
ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 1 San Jose State University

ARP Cache Poisoning Detection and Prevention

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

By

Silky Manwani

Dec 2003

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 2 San Jose State University

© 2003

Silky Manwani

ALL RIGHTS RESERVED

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 3 San Jose State University

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

 Dr. Mark Stamp

 Dr. Chris Pollett

 Dr. David Blockus

APPROVED FOR THE UNIVERSITY

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 4 San Jose State University

ACKNOWLEDGEMENTS

I would like to thank Professor Mark Stamp for his guidance, patience and insights

without which my project would not have been possible. I would also like to thank Manoj

Dutta, a Sr. Engineer at IPInfusion for giving me numerous pointers and advice that

helped me finish this project.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 5 San Jose State University

Table of Contents

1. ABSTRACT .. 7

2. INTRODUCTION.. 8

2.1 ADDRESS RESOLUTION PROTOCOL ... 8
2.2 ARP EXAMPLE .. 10
2.3 ARP STRUCTURES... 12
2.4 ARP CACHE POISONING.. 15

3. LINUX KERNEL SPECIFICS .. 19

3.1 THE ROUTING TABLES .. 19
3.2 SK_BUFF.. 28
3.3 ARP FUNCTIONS IN LINUX.. 30
3.4 ARP FUNCTIONS ON BSD ... 37

4. DESIGN CONSIDERATION... 40

4.1 ARCHITECTURE.. 42
4.2 ALGORITHM... 44
4.3 PLACEMENT OF THE CODE... 46

5. IMPLEMENTATION ... 47

5.1 OPERATING SYSTEM.. 47
5.2 OPEN SOURCES UTILIZED.. 47
5.3 CODE PLACEMENT ... 47
5.4 MINIMAL HARDWARE REQUIREMENTS ... 48
5.5 IMPLEMENTATION DETAILS IN LINUX... 49

6. TEST CASES AND RESULTS .. 53

7. CONCLUSION.. 58

7.1 INNOVATIONS AND CHALLENGES.. 58
7.2 LIMITATIONS.. 58
7.3 FUTURE WORK .. 59

8. REFERENCES... 60

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 6 San Jose State University

Index of figures

Figure 1. ARP operation after user types ftp hostname…………………………………11

Figure 2. ARP Frame on Ethernet…………………………………….………………….12

Figure 3. Broadcast Request scenario…………………………………………………....15

Figure 4. Multiple Responses scenario…………………………………………………..17

Figure 5. Neighbor Table structure……………………………………...……………….21

Figure 6. Routing Cache Table Structure………………………………..………………23

Figure 7. Routing Info Structure…………………………………………..……………..23

Figure 8. Sk_buff structure…………………………...………………………………….28

Figure 9. Architecture for solving ARP Cache poisoning…………………………….....42

Figure 10. Broadcast Request scenario……………………………………………….…53

Figure 11. Multiple responses scenario ………………………………………………...55

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 7 San Jose State University

1. Abstract

Address resolution refers to the process of dynamically finding the Media Access Control

(MAC) address of a computer on a network. The Address Resolution Protocol (ARP)

thus provides a dynamic mapping between the two different forms of addresses: the 32-

bit Internet Protocol (IP) address and the 48-bit MAC address that the data link layer

uses.

ARP cache poisoning is the act of introducing a specious IP-to-Ethernet address mapping

in another host’s ARP cache [1]. This results in diversion of traffic, either to a different

host on the LAN or no host at all. ARP spoofing, also known as the “Man In The Middle”

attack, can thus be used to compromise the subnet. Even though ARP spoofing is possible

only on a LAN it is still a security breach.

This report gives a brief introduction to Address Resolution Protocol. There is also a brief

description on the Linux implementation of ARP functions and related important

networking structures. The report then goes on to discuss ARP Cache Poisoning and

provides a solution to detect and prevent it on RedHat Linux.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 8 San Jose State University

2. Introduction

2.1 Address Resolution Protocol

ARP is a protocol used by the IP network layer to map IP addresses to hardware

addresses that are used by the data link layer. ARP operates below the network layer as a

part of the Open Systems Interconnection (OSI) link layer, and is used when IP is used

over the Ethernet.

There are two types of addresses that are used to uniquely identify a host:

• MAC Address

This address is known by various names: hardware address, LAN address, physical

address, or Network Interface Card (NIC) address. Each computer’s network interface

card is assigned a globally unique six-byte address by the factory that manufactured

the card. This is the source physical address used by the host’s network interface.

When a host sends out an IP packet, it uses this source address and it receives all

packets that match its own hardware address or the broadcast address. This Ethernet

address, typically a 48-bit address, is a link layer address and depends on the network

interface card used.

• IP Address

Internet Protocol operates at the network layer and is independent of the hardware

address. The IP address of a host is a 32-bit address assigned to a host and is either

static or dynamically assigned by Dynamic Host Configuration Protocol (DHCP).

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 9 San Jose State University

When an Ethernet frame is broadcast from one machine on a LAN to another, the 48-bit

MAC address is used to determine the interface for which the frame is destined. The

device driver does not consult the destination IP address in the IP datagram for the

resolution of the address.

Address resolution refers to the process of dynamically finding a MAC address of a

computer on a network. The protocol thus provides a dynamic mapping between the two

different forms of addresses: the 32-bit IP address and the 48-bit hardware address that

the data link layer uses. The process is dynamic as it happens automatically and is

normally not a concern of either the application user or the system administrator.

In a shared Ethernet where hosts use the TCP/IP suite for communication, IP packets

need to be encapsulated in Ethernet frames before they can be transmitted on to the wire.

There is a one-to-one mapping between the set of IP addresses and the set of Ethernet

addresses. Before the packet can be encapsulated in an Ethernet frame, the host sending

the packet needs the recipient’s link/Ethernet address. Therefore, ARP is used to find the

destination Ethernet address using the IP address.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 10 San Jose State University

2.2 ARP Example

The example below shows how ARP is used on a LAN:

Suppose a user types the following command

% ftp linux.com

The following steps are executed:

1. The FTP client calls gethostbyname() to resolve the hostname linux.com into its

32-bit IP address. Domain Name System (DNS) is used to do this conversion.

