw new DivisionByZero();

memory[arg1] = (char)(memory[arg2] / memory[arg3]);

return 0;

default:

throw new InvalidInstruction();

}

}

public void printMem()

{

System.out.println("Memory content is:");

for(int i = 0; i<max_mem; i++)

System.out.println(memory[i]);

//System.out.println("End of memory.");

}

static public int getMemorySize()

{

 return max_mem;

}

private int[] memory;

 private int[] secret;

private static int max_mem= 5;

public static void main(String[] args)

{

Executioner e = new Executioner();

System.out.println("Executioner created");

e.printMem();

try

{

Instruction i = new Instruction("write 1 2");

e.execute(i);

e.printMem();

i = new Instruction("write 2 3");

e.execute(i);

e.printMem();

i = new Instruction("div 0 2 1");

e.execute(i);

}

catch(Throwable ex)

{

System.out.println(ex.toString());

}

e.printMem();

}

}

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import java.io.*;

public class ExecutionerGUI

{

 public static void main(String[] args)

 {

 final JFrame frame = new JFrame("SwingApplication");

 frame.setSize(500, 500);

 Container cp = frame.getContentPane();

 JMenuBar menuBar = new JMenuBar();

 frame.setJMenuBar(menuBar);

 JMenu file = new JMenu("File");

 menuBar.add(file);

 JMenuItem open = new JMenuItem("Open");

 file.add(open);

 JMenu help = new JMenu("Help");

 menuBar.add(help);

 try

 {

 final Fetcher f;

 Executioner e;

 int instr = 0;

 f = new Fetcher("in.smpl");

 f.exec.setMem(1,3);

 FetcherPanel fp = new FetcherPanel(f);

 e = f.getExecutioner();

 ExecutionerPanel ep = new ExecutionerPanel(e);

 cp.setLayout(new GridLayout(2,2));

 cp.add(fp);

 cp.add(ep);

 JPanel buttons = new JPanel();

 cp.add(buttons);

 JButton next = new JButton("Next");

 next.addActionListener(

 new ActionListener()

 {

 private boolean done = false;

 public void actionPerformed(ActionEvent ev)

 {

 if(!done)

 {

 try

 {

 done = !f.fetch();

 frame.repaint();

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

 }

 }

);

 buttons.add(next);

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 frame.show();

 frame.addWindowListener

 (

 new WindowAdapter()

 {

 public void windowClosing(WindowEvent e)

 {

 System.exit(0);

 }

 }

);

 }

}

//Panel that draws the executioner

class ExecutionerPanel extends JPanel

{

 private static final int PANEL_X_SIZE = 100;

 private static final int PANEL_Y_SIZE = 400;

 private Executioner executioner;

 public ExecutionerPanel(Executioner e)

 {

 super();

 this.executioner = e;

 setSize(PANEL_X_SIZE,PANEL_Y_SIZE);

 }

 public void paint(Graphics g)

 {

 g.clearRect(0, 0, PANEL_X_SIZE, PANEL_Y_SIZE);

 g.drawRect(5, 5, 25*10 +5, 5 + (executioner.getMemorySize()/10)*11 + 12);

 try

 {

 for(int i = 0; i < executioner.getMemorySize(); i++)

 {

 g.drawString(""+executioner.getMem(i), 5+ (i%10)*25, 20 + (i/10)*11);

 }

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

}

class FetcherPanel extends JPanel

{

 private static final int PANEL_X_SIZE = 100;

 private static final int PANEL_Y_SIZE = 400;

 private Fetcher fetcher;

 public FetcherPanel(Fetcher f)

 {

 super();

 this.fetcher = f;

 setSize(PANEL_X_SIZE,PANEL_Y_SIZE);

 }

 public void paint(Graphics g)

 {

 g.clearRect(0, 0, PANEL_X_SIZE, PANEL_Y_SIZE);

 for(int i = 1; i <= fetcher.getSize(); i++)

 {

 try

 {

 if(i == fetcher.getCurrent())

 g.setColor(Color.red);

 g.drawString(fetcher.getInstruction(i).toString(), 20,20 + i*11);

 g.setColor(Color.black);

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

 }

}

import java.util.ArrayList;

import java.io.DataInputStream;

import java.io.FileInputStream;

import java.io.EOFException;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.io.*;

/**

Has access to the program's code and feeds instructions of the program one by one.

