

ANALYSIS AND ENHANCEMENT OF APPLE’S FAIRPLAY DIGITAL

RIGHTS MANAGEMENT

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science, Computer Science

by

Ramya Venkataramu

May 2007

© 2007

Ramya Venkataramu

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

 Dr. Mark Stamp, Department of Computer Science, SJSU

__

 Dr. Teng Moh, Department of Computer Science, SJSU

__

 Dr. Robert Chun, Department of Computer Science, SJSU

 APPROVED FOR THE UNIVERSITY

ABSTRACT

ANALYSIS AND ENHANCEMENT OF APPLE’S FAIRPLAY DIGITAL RIGHTS

MANAGEMENT

by Ramya Venkataramu

Digital Rights Management (DRM) technology is used to control users’ access to

copyrighted digital content. Apple Inc.’s DRM system, called Fairplay, is used by the

iTunes music store to place restrictions on the use of digital content purchased from the

online store. Users communicate with the centralized iTunes server to purchase, play,

preview digital content, etc.

The existing iTunes music store has the disadvantage of a bandwidth bottleneck at

the centralized server. Furthermore, this bandwidth bottleneck problem will escalate with

increasing popularity of online music and other digital media (such as movies and TV

shows) downloads.

This project studies the Fairplay DRM used by iTunes (version 5.0 and version 6.0)

and enhances it to be used over a peer-to-peer (P2P) network. The aim is to garner all the

benefits of a decentralized P2P network while still providing DRM content protection

similar to Fairplay.