2. Transport Control Protocol (TCP) is then asked to establish a connection with this

32-bit IP address.

3. An IP datagram is sent to this IP address to request connection to the remote

machine.

4. The IP datagram can be sent directly to the destination host if it is on a LAN.

Otherwise, IP determines the next hop router to which this packet needs to be

sent. An IP datagram is then sent to this locally attached host or router.

5. On Ethernet, for a host to send an IP packet to a destination, it must know not

only its IP address but also the 48-bit Ethernet address. It is therefore necessary to

map the 32-bit IP address to the 48-bit MAC address. This is the core function of

ARP.

6. A broadcast Ethernet frame called as ARP request is sent out on the LAN. This

ARP request contains the IP address of the destination host.

7. Every host on the Ethernet receives this ARP request and the destination host

recognizes that its hardware address is being asked for and thus responds with an

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 11 San Jose State University

ARP reply. The ARP reply contains the 32-bit IP address and its 48-bit MAC

address.

8. The host receives the ARP reply and is now ready to send the IP datagram.

9. The IP packet is sent to the destination.

The flowchart below shows a pictorial depiction of the above steps [5].

Resolver
FTP
(1)

TCP
(3)

IP
(4)ARP

(5)

Ethernet driver

Ethernet driver Ethernet driver

ARP

TCP

IP ARP

IP addr

hostname

hostname

Establish connection with
IP address (2)

Send IP datagram to IP
address

(6)

ARP
request

(7)

(8)

(9)

Figure 1. ARP operation
after user types ftp hostname

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 12 San Jose State University

2.3 ARP Structures

The figure below shows the format of an ARP frame when used on an Ethernet [5].

Ethernet

Dest

Address

Ethernet

Source

address

Frame

type

Hard

type

Prot

type

Hard

size

Prot

size

op Sender

Ethernet

address

Sender

IP

address

Target

Ethernet

address

Target

IP

address

Figure 2. ARP Frame on Ethernet

The Ethernet destination address, Ethernet source address and frame type define the 14-

byte header called the Ether_header. The next five fields form the arphdr, which is

common to ARP requests and replies irrespective of the type of media, such as Ethernet.

The ether_arp structure constitutes the arphdr, the sender addresses and the target

addresses when ARP is used on Ethernet. These addresses include the Ethernet address as

well as the IP address.

The structure for arphdr and ether_arp, as given in [9]:

struct arphdr {

u_short ar_hrd; /*format of hardware address */

u_short ar_pro; /*format of protocol address */

u_short ar_hln; /*length of hardware address */

u_short ar_pln; /*length of protocol address */

u_short ar_op; /* ARP/RARP operation*/

};

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 13 San Jose State University

struct ether_arp {

struct arp_hdr ea_hdr ;

u_char arp_sha[6]; /* sender hardware address*/

u_char arp_spa[6]; /* sender protocol address */

u_char arp_tha[6]; /* target hardware address */

u_char arp_tpa[6]; /* target protocol address */

};

struct llinfo_arp {

struct llinfo_arp *la_next;

struct llinfo_arp *la_prev;

struct rtentry *la_rt;

struct mbuf *la_hold;

long la_asked;

};

A llinfo_arp structure exists for each ARP entry. In addition, one of these llinfo_arp

structures is allocated as a global structure and this is used as the head of a doubly linked

list. Since this structure is the only structure that has ARP entries for Ethernet to IP

address correspondence, it is often referred as the ARP Cache in BSD systems.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 14 San Jose State University

In the llinfo_arp structure, la_next and la_prev form the doubly linked list and la_rt

points to the corresponding routing table entry.

When ARP receives an IP packet to be sent to another host on the LAN and the

destination host’s MAC address is not in its ARP cache, an ARP request is broadcast. A

reply needs to be received before the IP packet can be sent. The message is stored in an

mbuf datagram in the BSD system (sk_buff in Linux) and its pointer is stored in the

la_hold field. When the ARP reply is received, if the pointer pointed to by la_hold holds

any packets, they are sent.

La_asked keeps a count of number of times an ARP request has been sent to the IP

address and not received an ARP reply for the same. There is an upper limit to this value,

and when this limit is reached, the destination host is considered down and another

request will not be sent for a default time of 20 seconds. This time is defined by the value

of the arpt_down variable.

ARP is a request-response protocol and does not have a state. An ARP request that

contains the source IP address, source Ethernet address, and the target IP address is

broadcast on the LAN. All hosts on the LAN receive this frame and check the target IP

address against their own IP address. If the two addresses match, the respective host then

sends an ARP response with its own Ethernet Address. This response is unicast, in that it

is addressed only to the sender of the request.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 15 San Jose State University

2.4 ARP Cache Poisoning

“Address Resolution Protocol cache poisoning is the act, by a malicious host on the LAN,

of introducing a spurious IP-to-Ethernet address mapping in another host’s ARP cache”

[1]. The result of ARP cache poisoning is that the IP traffic intended for one host is

diverted to a different host.

There are various ways in which a host’s ARP cache can be poisoned [1].

2.4.1 Scenario one: Broadcast Request

Explanation

Depending on the nature of the ARP requests received, ARP caches these entries. Thus, if

host A sends out a broadcast request for host B, it is possible that a host C might cache

host A’s IP-to-Ethernet address mapping. Hence, an attacker can easily pretend to send a

valid request causing ARP cache poisoning of various hosts.

The example below demonstrates this scenario using three Linux hosts.

Three hosts are connected via Ethernet on a 10.11.0.0 network.

Host A Host B Host C
(10.11.0.10) (10.11.0.25) (10.11.0.26)

Figure 3. Broadcast Request scenario

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 16 San Jose State University

The figure below shows host A’s ARP cache assuming host A has communicated with

host C.

[root@localhost /]# arp

Address Hwtype Hwaddress Flags Mask Iface
10.11.0.26 ether 00:03:93:5A:74:FC C eth0

To cause ARP cache poisoning, host B’s IP address is changed to 10.11.0.26 resulting in

two hosts on the LAN with the same IP address. Host B then sends a broadcast message

to all the hosts on the network. This IP-to-Ethernet address mapping is cached on host A

and causes ARP cache poisoning. The figure below shows the new IP-to-Ethernet address

mapping in host A’s ARP cache.