*/

public class Fetcher

{

//initializes the list of commands reading from a file

public Fetcher(String from)

throws FileNotFoundException, IOException

{

list = new ArrayList(64);

BufferedReader in

= new BufferedReader(new FileReader(from));

String str = in.readLine();

size = 0;

//System.out.println("reading from the file");

while(str!=null){

 if(str.equals("")){

 str = in.readLine();

 continue;

 }

try

{

list.add(new Instruction(str));

size ++;

}

catch(Throwable ex)

{

System.out.println(ex.toString());

System.out.println("Exiting");

System.exit(1);

}

str = in.readLine();

}//while

System.out.println("list initialized");

//create an executioner

exec= new Executioner();

//start with instruction number 0

current = 1;

}

//fetches the current instruction and moves the pointer(current) to the next one

public boolean fetch()

throws InvalidNextInstruction

{

//if(current < 1 || currebt > list.size())

int ret=-1;

try

{

ret = exec.execute((Instruction)(list.get(current-1)));

}

catch(Throwable ex)

{

System.out.println(ex.toString());

System.exit(1);

}

 if(ret <0 || ret >= list.size())

 //Attempting to jum outside of the program

throw new InvalidNextInstruction();

else

if(ret==0 && current == list.size())

//we just executed the last instruction and it wasn't a jump

{

 System.out.println("end o the program");

 return false;

}

else

{

 if(ret==0)current++;

 else current=ret;

 return true;

}

}

//this represents the program code

private ArrayList list;

//should be private

public Executioner exec;

public int getSize()

 {

 return size;

}

 public Executioner getExecutioner()

 {

 return exec;

}

public int getCurrent()

{

 return current;

}

public Instruction getInstruction(int i)

throws InvalidInstructionNumber

{

 return (Instruction)list.get(i-1);

}

//current instruction

private int current;

private int size = 0;

 public static void main(String[] args)

throws Throwable

{

Fetcher f;

 int instr = 0;

f = new Fetcher("in.smpl");

 f.exec.setMem(1,3);

 while(f.fetch())instr++;

 f.exec.printMem();

 System.out.print("number of instructions executed:");

System.out.print(instr);

}

}

import java.util.StringTokenizer;

public class Instruction

{

//Construct an Instruction from a string

public Instruction(String instructionString)

throws InvalidInstruction, WrongNumberOfArgs, InvalidJumpDestination

{

String[] broken = new String[4];

StringTokenizer t = new StringTokenizer(instructionString);

int numberOfTokens = 0;

while(t.hasMoreTokens())

{

broken[numberOfTokens] = t.nextToken();

numberOfTokens++;

}

//now we analyze tokens separately

if(numberOfTokens < 3) throw new InvalidInstruction();

int operation = 0;

if(broken[0].equals("if")) operation = 1;

if(broken[0].equals("write")) operation = 2;

if(broken[0].equals("copy")) operation = 3;

if(broken[0].equals("add")) operation = 4;

if(broken[0].equals("sub")) operation = 5;

if(broken[0].equals("mult")) operation = 6;

if(broken[0].equals("div")) operation = 7;

//checking the number of arguments

if(operation == 0 || operation >=8) throw new InvalidInstruction();

if(operation >= 1 && operation <= 3 && numberOfTokens >=4)

throw new WrongNumberOfArgs();

if(operation >= 4 && operation <= 7 && numberOfTokens != 4)

throw new WrongNumberOfArgs();

//initialising arguments

arg1 = Integer.parseInt(broken[1]);

arg2 = Integer.parseInt(broken[2]);

arg3 = 0;

if(operation >= 4 && operation <= 7)

arg3 = Integer.parseInt(broken[3]);

if(operation == 1 && arg2 <= 0) throw new InvalidJumpDestination();

//lets finally set the values

//set(operation, arg1, arg2, arg3);

code = operation;

}

//converts legal instructions back to the string representation

//illegal are converted to a null string

 public String toString()

 {

 String str = new String("");

 if(code == 1) str = "if "+arg1+" "+arg2;

 if(code == 2) str = "write "+arg1+" "+arg2;

if(code == 3) str = "copy "+arg1+" "+arg2;

if(code == 4) str = "add "+arg1+" "+arg2+" "+arg3;

if(code == 5) str = "sub "+arg1+" "+arg2+" "+arg3;

if(code == 6) str = "mult "+arg1+" "+arg2+" "+arg3;

if(code == 7) str = "div "+arg1+" "+arg2+" "+arg3;

return str;