 vi

TABLE OF CONTENTS

1 Introduction... 1

2 Background ... 4
2.1 Apple’s Fairplay DRM ... 4

2.1.1 Fairplay DRM Restrictions ... 4

2.2 MPEG-4 .. 5

2.2.1 Structure of MPEG-4 Files ... 6

2.3 The Fairplay DRM Design.. 8

2.3.1 Encryption Scheme ... 9

2.3.2 Purchasing a Song from the iTunes Store... 9

2.3.3 Playing a Purchased Song using iTunes ... 10

2.3.4 Watermarking in Fairplay ... 11

2.4 Reverse Engineering iTunes ... 13

2.5 Introduction to P2P Networks... 15

2.6 Security Aspects of Sharing over P2P .. 17

2.7 Goals of this Project.. 18

2.8 Existing Research.. 18

3 Design... 20
3.1 A Hybrid Approach... 20

3.2 Entities of P2PTunes... 21

3.3 Architecture of P2PTunes ... 21

3.3.1 Description of the iTunes Metadata.. 22

3.3.2 Steps Involved in Purchasing and Playing a Song.................................... 23

3.4 Benefits of the Proposed System .. 28

3.5 Potential Issues.. 29

3.6 Functional Architecture .. 30

4 Implementation ... 32
4.1 Underlying P2P Network.. 32

4.2 P2PTunes - Class Diagrams.. 33

4.2.1 Originator.. 34

4.2.2 Responder ... 36

4.2.3 P2PTunesServer (PTS) ... 38

5 Security .. 39
5.1 Security Analysis .. 39

6 Testing.. 44
6.1 Creation of a façade P2P Network.. 45

6.2 Client Browser Windows.. 46

6.3 Purchasing a Song... 47

6.4 Playing a Purchased Song... 53

7 Conclusion ... 55

8 Future Work.. 57

References.. 59

 vii

INDEX OF FIGURES

Figure 1: MPEG-4 Components ... 5

Figure 2: MPEG-4 File Structure (Anonymous, 2005) .. 6

Figure 3: Protected AAC File Structure (Anonymous, 2005) .. 7

Figure 4: iTunes Protocol for Purchasing and Playing a Song ... 12

Figure 5: JHymn GUI Interface .. 14

Figure 6: Key Atoms in an m4p File .. 22

Figure 7: A Sample P2PTunes Network... 23

Figure 8: P2PTunes Functional Architecture.. 31

Figure 9: Originator Class Diagram.. 35

Figure 10: Responder Class Diagram ... 37

Figure 11: PTS Class Diagram ... 38

Figure 12: Atoms in a Song .. 44

Figure 13: FacadeP2P Creation GUI .. 46

Figure 14: P2PTunes client UI.. 47

Figure 15: Request a Song through P2PTunes ... 48

Figure 16: Responses for Content... 48

Figure 17: Details of Content.. 49

Figure 18: Request Payment for Downloaded Content .. 50

Figure 19: Transaction Success Message ... 50

Figure 20: Transaction Failure Message... 51

Figure 21 : Download Error Message... 51

Figure 22 : Integrity Check Error Message... 51

Figure 23 : Payment Required to Play Content .. 52

Figure 24 : Downloaded Content on User’s System... 53

Figure 25 : Message indicates Song Playing .. 54

 viii

INDEX OF TABLES

Table 1: Metadata Information ... 8

 1

1 Introduction

The success of Apple’s iTunes music store, together with its iPod music range has

made Apple Inc. a dominant company in both the online media store and digital media

player markets (Chandak, 2005). The iPod is a portable digital media player, designed by

Apple Inc., which supports the Advanced Audio Coding (AAC), MP3 or Moving Pictures

Experts Group (MPEG-1) Audio Layer-3, Waveform Audio (WAV), and Audible

formats (Apple Inc., 2007). The iTunes online store allows users to purchase digital

media content. A proprietary software application, called iTunes, is used to connect to the

iTunes online store to download digital content. The iTunes software is used to manage

play lists, share content with different computers, and play digital content on Windows

computers, Macintosh computers, and the iPod.

Fairplay is a digital right management (DRM) technology used to protect digital

content purchased from the iTunes online store. Fairplay places restrictions on purchased

digital content to restrict uses of copyrighted content. Users of purchased digital content

are restricted by providing persistent protection, i.e., protection that stays with the digital

content after it has been delivered to the user (Stamp, 2006).

The iTunes online store and Fairplay DRM employ a centralized server to distribute

content and enforce copyright on downloaded media. Such centralized server based

content distribution has the disadvantage of a bandwidth bottleneck at the central

server(s). Furthermore, as the number of users accessing the online store grows and the

size of digital content increases (movies require much more bandwidth than music)

additional strain is placed on the central server (Kalker, 2004).

 2

The centralized iTunes online music service may be better organized as a peer-to-

peer (P2P) network from the viewpoint of efficient storage and use of bandwidth (Kalker,

2004). A P2P network is a distributed system that can harness idle storage and network

resources from client machines that voluntarily join the network (Rodrigues, 2002). Each

workstation or node has equivalent capabilities and can initiate or service requests. This

may be contrasted to the client-server based iTunes where only the iTunes server services

requests.

 P2P systems have emerged as a popular way to share huge amounts of data since

they offer the benefits of self-organization, load-balancing, fault-tolerance, and the ability

to pool together and harness large amounts of resources (Daswani, 2003). Additionally,

P2P networks are quite scalable and easy to deploy (Tanin, 2005). Unfortunately,

distributing digital content over existing P2P networks is rife with violation of copyrights

and other security risks such as viruses, spyware, and unwanted software (Microsoft

Corp., 2006).

This project is focused on critically analyzing the existing iTunes distribution system

and scaling it for future needs. The aim is to integrate the existing iTunes with the strong

points of a P2P system thus developing a practical and feasible solution. Adequate DRM

support will be incorporated in an effort to protect copyright owners, benefit legitimate

customers, and limit illegal use of copyright content.

This report is organized as follows:

• Section 2 describes the background of Apple’s Fairplay DRM, the existing

iTunes design and presents an overview of P2P networks.

 3

• Section 3 describes our proposed design and architecture.

• Section 4 presents a prototype implementation.

• Section 5 deals with security features of the proposed system. We analyze the

strengths and weaknesses of the proposed system.

• Section 6 details the testing of the prototype system by following a step-by-

step approach through the use of sample test cases.

• Section 7 draws conclusions of the project.

• Section 8 presents additional enhancements that could be used to extend the

proposed system.