[root@localhost /]# arp

Address Hwtype Hwaddress Flags Mask Iface
10.11.0.26 ether 00:30:65:D5:99:6E C eth0

Result

When a malicious host uses another host’s IP address and sends out a broadcast request,

Linux caches the new IP-to-Ethernet address mapping, thus causing ARP Cache

poisoning.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 17 San Jose State University

2.4.2 Scenario: Multiple Responses

Explanation

In this scenario, the malicious user waits for an ARP request and then sends out a

specious response to that request. Even if another legitimate user responds to the request,

there could be a race condition that the hacker might win.

The example below demonstrates this scenario using three Linux hosts.

As shown in the figure, two hosts on the network have the same IP address. If host A tries

to communicate with host B and it sends out an ARP request for the IP address

10.11.0.29, both host B and host C will send out an ARP response and host C could win

the race condition. The figure below shows host A’s ARP cache with the malicious host

C’s IP-to-Ethernet address mapping.

[root@localhost /]# arp

Address Hwtype Hwaddress Flags Mask Iface
10.11.0.29 ether 00:03:93:5A:74:FC C eth0

Host A Host B Host C (Hacker)
(10.11.0.10) (10.11.0.29) (10.11.0.29)

Figure 4. Multiple Responses scenario

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 18 San Jose State University

Result

ARP cache could be poisoned when multiple ARP responses are received, as there is a

race condition that the hacker might win. In this case, hacker’s IP-to-Ethernet address

mapping is cached by the victim’s host causing its ARP cache to be poisoned.

2.4.3 Scenario: Unsolicited Response

Explanation

Hosts do not keep track of the requests that they send out. Hence, a response that is not

associated with any request sent out by a host will be accepted and processed. If a

malicious host sends out an ARP response packet on the LAN with spurious mapping, it

could poison the ARP cache of the victim. If this response is broadcast, it could poison

the ARP cache of every host on the LAN.

Result

Since ARP is a stateless protocol, it does not keep track of outgoing requests and

incoming responses. Hence, unsolicited responses are processed and can cause ARP

cache poisoning.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 19 San Jose State University

3. Linux Kernel Specifics

This section discusses the various Linux Kernel specifics that are required for the

implementation of this project.

3.1 The Routing Tables

There are three main tables that take part in the routing process in the Linux kernel:

The Neighbor table

This table contains information about hosts that are connected to this host physically on

the local network. Initially, when a host comes up on the network, the neighbor table does

not have any entries, as it has not passed any network traffic. Entries in this table are not

persistent and depend on the host’s communication with other computers on the network.

Entries are added when needed, and deleted after the time expires for each entry. This

time is defined by retrans_time and has a default value of 100 sec. It is possible to set up

permanent entries in the neighbor table using the “arp” command.

The Linux operating system uses ARP for the maintenance of the Neighbor table. Hence

the Neighbor table is the focus of this project.

Routing cache

This routing table is the most critical routing table in the Linux kernel. This table stores

the most recently used routing entries and uses fast hash lookup. The kernel first consults

this table with the source IP address, destination IP address, and Type of Service to find a

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 20 San Jose State University

matching routing entry, and if successful, the IP packet is forwarded. This routing entry

contains information like source IP address, destination IP address, device to be used to

send the packet, a pointer to the neighbor table for the next link to this route and pointers

to other relevant networking structures.

Forwarding Information Base (FIB)

This table contains routing information needed to reach any valid IP address on the

network. When an IP packet needs to be sent to a host outside the local network, the

routing cache is first checked for a matching entry with the source, destination and type

of service. If an entry is found, it is used, otherwise the FIB is consulted for the route

information. Even though the FIB is slower than the routing cache, it is complete. This

new entry is then added in the Routing Cache.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 21 San Jose State University

3.1.1 Neighbor Table

As mentioned previously this table contains entries of a host’s directly connected

computers via the Ethernet. At any given time, this table could be empty or have entries

of all the directly connected hosts, depending on its communication with the rest of the

hosts. Figure 5 shows the neighbor table data structure and its relationships.

*neigh_tables is a global variable that can be used to access the list of neighbor tables.

Each of these neighbor tables contains information like queue sizes, pointers to device

functions, and device pointers.

Neighbor table

(struct neigh_table)

(struct neigh_table)

Pneigh
(struct pneigh entry) 16 entries

Neighbors
(struct Neighbor) 32 entries

Parameters
(struct neigh_parms)

Figure 5. Neighbor Table structure

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 22 San Jose State University

struct neigh_table *neigh_tables

This is a pointer to a list of the neighbor tables. Each of these tables contains specific

information about a set of neighbors.

struct neigh_table

This is a low level detailed structure that contains information on device pointers, pointer

to device functions, and various queues. All devices connected using the same interface

will be in the same neigh_table. The following fields or structures are important for our

implementation:

• Struct neigh_table *next: pointer to the next table in the list.

• Struct Neighbor *hash_buckets[]: hash table of various neighbors that are

associated with this neigh_table.

Struct Neighbor

This data structure is used for each neighbor. It contains detailed information for each of

a host’s neighbors. The following fields are important for our implementation.

• Struct device *dev: device that is used to connect to the

neighbor.

• __u8 nud_state: This status flag can take values like

reachable, stale, incomplete, and such, and is

used to determine the status of the route.

Thus, this flag can be used to purge a route

by marking it as an invalid route.

• struct sk_buff_head arp_queue: pointer to ARP packets for this neighbor.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 23 San Jose State University

3.1.2 Routing Cache

The routing cache holds entries of every route that is either currently in use or has been

used very recently. When an IP packet is to be sent, this table is first searched for the

corresponding route. The IP packet is sent if a match is found in the routing cache,

otherwise the FIB is searched and a new entry is created in the routing cache.

Hash table Route chain

(256 buckets)

Routing info

empty

empty

Routing info

Routing info

Routing infoRouting info

Routing info

Source
Destination
TOS
Pointers to

1. Router
2. Header cache
3. device
4. functions

Figure 6. Routing Cache Table Structure

Figure 7. Routing Info Structure [10]

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 24 San Jose State University

struct rtable *rt_hash_table[RT_HASH_DIVISOR]

This is a global variable and contains 256 buckets of pointers pointing to chains of

routing cache entries. The kernel uses the source address, destination address, and type of

service (TOS) to compute a hash that is used to get an entry point to the table.