 }

public Instruction(int[] array)

{

 this.code = (int)(array[0] & 0xFFFF0000) >>> 16;

this.arg1 = (int)(array[0] & 0x0000FFFF);

this.arg2 = (int)(array[1] & 0xFFFF0000) >>> 16;

this.arg3 = (int)(array[1] & 0x0000FFFF);

}

public void set(int[] array)

{

 this.code = (int)(array[0] & 0xFFFF0000);

this.arg1 = (int)((array[0] & 0x0000FFFF) >>> 16);

this.arg2 = (int)(array[1] & 0xFFFF0000);

this.arg3 = (int)((array[1] & 0x0000FFFF) >>> 16);

 }

//sets the values of operation and arguments

public void set(int code, int arg1, int arg2, int arg3)

{

this.code = code;

this.arg1 = arg1;

this.arg2 = arg2;

this.arg3 = arg3;

}

//an instruction is converted into an array of 2 ints

public int[] getInt()

{

 int[] array = new int[2];

 array[0] = (code << 16) & arg1;

 array[1] = (arg2 << 16) & arg3;

 return array;

}

public void getInt(int[] array)

{

 array[0] = (code << 16) | arg1;

 array[1] = (arg2 << 16) | arg3;

}

public void set(long l)

{

this.code = (int)(l >>> 48);

this.arg1 = (int)((l & 0x0000FFFF00000000L) >>> 32);

this.arg2 = (int)((l & 0x00000000FFFF0000L) >>> 16);

this.arg3 = (int)(l & 0x000000000000FFFFL);

}

//not sure why this is here

public long getLongValue()

{

 return (code << 48)|(arg1 <<32)|((arg2 &65535)<<16)|(arg3&65535);

}

//getters

public int getCode()

{

return code;

}

public int getArg1()

{

return arg1;

}

public int getArg2()

{

return arg2;

}

public int getArg3()

{

return arg3;

}

private int code;

private int arg1;

private int arg2;

private int arg3;

public static void main(String[] args)

{

}

}

public class InvalidInstruction extends java.lang.Throwable{}

public class InvalidInstructionNumber extends java.lang.Throwable{}

public class InvalidJumpDestination extends java.lang.Throwable{}

public class InvalidMemoryLocation extends java.lang.Throwable{}

public class InvalidNextInstruction extends java.lang.Throwable{}

public class WrongNumberOfArgs extends java.lang.Throwable{}

/** TEA algorithm implementation

*/

public class tea

{

public static void encode(int[] v, int[] k)

{

int y = v[0], z = v[1], sum = 0, delta=0x9e3779b9, n=32 ;

while (n-->0)

{

sum += delta ;

y += (z<<4)+k[0] ^ z+sum ^ (z>>>5)+k[1] ;

z += (y<<4)+k[2] ^ y+sum ^ (y>>>5)+k[3] ;

 }

v[0]=y ; v[1]=z ;

}

public static void decode(int[] v, int[] k)

{

int y = v[0], z = v[1], sum, delta=0x9e3779b9, n=32 ;

sum=delta<<5 ;

while (n-->0)

{

z-= (y<<4)+k[2] ^ y+sum ^ (y>>>5)+k[3] ;

y-= (z<<4)+k[0] ^ z+sum ^ (z>>>5)+k[1] ;

sum-=delta ;

}

v[0]=y ; v[1]=z ;

}

public static void main(String[] args)

{

int[] text = {0,0};

int[] key = {0,0,0,0};

System.out.println(text[0]);

System.out.println(text[1]);

encode(text,key);

System.out.println(text[0]);

System.out.println(text[1]);

decode(text,key);

System.out.println(text[0]);

System.out.println(text[1]);

}

}

Appendix B

/**

Executioner class simulates environment for running basic programs written in the Small language.