 4

2 Background

2.1 Apple’s Fairplay DRM

The Fairplay DRM, built into the QuickTime multimedia technology, is used to

protect digital content purchased from the iTunes online music store. Fairplay has several

strong security features. For instance, purchased files are encrypted to prevent

copyrighted content from being misused and digital watermarking is used to embed

information into the purchased file. However, this software-based DRM does have

numerous restrictions and limitations as described in the following section.

2.1.1 Fairplay DRM Restrictions

Some of the restrictions that Fairplay attempts to enforce include:

• Protected tracks can be copied to a certain number of “authorized” computers.

• A protected track may be burned into a play list certain number of times.

• Protected tracks may be burned into an audio CD a certain number of times.

• Purchased digital content can be played on Apple’s iPod alone and not any other

non-Apple digital music devices.

• Fairplay limits usage of its digital content to the Windows and Macintosh

Operating Systems. Downloaded media is not playable on other major operating

systems such as Linux.

 5

• Most audio-editing software used for editing or splicing tracks are not

interoperable with iTunes purchases.

These restrictions have angered many users who believe purchased content should be

free to use in any legal manner without undue restrictions (Futureproof, 2006).

2.2 MPEG-4

The QuickTime file format is a “container” that can handle audio, video, images, text

and other digital formats (Apple Inc., 2006). QuickTime is adaptable: new capabilities

can be added and new versions maintain backward compatibility (Apple Inc., 2006).

QuickTime is the file format of choice for Moving Pictures Experts Group (MPEG-

4). The MPEG-4 standard covers the entire digital media task of capturing, authoring,

editing, encoding, distributing, playback, archiving, and delivering professional-quality

digital media. MPEG-4 inherits QuickTime’s stability, extensibility, and scalability

(Apple Inc., 2006). Figure 1 illustrates MPEG-4 components.

Figure 1: MPEG-4 Components

Source: Apple Computers Inc., MPEG-4: The Container for Digital Media, 2006

 6

Advanced Audio Coding (AAC) is the audio layer in the MPEG-4 files that

compresses audio data more efficiently than older formats such as MP3 (Apple Inc.,

2006). Apple uses Fairplay to encrypt the AAC or audio data inside an MPEG-4 file

resulting in what is known as a protected AAC files. Protected files carry an “m4p”

extension.

2.2.1 Structure of MPEG-4 Files

MPEG-4 files are built up of atoms each of which store specific information

pertaining to the digital content. Every atom has an 8-byte header, an 8-byte field

indicating the atom type, followed by the data field. The atom type indicates how to

process the atom data. An MPEG-4 file structure is illustrated in Figure 2.

Figure 2: MPEG-4 File Structure (Anonymous, 2005)

 7

The song in the AAC layer is encrypted using the AES (Rijndael) encryption

algorithm which is a published standard (Anonymous, 2005). Atom types are depicted in

Figure 3. For clarity, some atoms have been omitted in Figure 3.

Figure 3: Protected AAC File Structure (Anonymous, 2005)

Atoms generally present in a protected file are presented in Table 1 (Anonymous, 2005).

 8

Table 1: Metadata Information

Atom

Name

Atom Data

mdat stores the encrypted song

drms

stores information about the song, identity of the purchaser, and

cryptographic information needed to decrypt the song.

user stores the iTunes user ID

key stores the iTunes user key number

iviv stores the AES initialization vector

name stores the iTunes user name

geID stores watermarking information

The main difference between the protected file format discussed above and an

unprotected file format is that DRM specific atoms such as drms, user, geID, priv, name,

etc., are absent in unprotected files. Unprotected file carry an “m4a” extension.

Atomic Parsley is a lightweight command line tool that can be used to view the

differences between protected and unprotected files and to parse and set metadata atoms

in MPEG-4 files (SourceForge, 2006).

2.3 The Fairplay DRM Design

This section describes the Fairplay design used in iTunes version 5.

Fairplay DRM has three levels of encryption and uses different keys. The different

types of keys used by iTunes are explained in this section.