Struct rtable

This structure contains cache entries for various destinations.

• __u32 rt_dst : destination address

• __u32 rt_src: source address

• rt_int iif : input interface

• __u32 rt_gateway : the address of the host to route through to reach the

required destination.

Dst_entry

This structure contains the destination cache entry.

• struct neighbor *neighbor: a pointer to the next neighbor in this route.

• Pmtu: maximum size of the packet for this route.

• struct device *dev: the input/output device to be used for this route.

• Int (*input) (struct sk_buff*): a pointer to the input function to be called for this

route. This is tcp_rcv() in most cases.

• Int (*output) (struct sk_buff *): a pointer to the output function to be used for this

route. This is dev_queue_xmit() in most cases.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 25 San Jose State University

Traversal example using Routing cache

In this example, a host on network has an IP address of 178.18.1.2 and wants to

communicate with 178.18.1.1.

• ip_route_ouput() is called to find the route to this host. This function then calls

rt_hash_code() with source address, destination address, and type of service as its

parameters.

• rt_hash_code() computes a hash function using the above three parameters and

the result is used to find an index to the hash table.

• The result is used to index the routing cache hash table. The entry at this index is

checked to see if it matches the required destination address, source address and

type of service.

• If a match is found, then a pointer to this route is returned and statistics of this

route are updated in dst_cache structure.

• If a match is not found, the next entry is compared (next entry is found using

u.rt_next).

• If a match is not found in the routing cache, ip_route_input() returns and the

calling function calls ip_route_input_slow() to get the entry from FIB.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 26 San Jose State University

3.1.3 Forwarding Information Base

The FIB table has routing information needed to reach any host with a valid IP address

and a mask. Thus, it is also the most important routing table. When a host needs to

communicate with another host, a search is first made in the routing cache for a route to

the required destination. If an entry is not found, IP then searches in the FIB for a

corresponding match. When a match is found in FIB, this route is copied in the routing

cache and the packet is sent on its way.

Traversal example using Forwarding Information Base

IP tries to find a matching entry in the FIB only if a match has not been found in the

routing cache.

• ip_route_output_slow() is called by IP as route for the required destination is not

present in the routing cache. rt_key structure is formed with source IP address,

destination IP address, and Type of Service with a value of 2.

• ip_route_output_slow() takes the rt_key structure and calls fib_lookup().

• fib_lookup() makes the local table find the key.

• fn_hash_lookup() looks in the local table's hash, starting at the most specific zone,

i.e zone 24.

• fz_key() builds a test key by performing an AND on the zone mask and

destination address, giving a certain key value.

• fz_chain() is used next to perform a hash into the zone's hash table of various

nodes. If this node is not empty, node's key and search key are compared. If there

is a match, fib_result structure is filled with the needed route information.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 27 San Jose State University

• If a match is not found, process repeats by calling the fz_key() with a new zone,

and fz_chain() to perform a hash until an exact match is found.

• ip_route_output_slow() takes this fib_result and creates a new routing cache

entry.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 28 San Jose State University

3.2 SK_BUFF

SK_Buff is one of the most important packet data structures used in Linux. As the data is

passed between various protocol layers, time is not wasted in copying parameters and

payloads back and forth between the protocols. Data is copied only twice, once from the

user space to the kernel space and then from the kernel space to an outbound medium.

The structure below shows the sk_buff packet structure:

sk
stamp

Figure 8. Sk_buff structure

dev

h

nh

mac

dst

len

csum

truesize

head

data

tail

end

Packet being
handled

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 29 San Jose State University

Description of the various fields follows:

sk: pointer to the socket owning this packet

stamp: time this packet arrived

h: transport layer header pointer

nh: network layer header

mac: pointer to link layer header

dst: pointer to dst_entry

len: actual data length

csum: checksum of the packet

next: pointer to the next sk_buff{}

prev: pointer to the previous sk_buff{}

dev: dev currently being used

data: pointer to the start of data.

tail: pointer to end of protocol data.

end: pointer to end of the buffer holding this packet.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 30 San Jose State University

3.3 ARP Functions in Linux

The following are the functions in the Linux Source Code that are essential for ARP:

3.3.1 arp_rcv () [10,14]

Defined in: net/ipv4/arp.c

Parameters: Struct sk_buff *skb, Struct net_device * dev, struct packet_type *pk

The ARP handler calls this function when an ARP packet is received. This method is

responsible for updating the ARP cache/neighbor table if it receives an ARP response

with a valid IP and MAC address mapping. If an ARP request is received and the host’s

IP address matches the target IP address in the ARP packet, a response is sent back.

The following actions are taken by this function:

1. Performs error checking for non-ARP devices, and verifies if the packet is for this

host.

2. Checks if the operation in the ARP packet is Reply/Request type.

3. Extracts the data from the skbuffer packet.

4. If the address is a loopback/multicast address, then the request is considered to be

a bad request.

5. If the received message is a request and ip_route_input() is true, then

a. If it is a local packet

i. Calls neigh_event_ns() to look up and update the neighbor

that sent the packet.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 31 San Jose State University

ii. Reply is sent with the device address (MAC address)

Else:

i. Neigh_event_ns() is called to look up and modify the

neighbor that sent the packet..

ii. Neigh_release() is called.

iii. If required, arp_send() is called with the address

iv. Otherwise, pneigh_enqueue() is called and returns 0

6. If the received message is a reply:

a. __neigh_lookup() is called.

b. A check is done to see if multiple ARP replies have been received,

if so, only the first one is kept

c. neigh_update() is called and ARP entry is updated

7. skbuffer packet is freed.

8. return from the function.

3.3.2 arp_send () [10,14]

Defined in: net/ipv4/arp.c

Parameters: int type, int ptype, u32 dest_ip,

 struct net_device *dev, u32 src_ip,

 unsigned char *dest_hw, unsigned char *src_hw,

 unsigned char *target_hw.