*/

public class Executioner

{

 public void setMem(int i, int value)

 {

 memory[i] = value;

 }

 public int getMem(int i)

 {

 return memory[i];

 }

public Executioner(Fetcher f)

{

 fetcher = f;

memory = new int[max_mem];

secret = new int[4];

secret[0]=0;

secret[1]=0;

secret[2]=0;

secret[3]=0;

}

public int[] getSecret()

{

 return secret;

}

/**

@param instruction that has to be executed

@return 0 if jump to the next instruction or new jump location if there is a jump

*/

public int execute(Instruction instruction)

throws InvalidMemoryLocation, InvalidInstruction, DivisionByZero,

InvalidInstructionNumber

{

int arg1 = instruction.getArg1();

int arg2 = instruction.getArg2();

int arg3 = instruction.getArg3();

int code = instruction.getCode();

//lets update the secret register

int[] tmp;

tmp = instruction.getInt();

secret[0] = secret[0] & tmp[0];

secret[1] = secret[1] & tmp[1];

secret[2] = secret[2] & memory[arg1];

 //modify secret with the new value

secret[3] = secret[3] & memory[arg1];

switch(code)

{

case 1:
//if_condLoc_ifDest

if(memory[arg1] == 0) return 0;

else return arg2;

case 2:
//write_loc_value

if(arg1 >= max_mem || arg1 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

memory[arg1] = arg2; //?????

return 0;

case 3:
//copy_locto_locfrom

if(arg1 >= max_mem || arg1 < 0 || arg2 >= max_mem || arg2 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

memory[arg1] = memory[arg2];

return 0;

case 4:
//add_toLoc_arg1_arg2

if(arg1>= max_mem||arg1<0||arg2>=max_mem||arg2<0||arg3>=max_mem||arg3 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

memory[arg1] = (char)(memory[arg2] + memory[arg3]);

return 0;

case 5:
//sub_toLoc_arg1_arg2

if(arg1>= max_mem||arg1<0||arg2>=max_mem||arg2<0||arg3>=max_mem||arg3 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

memory[arg1] = (char)(memory[arg2] - memory[arg3]);

return 0;

case 6:
//mult_toLoc_arg1_arg2

if(arg1>= max_mem||arg1<0||arg2>=max_mem||arg2<0||arg3>=max_mem||arg3 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

memory[arg1] = (char)(memory[arg2] * memory[arg3]);

return 0;

case 7:
//div_toLoc_arg1_arg2

if(arg1>= max_mem||arg1<0||arg2>=max_mem||arg2<0||arg3>=max_mem||arg3 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

if(memory[arg3]==0) throw new DivisionByZero();

memory[arg1] = (char)(memory[arg2] / memory[arg3]);

return 0;

case 8:
//icopy_locto_instr#address

if(arg1 >= max_mem-4 || arg1 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

if(arg2 >= max_mem-4 || arg2 < 0)

throw new InvalidMemoryLocation(); //"Not a valid address!"

if(memory[arg2] > fetcher.getSize() || memory[arg2] <= 0)

throw new InvalidInstructionNumber();

Instruction i = fetcher.getInstruction(memory[arg2]);

memory[arg1] = i.getCode();

memory[arg1 + 1] = i.getArg1();

memory[arg1 + 2] = i.getArg2();

memory[arg1 + 3] = i.getArg3();

return 0;

default:

throw new InvalidInstruction();

}

}

public void printMem()

{

System.out.println("Memory content is:");

for(int i = 0; i<max_mem; i++)

System.out.println(memory[i]);

}

static public int getMemorySize()

{

 return max_mem;

}

private int[] memory;

 private int[] secret;

 private Fetcher fetcher;

private static int max_mem= 128;

public static void main(String[] args)

{

Executioner e = new Executioner(null);

System.out.println("Executioner created");

e.printMem();

try

{

Instruction i = new Instruction("write 1 2");

e.execute(i);

e.printMem();

i = new Instruction("write 2 3");

e.execute(i);

e.printMem();

i = new Instruction("div 0 2 1");

e.execute(i);

}

catch(Throwable ex)

{

System.out.println(ex.toString());

}

e.printMem();

}

}

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import java.io.*;

// Class runs the Simple program in a GUI environment

public class ExecutionerGUI

{

 public static void main(String[] args)

 {

 final JFrame frame = new JFrame("SwingApplication");

 frame.setSize(500, 500);

 Container cp = frame.getContentPane();

 try

 {

 final Fetcher f;