 9

A system key is a shared symmetric key that is used by the iTunes server to encrypt

user keys. It is generated on a Windows system as a hash of items from the registry

including Bios Version, Processor name, and Windows Version (Anonymous, 2005). The

system key hash for Macintosh machines has not been reverse engineered (Anonymous,

2005).

A user key database stored on the iTunes server contains user keys that are needed in

the decryption process. Apple uses a few user keys per iTunes music store account

(Anonymous, 2005). This implies that different media purchased by one user might use

the same user key for the decryption process. The encryption scheme is explained in

detail in the following subsection.

2.3.1 Encryption Scheme

The AAC audio data is encrypted with an AES key using the AES (Rijindael)

algorithm. This encrypted AAC audio data forms the mdat atom. Further, the AES key

used in this encryption is encrypted with a user key (stored on the iTunes server database)

and stored in the priv atom. The user key is encrypted with the system key while being

transferred from server to client. The scheme used in purchasing and playing content is

explained in the following subsections.

2.3.2 Purchasing a Song from the iTunes Store

The following steps detail an iTunes client purchasing a song from the online music

store (Anonymous, 2005). Figure 4 illustrates the interaction between the client and

server.

 10

1) The user chooses a song from the iTunes online music store and makes a

download/purchase request to the iTunes server.

2) The iTunes client sends the song download request and user’s system information

to the iTunes server.

3) The iTunes server sends the download URL and a download key to the iTunes

client.

4) The iTunes client downloads the file from download URL and decrypts the file

using the download key. This decrypted file is the protected song and is stored on

the client computer.

5) The client sends a message to the server indicating success of the transaction.

2.3.3 Playing a Purchased Song using iTunes

The following steps detail an iTunes client playing a purchased song (Anonymous,

2005). Figure 4 illustrates the interaction between the client and server.

1) The user ID and the user key index from the protected (m4p) file at the client are

sent to the iTunes server along with the system information.

2) The iTunes server uses the user ID and the user key index to retrieve the user key

from its key database. It encrypts the user key using a system key generated from

the system information and sends this encrypted key to the client.

3) Upon receiving this key, the client decrypts it using the system key to get user

key.

4) The client hashes the name and iviv atoms of that specific m4p file to obtain an

initialization value.

 11

5) The key from step 3 and initialization value from step 4 are used to decrypt the

priv atom which retrieves the AES key.

6) The key from step 5 and the initialization value is used to decrypt the mdat atom,

which gives the audio stream that will be played.

2.3.4 Watermarking in Fairplay

Apple inserts some watermarking in protected files as an indicator of legitimate

content. Apple’s iTunes software looks for these watermarking indicators to verify the

authenticity of the digital content. Tampered files, which do not have watermarking

features, are rendered “unplayable” on iTunes software. However, such content can be

played on any AAC compatible hardware or software which does not look for Apple’s

watermarking (Wen, 2005). Additional watermarks are cached outside the protected file,

in the iTunes library database, and on the iPod to make it harder for reverse-engineering

tools to detect (Wen, 2005).

 12

Figure 4: iTunes Protocol for Purchasing and Playing a Song

iTunes Client (IC) iTunes Server (IS)

 . Purchasing and Downloading a Song
Download –

functions

include login,

search, preview

etc.

Song download request (send system info)

Download URL, Download Key

 Playing the Purchased Encrypted Song

 “Success” message sent to the iTunes server

Download key

decrypts the URL

and retrieves

encrypted song

which is stored on

client.

Note: In older iTunes versions (below 4.7) the encryption

key used to be generated by the client. Anti-DRM like

SharpMusique simply decrypted the encrypted file

(which contains the AAC audio) and discarded the

encryption key.

Encrypted

song stored

on user’s

system.

Request particular encryption key. Sends user a/c

info, key index and system information.

 USER’S D/B

song 1 – user key 1

song 2 – user. key 2

song 3 – user key 1

song 4 – user key 3

song 5 – user key 1

Sends encryption key for song requested after D/b

lookup. This key is encrypted with system key.