This method is responsible for creating a new skbuffer packet and filling it with all the

ARP information it receives. It checks if the device that is to be used to send out the ARP

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 32 San Jose State University

packet supports ARP. The function then calls dev_queue_xmit() with this skbuffer to send

the ARP packet. The function executes the following steps:

1. The function first checks to see if the device, that is supposed to be used to

send the ARP packet, supports ARP.

2. A new skbuffer is allocated.

3. All the buffer header information is filled.

4. All the ARP information, such as the source MAC address, source IP address,

and message type like Request/Reply, is filled.

5. dev_queue_xmit() is called to send the ARP packet with the filled skbuffer

packet.

3.3.3 arp_req_get () [10,14]

Defined in: net/ipv4/arp.c

Parameters: struct arpreq *r, struct net_device *dev

This function is used to look up in the ARP table for a match with the given IP address.

The result of the function indicates whether or not a match is found. The function

executes the following steps:

1. Extracts the IP Address from the arpreq structure.

2. Calls __neigh_lookup() to find an entry for the given IP address.

3. Copies data from neighbor entry to arpreq entry.

4. Returns 0 if an entry is found in the ARP table, or ENXIO if not.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 33 San Jose State University

3.3.4 ip_route_input() [10,14]

Defined in: net/ipv4/route.c

Parameters: struct sk_buff *skb, u32 daddr, u32 saddr, u8 tos, struct net_device *dev

This function is used by methods like arp_rcv() to lookup a routing entry in the routing

hash table. It takes the source address, destination address, and type of service as its

parameters and computes a hash value. A search is made in the hash table for a matching

entry and a routing entry is returned if a match is found. The following are the steps

executed by this function:

1. Hash value for the address is calculated.

2. Searches through the hash table to see if an entry is found with (source

address, destination address, Type Of Service and IIF/OIF)

3. If a matching entry is found, routing entry is returned and the various stats

are updated.

4. Calls ip_route_input_slow() if no match is found.

3.3.5 ip_route_input_slow() [10,14]

Defined in: net/ipv4/route.c

Parameters: struct sk_buff *skb, u32 daddr, u32 saddr,

u8 tos, struct net_device *dev

This function is called when a routing entry is not found in the fast routing cache. It is

called with the same parameters as that of ip_route_input(). Fib_lookup() is called to look

up in the slow, but complete, FIB table for the routing entry. This entry from the FIB is

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 34 San Jose State University

used to create an entry in the routing cache. The following steps are executed by this

function:

1. Creates a cache key for routing table.

2. Does error checking for addresses like broadcast and loopback.

3. Calls fib_lookup() to find the corresponding route.

4. Creates a new routing table entry and initializes it with information such

as source address, destination address, TOS, and various flags.

5. Validates the packet source, and returns from the function if the source is

bad.

6. Calls rt_set_nexthop() to find the next destination

7. Calls rt_intern_hash().

3.3.6 neigh_event_ns() [10,14]

Defined in: net/core/neighbor.c

Parameters: struct neigh_table *tbl,

u8 *lladdr, void *saddr,

struct net_device *dev

Neigh_event_ns() is called to lookup an address in the neighbor table and return a pointer

to this neighbor. Thus, it takes a pointer to the neighbor table as one of its parameters. A

call is made to __neigh_lookup() to look up the needed address. If an entry is found, a

pointer to this neighbor is returned and the entry is updated accordingly. The following

are the steps executed by the function:

1. Calls __neigh_lookup() to look up the address in the neighbor table.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 35 San Jose State University

2. Calls neigh_update(), if a neighbor is found.

3. Returns a pointer to this neighbor.

3.3.7 neigh_update() [10,14]

Defined in: net/core/Neighbor.c

Parameters: struct Neighbor *neigh, const u8 *lladdr, u8 new, int override, int arp

The core function of this method is to update an entry in the neighbor table. Thus, it takes

a pointer to the neighbor table as one of its parameters. A check is first made to see if the

table can be modified. If the required entry is old, the neighbor’s status is checked by

calling neigh_suspect(). The address is overwritten or updated only if the override flag

value is 1. This function is used to purge an entry in the neighbor table by marking it as

an Invalid entry. The function executes the following steps:

1. Checks table permissions to see if it can be modified.

2. If this entry is old, neighbor status is checked by calling neigh_suspect().

3. If the device needs an address and if the address has changed, the override

flag is checked. If the override flag value is 1, the address is overwritten.

4. Calls neigh_sync() to verify that the neighbor is still up.

5. Updates the neighbor contact time.

6. Returns 0 if the old entry was valid, and new entry does not change the old

address.

7. Replaces old address with new if they are different.

8. Returns 0 if the two states match.

9. Calls neigh_suspect() to verify the connection

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 36 San Jose State University

a. If old state was invalid, it goes through the queued ARP packets, and

calls the neighbor output function.

b. ARP queue is purged.

10. Return 0 from the function.

3.3.8 Dev_queue_xmit() [10,14]

Defined in: net/core/dev.c

Parameters: struct sk_buff *skb

This function is used to send the packet over the device. Thus, this function is used not

only by ARP but also by IP to send the packets over any required device. The following

steps are executed by this function:

1. Checks to see if device supports checksumming. If packet is not

checksummed, completes checksumming of the packet.

2. Checks to see if the device has a queue:

a. If it does, the packet is added to the queue

b. Device is woken up.

3. Calls hard_start_xmit() if there is no queue.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 37 San Jose State University

3.4 ARP functions on BSD

This section gives a brief introduction to the related ARP functions in a BSD operating

system. The implementation of ARP varies in different operating systems but the

underlying concept is the same across various systems.

In BSD, there are nine ARP functions defined in the following files:

Net/if_arp.h: arphdr structure definition.

Netinet/if_ether.h: other structures and some constant definitions.

Netinet/if_ether.c: ARP functions.

A brief description of some of these functions is provided here.

3.4.1 arpwhohas function

This function broadcasts an ARP request. It is usually called by the ARP resolve

function.

3.4.2 arprequest function

This function is called when an ARP request, which is usually broadcast, is to be sent.

This function forms the request packet and then calls the interface’s output function.