 Executioner e;

 int instr = 0;

 if(args.length > 0) f = new Fetcher(args[0]);

 else f = new Fetcher("in.smpl");

 f.exec.setMem(1,3);

 FetcherPanel fp = new FetcherPanel(f);

 e = f.getExecutioner();

 ExecutionerPanel ep = new ExecutionerPanel(e);

 cp.setLayout(new GridLayout(2,2));

 cp.add(fp);

 cp.add(ep);

 JPanel buttons = new JPanel();

 cp.add(buttons);

 JButton next = new JButton("Next");

 next.addActionListener(

 new ActionListener()

 {

 private boolean done = false;

 public void actionPerformed(ActionEvent ev)

 {

 if(!done)

 {

 try

 {

 done = !f.fetch();

 frame.repaint();

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

 }

 }

);

 buttons.add(next);

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 frame.show();

 frame.addWindowListener

 (

 new WindowAdapter()

 {

 public void windowClosing(WindowEvent e)

 {

 System.exit(0);

 }

 }

);

 }

}

//Panel that draws the executioner

class ExecutionerPanel extends JPanel

{

 private static final int PANEL_X_SIZE = 100;

 private static final int PANEL_Y_SIZE = 400;

 private Executioner executioner;

 public ExecutionerPanel(Executioner e)

 {

 super();

 this.executioner = e;

 setSize(PANEL_X_SIZE,PANEL_Y_SIZE);

 }

 public void paint(Graphics g)

 {

 g.clearRect(0, 0, PANEL_X_SIZE, PANEL_Y_SIZE);

 g.drawRect(5, 5, 25*10 +5, 5 + (executioner.getMemorySize()/10)*12);

 try

 {

 for(int i = 0; i < executioner.getMemorySize(); i++)

 {

 g.drawString(""+executioner.getMem(i), 5+ (i%10)*25, 20 + (i/10)*11);

 }

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

}

//panel that draws a Fetcher

class FetcherPanel extends JPanel

{

 private static final int PANEL_X_SIZE = 100;

 private static final int PANEL_Y_SIZE = 400;

 private Fetcher fetcher;

 public FetcherPanel(Fetcher f)

 {

 super();

 this.fetcher = f;

 setSize(PANEL_X_SIZE,PANEL_Y_SIZE);

 }

 public void paint(Graphics g)

 {

 g.clearRect(0, 0, PANEL_X_SIZE, PANEL_Y_SIZE);

 for(int i = 1; i <= fetcher.getSize(); i++)

 {

 try

 {

 if(i == fetcher.getCurrent())

 g.setColor(Color.red);

 g.drawString(fetcher.getInstruction(i).toString(), 20,20 + i*11);

 g.setColor(Color.black);

 }

 catch(Throwable e)

 {

 System.out.print(e.toString());

 System.exit(0);

 }

 }

 }

}

import java.util.ArrayList;

import java.io.DataInputStream;

import java.io.FileInputStream;

import java.io.EOFException;

import java.io.IOException;

import java.io.FileNotFoundException;

import java.io.*;

/**

Has access to the program's code and feeds instructions of the program one by one.

*/

public class Fetcher

{

 //initializes the list of commands reading from a file

 public void Initialize(String from)

 throws FileNotFoundException, IOException

 {

 list = new ArrayList(64);

 size = 0;

BufferedReader in

= new BufferedReader(new FileReader(from));

String str = in.readLine();

while(str!=null){

 if(str.equals("")){

 str = in.readLine();

 continue;

 }

 try

{

list.add(new Instruction(str));

size ++;

}

catch(Throwable ex)

{

System.out.println(ex.toString());

System.out.println("Exiting");

System.exit(1);

}

str = in.readLine();

}//while

 }

//initializes the list of commands reading from a file

public Fetcher(String from)

throws FileNotFoundException, IOException

{

this.Initialize(from);

//create an executioner

exec= new Executioner(this);

//start with instruction number 0

current = 1;

}

//inserts a guard protecting instructions a .. b-1; memory from M to M+8 is reserved

public void addGuard(int a, int b, int M)

throws InvalidInstruction, WrongNumberOfArgs, InvalidJumpDestination

{

 //make sure that list has 13 more elements

 for(int i=0; i<13; i++)

 list.add(null);

 //copy the instructions after the guard to the end

 for(int i=size-1; i>=b-1; i--)