Decrypt and play song on iTunes

Note: (1) JHymn captures the encrypted

key at this phase, scrubs (decrypts) the

audio file and stores the m4a files in a

separate directory. Note, Songs cannot be

purchased with JHymn.

 System Info.

D/B

….

 13

2.4 Reverse Engineering iTunes

Apple’s Fairplay DRM technology is a closed source system. Reverse-engineering a

closed source system is generally a difficult task since considerable effort might be

needed to determine the functionality.

Jon Lech Johansen who cracked the Content Scrambling Scheme (CSS) encryption

used to protect DVD movies, is credited with reverse engineering the Fairplay DRM

scheme (Wen, 2004) (Indigo Group, 2005). PlayFair, developed by Johansen, is the first

anti-DRM tool for Fairplay. Other anti-DRM software that exploited Fairplay include

PyMusique, SharpMusique, JHymn, and QTFairUse6 (Indigo, 2005) (ipod news, 2006).

The iTunes client uses HTTP XML messages to communicate with the iTunes music

store and these messages are encrypted using AES Cipher-block chaining (CBC)

algorithm to prevent third parties from eavesdropping (Indigo, 2005) (Bornstein, 2005).

However, the biggest weakness of any DRM system is that the user has to be given all of

the “pieces of the puzzle” to play the digital content. This leaves us with two possible

ways to exploit Fairplay:

1) Interface directly with the music store using a phony client similar to iTunes.

2) Get the decryption key from the user’s system since Apple must give a user any

keys needed to play a song.

The ‘Hymn’ (Hear Your Music Anywhere) project, based on Johansen’s work, is a

phony client that interfaces with the online music store (Indigo, 2005) (Futureproof,

2006). JHymn, authored by someone who goes by the alias FutureProof, is a graphical

 14

implementation of the original command-line “hymn”. Figure 5 illustrates the JHymn

interface.

Figure 5: JHymn GUI Interface

JHymn “scrubs” protected AAC files (m4p) into an unprotected file format (m4a)

(Wen, 2004). Scrubbing removes Fairplay DRM data from the metadata atoms and

leaves unprotected files free of any DRM restrictions. Scrubbed files can be played on

any AAC compatible software or hardware. Files scrubbed using JHymn are also

 15

playable on iTunes since watermarking information that the Apple’s iTunes software

looks for is left intact (Wen, 2004).

JHymn can be used on files that have been purchased with any iTunes version older

than iTunes 6.0 (Futureproof, 2006). However, if the user performs any activity such as

authorizing a new computer, purchasing content using iTunes 6.0 or later versions,

JHymn will not be able to scrub any more files, including files purchased using earlier

versions (Futureproof, 2006).

The iTunes version 6 remained unbroken until anti-DRM software called

QTFairUse6 was released in August 2006. QTFairUse6 successfully reverse engineered

iTunes version 6.0. It captures AAC frames after the song has been decrypted, but before

the decoding step and copies it to a file (ipod news, 2006).

Hence, no matter how strong the encryption scheme may be, the real vulnerability is

the point at which the song is being decoded to a format understood by a soundcard. A

decoded song can be captured by inserting breakpoints in the iTunes client and copying

the decrypted song from the computer’s memory into a new file. Anti-DRM software can

find the proper place to insert the breakpoint and copy the data from memory. Such

software was developed by reverse engineering the iTunes client software.

2.5 Introduction to P2P Networks

A P2P network consists of a large number of computers or nodes networked in an

ad-hoc fashion (Wikipedia P2P, 2006)(Daswani, 2003). Each peer can function as both a

content provider and/or a consumer (Han, 2005)(Mannak, 2004).

 16

P2P systems make file sharing optimal since the main cost of sharing data, namely,

bandwidth and storage are distributed across peers of the network. This ensures

scalability and eliminates the need for powerful and expensive servers (Daswani, 2003).

There are 2 major P2P architectures (Han, 2005):

• centralized

• decentralized

One of the most widely known centralized P2P system is Napster which uses a

central server to index into peers. Kazaa is another example of a centralized P2P system.