3.4.3 arpintr function

When the ether_input receives a packet that has the frame type set as ETHERTYPE_ARP,

it schedules a software interrupt and the received frame is then appended to ARP’s input

queue. When the kernel receives an interrupt, arpintr is called to process it. This function

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 38 San Jose State University

does the initial filtering of the packets and checks if the packet is valid and then passes it

to in_arpinput function.

3.4.4 in_arpinput function

Each ARP request or ARP reply received is processed by the in_arpinout function. There

are certain rules that this function follows:

1. If a request is received for an IP address for this host, a reply is sent. If the request

is not broadcast, an entry is created in the ARP cache for the host.

2. If a response is received for a request sent by this host, the ARP entry is now

complete. The other host’s hardware address is now stored and any messages

queued for this machine are sent.

3. If a host receives a request that contains the sender IP address being the same as

the receiver host’s IP address, then it is logged as an error.

4. If a host receives a request or a reply for which an ARP entry already exists, but

the received packet contains a different hardware address, the entry is updated

with a new hardware address.

5. A host can be configured as a proxy server. This means that the host would

respond to requests intended for other hosts.

3.4.5 arpresolve function

This function is called to obtain the Ethernet address for an IP address.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 39 San Jose State University

3.4.6 arplookup function

This function calls the rtalloc1 to look up an ARP entry in the Internet routing table. If

this function succeeds, it returns a pointer to llinfo_arp structure that contains more

information about this entry, otherwise a null pointer is returned.

1. This function is called to look up an entry with the source IP address of a

received ARP packet. It also creates an entry for this IP address if an entry

does not already exist.

2. It is also called to see if a proxy ARP entry exists for the destination IP

address of an ARP packet that is received.

3. Called by arpresolve to look up or create an entry for the target IP address for

a packet that is about to be sent.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 40 San Jose State University

4. Design Consideration

Mahesh Tripunitara and Partha Dutta [1] have proposed a solution to ARP Cache

poisoning. These are the following design considerations for their solution.

• Asynchronous

The solution does not involve polling the ARP cache every few units of time. The

downside of polling the ARP cache is deciding the time interval between such checks.

Polling too often burdens system performance, whereas increasing the time interval

may result in missing relevant activity.

• Middleware

The proposed solution does not access networking components of the Operating

system [1]. Some modules are introduced into the existing system without any change

in the existing ones.

• Compatible

The module developed is added only to some hosts in a LAN, leading to protection of

only some host’s cache. All other hosts continue to run in the same way, unaware that

their neighbors may be protecting their ARP cache.

These design considerations are intended for a Streams based operating system like

Solaris. In a Streams based operating system it is possible to create a module and insert it

into the networking system without any changes to the existing modules.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 41 San Jose State University

In Linux, modules can be easily created and inserted into the networking subsystem but

problems arise because modules in Linux do not always have access to the kernel. Thus,

the implementation for RedHat Linux is not a fully middleware approach as it involves

changes to the existing kernel.

Changes implemented on a Linux host to protect its ARP cache are fully compatible with

other hosts on the Ethernet as these changes are transparent to the neighbors.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 42 San Jose State University

4.1 Architecture

The architecture for solving the problem of ARP cache poisoning as proposed in [1] for a

Streams based operating system is as shown below:

• checker is the module added to the operating system.

The checker module intercepts messages in both the downward as well the upward

direction. Requests and responses each travel in both directions. Traffic moving

downwards is logged when it is an ARP request. The checker module makes a decision,

whether the traffic should be allowed to go upwards or not.

IP Multiplexing Driver

Ethernet Driver

ARPARP

IP checker

Figure 9. Architecture for solving
ARP Cache poisoning [1]

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 43 San Jose State University

The request messages moving downwards are recorded, so that when a response comes

in, it can be matched with the corresponding request. These messages are stored in lists.

There are two separate lists for downstream as well as upstream traffic.

This checker module can be loaded dynamically without having to rebuild the kernel in a

Streams based operating system. In RedHat Linux, a few changes need to be made to the

kernel in addition to the dynamic loading of the checker module.

The checker module implemented in Linux has two lists:

arp_checker_requested_list

This list stores all the ARP requests that are sent out from a host. Each entry is a structure

that stores the IP address, MAC address (which will be null for requests), and a pointer to

the next entry in the list. Thus, before an ARP request is sent out, the checker keeps a log

of this entry in this list, if it does not already exist. This makes the host go in a requested

state.

arp_checker_responded_list

When an ARP response is received, the checker module checks in the requested list for a

match. If a match is found in the requested list for this IP address, an entry is added in the

response list. Each entry in the response list has the same structure as the entry in the

requested list. The only difference is that the MAC field in the entry holds a MAC

address of the host, as received in the ARP response.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 44 San Jose State University

4.2 Algorithm

The algorithm that is to be executed in the Streams module as suggested in [1] is

discussed below. The most significant challenge in my project deals with the

modification and implementation of this algorithm for a different operating system, like

Linux.

As discussed previously, the ARP handler calls the arp_rcv() function whenever an ARP

packet is received. A hook is added in this function that calls the arp_rcv_checker()

function in the checker module. The checker module is loaded dynamically. Thus, before

the packet is processed by the arp_rcv() function, it first checks if the module is loaded.

If so, the checker function processes the ARP packet and decides if the packet should

flow up to be processed or be dropped.

Similarly, a hook is also placed in the arp_send() function that calls the

arp_send_checker() function in the checker module. Before an ARP packet is sent onto

the network, the checker function processes the skbuffer and logs information like the

destination IP address and the MAC address if known.

When an ARP frame is received:

If this ARP frame is a response:

If a corresponding entry exists in the requested list:

Move the entry to the responded list and let the packet flow up

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 45 San Jose State University

to be processed by the host’s ARP implementation.

Else, a corresponding entry is not found in the requested list, and:

Check if there exists a corresponding entry in the

responded list, If yes then multiple responses have been received,

so:

Check whether the entry in the responded list

corresponding to the IP address is same as that in the

response.

If yes:

Refresh the entry in the ARP cache.

Else, the ARP cache entry is

not consistent with the received packet:

Log the incident. Drop the frame. Mark

the entry as Invalid.

Else, this is an unsolicited response.

Drop the frame and log the incident.