 {

 Instruction instr = (Instruction)list.get(i);

 if(instr.getCode() != 1) list.set(i+13, instr);

 else

 {

 if(instr.getArg2() >= b)

 list.set(i+13, new Instruction("if "+ instr.getArg1()+" "+(13 + instr.getArg2())));

 else

 list.set(i+13, instr);

 }

 }

 //calculate the checksum

 int sum = 0;

 for(int i=a-1; i<b-1; i++)

 {

 Instruction instr = (Instruction)list.get(i);

 sum += instr.getCode()+instr.getArg1()+instr.getArg2()+instr.getArg3();

 }

 //intruduce the guard

 list.set(b-1, new Instruction(("write "+ (M+7)) +" "+ 1));

 list.set(b+0, new Instruction(("write "+ (M)) +(" "+ sum)));

 list.set(b+1, new Instruction(("write "+ (M+5)) +(" "+ a)));

 list.set(b+2, new Instruction(("write "+ (M+6)) +" "+ (b)));

 list.set(b+3, new Instruction(("icopy "+ (M+1)) +" "+ (M+5)));

 list.set(b+4, new Instruction(("add "+ (M+2)) +" "+(M+2) +" "+(M+1)));

 list.set(b+5, new Instruction(("add "+ (M+2)) +" "+(M+2) +" "+(M+4)));

 list.set(b+6, new Instruction(("add "+ (M+2)) +" "+(M+2) +" "+(M+3)));

 list.set(b+7, new Instruction(("sub "+ (M)) +" "+(M) +" "+(M+2)));

 list.set(b+8, new Instruction(("add "+ (M+5)) +" "+(M+5) +" "+(M+7)));

 list.set(b+9,new Instruction(("sub "+ (M+8)) +" "+(M+6) +" "+(M+5)));

 list.set(b+10,new Instruction(("if "+ (M+8)) +" "+(b+4)));

 list.set(b+11,new Instruction(("if "+ (M)) +" "+(1024)));

 size+=13;

}

//fetches the current instruction and moves the pointer(current) to the next one

public boolean fetch()

throws InvalidNextInstruction

{

int ret=-1;

try

{

ret = exec.execute((Instruction)(list.get(current-1)));

}

catch(Throwable ex)

{

System.out.println(ex.toString());

System.exit(1);

}

 if(ret <0 || ret >= list.size())

 //Attempting to jump outside of the program

throw new InvalidNextInstruction();

else

if(ret==0 && current == list.size())

//we just executed the last instruction and it wasn't a jump

{

 System.out.println("End o the program");

 return false;

}

else

{

 if(ret==0)current++;

 else current=ret;

 return true;

}

}

public Instruction getInstruction(int i)

throws InvalidInstructionNumber

{

 return (Instruction)list.get(i-1);

}

public int getSize()

 {

 return size;

}

public Executioner getExecutioner()

 {

 return exec;

}

//this represents the program's code

protected ArrayList list;

protected Executioner exec;

//current instruction

protected int current;

public int getCurrent()

{

 return current;

}

private int size = 0;

// Saves instructions to the file

public void saveInstructions(String filename)

throws IOException

{

 PrintStream out = new PrintStream(

 new FileOutputStream(filename));

 for(int i=0; i<getSize(); i++)

 {

 out.println(list.get(i).toString());

 //out.writeObject("\n");

 }

 out.close();

}

public static void main(String[] args)

throws Throwable

{

Fetcher f;

 int instr = 0;

 if(args.length > 0) f = new Fetcher(args[0]);

else f = new Fetcher("in.smpl");

if(args.length > 4) f.addGuard(Integer.parseInt(args[2]),Integer.parseInt(args[3]) , Integer.parseInt(args[4]));

else f.addGuard(2, 4, 11);

if(args.length > 1) f.saveInstructions(args[1]);

else f.saveInstructions("aaa.smpl");

}

}

import java.util.StringTokenizer;

public class Instruction

{

//Construct an Instruction from a string

public Instruction(String instructionString)

throws InvalidInstruction, WrongNumberOfArgs, InvalidJumpDestination

{

String[] broken = new String[4];

StringTokenizer t = new StringTokenizer(instructionString);

int numberOfTokens = 0;

while(t.hasMoreTokens())