Else, this is a request, and:

Let the frame flow up and let the host’s ARP implementation process it.

Else, a frame is being sent, and:

If the ARP frame is a response:

Let the frame flow down.

Else, this is a request, and:

Add a corresponding entry in the requested list.

Let the frame flow down.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 46 San Jose State University

4.3 Placement of the Code

The code discussed above could be placed in the following ways:

1. Kernel

The code could be placed directly into the kernel. This has its advantages

and disadvantages. The code is simpler to write, as new modules do not

need to be loaded. However, the main disadvantages are that the code

needs to be recompiled, reinstalled, and the system needs to be re-booted.

It is also difficult to debug code in the kernel. Changes are permanent

(until code is deleted and system is compiled, installed and booted again).

Thus, the entire process can be very tedious and error-prone.

2. Module

Modules are relatively simple to code. The process of loading modules

and debugging them is less painful than making changes to the kernel. The

problem is that the module needs access to the kernel that is not always

available.

3. Coding in Kernel and Module programming.

In this method, the user makes changes to the kernel once, compiles,

installs and boots the system. Modules are then loaded making the process

of testing and debugging very simple.

Considering these factors, we have used a method that involves module programming to

implement the checker module and also some coding in the kernel to give the module

access to the kernel.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 47 San Jose State University

5. Implementation

This section describes the implementation details of the new module and the various

changes made to the kernel in order to detect and prevent ARP Cache poisoning.

5.1 Operating System Used

Linux operating system version 2.4.7 was used for the implementation of this project.

Since Linux does not have Streams programming, the implementation is different on this

platform as compared to Solaris.

5.2 Open Sources Utilized

Linux open source version 2.4.7 has been utilized for the implementation of the

algorithm. The ARP subsystem in this kernel was slightly modified to accommodate the

new kernel module.

5.3 Code placement

As discussed earlier, we decided to place the code in a module that will be loaded

dynamically. However, since the module does not have access to the kernel, a few

modifications have been made to the kernel. Certain symbols are exported in the kernel.

The kernel is then compiled, installed and system is re-booted for changes to take effect.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 48 San Jose State University

5.4 Minimal Hardware requirements

To successfully design, implement, and test the algorithm for ARP Cache poisoning

detection and prevention it is essential to have the following:

• One personal computer running Linux kernel 2.4.7 with an Ethernet card. This

computer should have the source code installed.

• Two more personal computers with Ethernet cards.

• A hub that is used to connect the above three machines together.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 49 San Jose State University

5.5 Implementation Details in Linux

This section covers the implementation details of the algorithm in Linux using kernel

2.4.7.

5.5.1 Kernel Module

The kernel module that is loaded dynamically has two critical functions and a list of

helper functions.

The two critical functions, described below are the checker functions called when an

ARP packet is received or sent.

5.5.1.1 arp_send_checker() function

This function is called by the arp_send() function just before it sends out an ARP packet

onto the network.

The function takes the following parameters:

• Type of ARP operation (request/reply)

• Destination IP address

• Device to be used for transmission

• Source IP address

• Destination MAC address

• Source MAC address

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 50 San Jose State University

The function checks the type of ARP operation and if the operation is an ARP reply, the

function returns. If the operation is an ARP request, a check is made to see if a request for

this IP address exists in the requested list. An entry is added in the requested list if a

match is not found.

5.5.1.2 arp_rcv_checker() function

This function is called by the arp_rcv() function after an ARP packet is received on a

device.

The function takes the following parameters:

• Sk_buff packet, containing the ARP packet with the data as well as the header

information.

• Device information on which the packet arrived.

• Packet type

The function returns an int value that is used by arp_rcv(), that is the calling function in

the kernel to determine whether to continue processing the ARP packet or to drop it.

The function retrieves the required ARP information like the destination IP address,

source IP address, destination MAC address, source MAC address, and type of ARP

packet (Request/Reply). If the packet type is a request, the message is allowed to flow up

to let the Linux kernel handle the request.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 51 San Jose State University

If the packet is an ARP reply, the method checks to see if it sent out a request for this IP

address. It also decides if the response would cause ARP cache poisoning, and drops the

packet if required.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 52 San Jose State University

5.5.2 Kernel Changes

The module does not have access to the kernel unless certain symbols get exported. Thus,

the following changes need to be made in the kernel.

The following lines of code are added in /net/netsyms.c

extern int (*arp_rcv_checker)(struct sk_buff *, struct net_device *,struct packet_type *);

..(New)

extern int (*arp_send_checker)(int,int,u32, struct net_device *,u32,unsigned char *,

unsigned char *, unsigned char *); ..(New)

EXPORT_SYMBOL_NOVERS(arp_rcv_checker); …(New)

EXPORT_SYMBOL_NOVERS(arp_send_checker); ..(New)

EXPORT_SYMBOL(register_gifconf); ..(Old)

The following lines of code are added in the /core/ipv4/arp.c

 int (*arp_rcv_checker)(struct sk_buff *, struct net_device *,struct packet_type *);

int (*arp_send_checker)(int,int,u32, struct net_device *,u32,unsigned char *, unsigned

char *, unsigned char *);

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 53 San Jose State University

6. Test Cases and Results

This section provides various tests that were carried out to poison the ARP cache and the

results obtained. The scenarios have been discussed before in Section 2.3.

6.1 Scenario one: Broadcast Request

Explanation

In this scenario, the hacker can forge an IP address and send a valid broadcast request

that is cached by hosts on the LAN. This cached entry holds the hacker’s mapping of IP

and Ethernet address resulting in victim’s ARP cache poisoning.

The example below demonstrates this scenario using three Linux hosts.

Three hosts are connected via Ethernet on a 10.11.0.0 network. The figure below shows

host A’s ARP cache assuming host A has communicated with host C.

Host A Host B (hacker) Host C
(10.11.0.10) (10.11.0.25) (10.11.0.26)

Figure 10. Broadcast Request scenario

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 54 San Jose State University

[root@localhost /]# arp

Address Hwtype Hwaddress Flags Mask Iface
10.11.0.26 ether 00:03:93:5A:74:FC C eth0

To cause ARP poisoning, host B’s IP address is changed to 10.11.0.26 resulting in two

hosts with the same IP address. Host B then sends a broadcast message to all the hosts on

the network. This new IP-to-Ethernet address mapping is cached on host A and causes

ARP cache poisoning.

[root@localhost /]# arp

Address Hwtype Hwaddress Flags Mask Iface
10.11.0.26 ether 00:30:65:D5:99:6E C eth0

Result

When a malicious host sends out a broadcast request, Linux caches this entry thus

causing ARP Cache poisoning. This entry is not deleted from the ARP cache and is

logged in /var/log/messages. The reason for this is that this could be a genuine change in

the network. Detecting the change and logging in the messages leaves it to the

administrator to decide between a genuine change and an ARP cache poisoning.

6.2 Scenario: Multiple Responses

Explanation

In this scenario, the malicious user polls the Ethernet for an ARP request and then sends

out a specious response to that request. Even if another legitimate response is received,

there could be a race condition that the hacker might win.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 55 San Jose State University

The example below demonstrates this scenario using three Linux hosts.

Figure 11. Multiple responses scenario

As shown in the figure, two hosts on the network have the same IP address. If host A tries

to communicate with host B and it sends out an ARP request for the IP address

10.11.0.29, both host B and host C will send out an ARP response and host C could win

the race condition.

The checker module maintains two lists: arp_checker_requested_list and

arp_checker_responded_list to keep track of outgoing ARP requests and incoming ARP

responses. The arp_rcv_checker() function discards the skbuffer when multiple responses

are received and the ARP entry is marked as a Failed entry in the neighbor table. This

avoids ARP cache poisoning on the host.

Thus, after the checker module is loaded, host A has an entry for host C that is marked

Failed.

Host A Host B Host C (Hacker)
(10.11.0.10) (10.11.0.29) (10.11.0.29)

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 56 San Jose State University

Result

ARP cache could be poisoned when multiple ARP responses are received, as there is a

race condition that the hacker might win.

The algorithm maintains lists for ARP requests and responses. Thus, if there are multiple

responses to a request, it is logged as a warning and entry is marked as Failed in the

neighbor table.

6.3 Scenario: Unsolicited Response

Explanation

ARP is a stateless protocol. Thus, the protocol does not keep track of the requests it sends

out. Hence, an unsolicited response with spurious mapping sent out by a malicious host

could poison the ARP cache of the victim.

The checker module maintains a requested list for all the ARP requests that it has sent

out. Thus, whenever an ARP response is received, the requested list is consulted to see if

the ARP response should be processed. If an entry is not found in the requested list, it is

an unsolicited response and is discarded.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 57 San Jose State University

Result

The checker function uses the requested list to find a corresponding entry for each

response before it can flow up to be processed by arp_rcv(). If a match is not found, the

packet is discarded.

Thus, all unsolicited responses are discarded and this avoids ARP cache poisoning on a

host.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 58 San Jose State University

7. Conclusion

This section briefly discusses the challenges involved with this project, a few limitations

and future work.

7.1 Innovations and Challenges

This project involved many complications and challenges. A few of them are highlighted

here.

• An existing algorithm designed for use in a Streams based system was modified

and implemented for ARP cache poisoning detection and prevention in Linux.

• Implementation of the modules at the system level is very complex.

• Implementation requires a thorough understanding of the networking system in

Linux since the solution is very operating system dependent.

7.2 Limitations

There were a series of restrictions that came about in this project. A few of them are

highlighted below.

• As discussed previously, the implementation of ARP varies on different operating

systems. Since the module in this design is specific to the kernel, it is not portable,

thus restricting its use.

• The algorithm is generic but not the implementation.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 59 San Jose State University

• Since the code is written in a module, it opens a security hole in the operating

system. A user with root access can modify the module causing unpredictable

results.

7.3 Future Work

This project deals with the changes to an existing algorithm for ARP Cache poisoning

prevention and detection for a host running Linux. This technique can be used in LANs to

protect important hosts.

The project could be extended in the following ways in the future:

• The solution provided for a host running Linux does not have a way of purging

old entries from the two lists. Since memory is important at the kernel level a

timer could be used for the entries in the list to delete them in a timely fashion.

• As mentioned previously, even though the algorithm requires very few changes to

be ported onto a different operating system, the implementation varies. Thus,

porting it to various operating systems could be done in the future.

• The solution does not provide any protection for ARP cache entries.

Cryptography could be used for storing these entries in the ARP cache.

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 60 San Jose State University

8. References

[1] T. Mahesh. Middleware Approach to Asynchronous and Backward Compatible

Detection and Prevention of ARP Cache Poisoning.

http://www.acsac.org/1999/papers/fri-b-0830-dutta.pdf , August 1999.

[2] J. Postel. Internet protocol. RFC 791, September 1981.

[3] J. Postel. Transmission datagram protocol. RFC 793, September 1981.

[4] S. A. Rago. UNIX System V ProgrammingGuide. Addison–Wesley Professional

Computing Series, July 1993.

[5] R. W. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison–Wesley

Professional Computing Series, January 1994.

[6] SunMicrosystems. STREAMS Programming Guide. Solaris 2.6 AnswerBook Library.

[7] SunMicrosystems. Manual Pages for Solaris 2.6. 1994.

[8] Y. Volobuev. Playing redir games with ARP and ICMP.The BUGTRAQ mailing list,

http://www.goth.net/ iceburg/tcp/arp.games.html, September 1997.

[9] R. W. Stevens. TCP/IP Illustrated, Volume 2: The Implementation. Addison–Wesley

Professional Computing Series, January 1994.

[10] Glenn Herrin. Linux IP Networking. A guide to the Implementation and

modification of the Linux Protocol Stack.

http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html, May 2000

[11] Wei Ye. Compile Linux Kernel.

http://www.isi.edu/~weiye/system/guide/kernel.html Jan 2002

ARP Cache Poisoning Prevention and Detection Silky Manwani

CS 298 Project 61 San Jose State University

[12] Brown Martin, Guide to IP Layer Network Administration with Linux.

http://linux-ip.net/html/

[13] Fairhurst Gorry, Address Resolution Protocol

http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html Jan 2001

[14] Linux Source code

http://www.kernel.org/pub/linux/kernel/v2.4/ Jul 2001