{

broken[numberOfTokens] = t.nextToken();

numberOfTokens++;

}

//now we analyze tokens separately

if(numberOfTokens < 3) throw new InvalidInstruction();

int op = 0;

if(broken[0].equals("if")) op = 1;

if(broken[0].equals("write")) op = 2;

if(broken[0].equals("copy")) op = 3;

if(broken[0].equals("add")) op = 4;

if(broken[0].equals("sub")) op = 5;

if(broken[0].equals("mult")) op = 6;

if(broken[0].equals("div")) op = 7;

if(broken[0].equals("icopy")) op = 8;

//checking the number of arguments

if(op == 0 || op >8) throw new InvalidInstruction();

if(((op >= 1 && op <= 3)||op == 8)

&& numberOfTokens >=4)

throw new WrongNumberOfArgs();

if(op >= 4 && op <= 7 && numberOfTokens != 4)

throw new WrongNumberOfArgs();

//initialising arguments

arg1 = Integer.parseInt(broken[1]);

arg2 = Integer.parseInt(broken[2]);

arg3 = 0;

if((op >= 4 && op <= 7))

arg3 = Integer.parseInt(broken[3]);

if(op == 1 && arg2 <= 0) throw new InvalidJumpDestination();

code = op;

}

//converts legal instructions back to the string representation

//illegal are converted to a null string

 public String toString()

 {

 String str = new String(""+arg1+" "+arg2);

 if(code == 1) str = "if " + str;

 else if(code == 2) str = "write " + str;

else if(code == 3) str = "copy " + str;

else if(code == 4) str = "add " + str+" "+arg3;

else if(code == 5) str = "sub " + str+" "+arg3;

else if(code == 6) str = "mult " + str +" "+arg3;

else if(code == 7) str = "div " + str+" "+arg3;

else if(code == 8) str = "icopy " + str;

return str;

 }

public Instruction(int[] array)

{

 this.code = (int)(array[0] & 0xFFFF0000) >>> 16;

this.arg1 = (int)(array[0] & 0x0000FFFF);

this.arg2 = (int)(array[1] & 0xFFFF0000) >>> 16;

this.arg3 = (int)(array[1] & 0x0000FFFF);

}

public void set(int[] array)

{

 this.code = (int)(array[0] & 0xFFFF0000);

this.arg1 = (int)((array[0] & 0x0000FFFF) >>> 16);

this.arg2 = (int)(array[1] & 0xFFFF0000);

this.arg3 = (int)((array[1] & 0x0000FFFF) >>> 16);

}

//sets the values of operation and arguments

public void set(int code, int arg1, int arg2, int arg3)

{

this.code = code;

this.arg1 = arg1;

this.arg2 = arg2;

this.arg3 = arg3;

}

//an instruction is converted into an array of 2 ints

public int[] getInt()

{

 int[] array = new int[2];

 array[0] = (code << 16) & arg1;

 array[1] = (arg2 << 16) & arg3;

 return array;

}

public void getInt(int[] array)

{

 array[0] = (code << 16) | arg1;

 array[1] = (arg2 << 16) | arg3;

}

public void set(long l)

{

this.code = (int)(l >>> 48);

this.arg1 = (int)((l & 0x0000FFFF00000000L) >>> 32);

this.arg2 = (int)((l & 0x00000000FFFF0000L) >>> 16);

this.arg3 = (int)(l & 0x000000000000FFFFL);

}

//returns the long value

public long getLongValue()

{

 return (code << 48)|(arg1 <<32)|((arg2 &65535)<<16)|(arg3&65535);

}

//getters

public int getCode()

{

return code;

}

public int getArg1()

{

return arg1;

}

public int getArg2()

{

return arg2;

}

public int getArg3()

{

return arg3;

}

private int code;

private int arg1;

private int arg2;

private int arg3;

}

public class DivisionByZero extends java.lang.Throwable{}

public class InvalidInstruction extends java.lang.Throwable{}

public class InvalidInstructionNumber extends java.lang.Throwable{}

public class InvalidJumpDestination extends java.lang.Throwable{}

public class InvalidMemoryLocation extends java.lang.Throwable{}

public class InvalidNextInstruction extends java.lang.Throwable{}

public class WrongNumberOfArgs extends java.lang.Throwable{}

PAGE
34