In general, centralized P2P systems rely on centralized servers for specific tasks such as

bootstrapping, obtaining global keys for data encryption, adding new nodes to the

network, etc. Nodes in centralized systems perform tasks such as locating and caching

content, searching for other nodes, routing messages, encryption, decryption and

verifying content, etc. independently (Androutsellis-Theotokis, 2004). Centralized P2P

systems are vulnerable to denial of service attacks (Han, 2005).

P2P networks that share computer resources such as CPU cycles, storage, content

without requiring intermediation from a centralized server are called decentralized P2P

systems. Gnutella, OceanStore, Seti@Home are few examples of decentralized P2P

systems. Decentralized P2P systems enjoy high fault-tolerance, scalability, ability to self-

organize in systems with highly transient node populations, increased access to resources,

etc. (Androutsellis-Theotokis, 2004).

 17

However, there are several challenges that prevent widespread acceptance of P2P

systems. Such challenges include security, efficiency, and performance guarantees like

atomicity and transactional semantics, unreliable peers, etc. (Daswani, 2003).

2.6 Security Aspects of Sharing over P2P

Some of the security pitfalls of sharing information over a P2P network are the following:

1) Installation of malicious software code.

2) Ports opened to transmit files are subject to malicious attacks.

3) Denial of service attacks.

4) Client nodes in a P2P network should ideally share information and service

requests. Unfortunately, not all nodes in a P2P network service requests even if

the node is able to do so. Nodes may misreport information such as bandwidth to

get fewer requests (Saroiu, 2002). This might result in fewer server nodes and

more client nodes.

Possible ways to prevent malicious attacks on a client node would be to use anti-

virus software and enable firewalls (CERT, 2005).

There are several approaches that address security issues generally seen in P2P

systems. Cryptographic algorithms such as self-certifying data and protocols such as

information dispersal and Shamir’s Secret Sharing scheme are employed to secure

content published and stored in P2P networks. In the self-certifying data algorithm, nodes

compute cryptographic hashes and an integrity check is performed (the hash value is

verified) by the node retrieving the data (Androutsellis-Theotokis, 2004). Protocols such

as the information dispersal algorithm and Shamir’s Secret Sharing scheme employ

 18

techniques that distribute files such that the file information cannot be obtained by any

intermediate nodes in the P2P network.

2.7 Goals of this Project

This project analyzes Apple’s Fairplay DRM to understand its design and extends it

to function over a P2P environment. This new design, which we call P2PTunes, is

intended to accomplish several goals, including:

• Ensure that P2PTunes provides same level of security as the current Fairplay

DRM.

• Ensure that P2PTunes provides file sharing and bandwidth related advantages

present in P2P networks.

• Ensure confidentiality of transactions.

• Provide integrity for digital content transferred over the underlying P2P network.

• Provide authenticity for purchased digital content.

2.8 Existing Research

Music2Share proposes a P2P protocol to manage legitimate music tracks using

technologies such as watermarking, fingerprinting. The authors admit that the application

of these technologies “has to be worked out and refined” (Kalker, 2004).

Napster, a centralized P2P file sharing system, was infamous for facilitating illegal

music downloads and is now a legal music download service which uses Windows Media

DRM. Downloads are encoded as high-quality 192Kbps Windows Media Audio (WMA)

format. Napster allows registered users to stream tracks a certain number of times from

 19

its catalog to Windows, Macintosh, and Linux machines. Streamed tracks cannot be

downloaded to the user’s system and are encoded with a low bit rate. A Napster client is

required for song purchases and downloads. Napster’s online streaming works well on

Windows although there are some performance issues on Macintosh. Napster’s client

software controls “hang” at times, not allowing users to adjust the volume, pause, or skip

ahead. But, Napster provides an innovative feature that allows users to explore other

member’s collections by genre. However, this feature needs to be refined since a search

for songs in a particular genre results in songs from different genres displayed in the

search result (France, 2006)(Chandak, 2005).

Rhapsody 3.0, owned by Real Networks, offers an on-demand streaming service and

download access from its music catalog. Purchased tracks are 192Kbps AAC files

wrapped in Real Network’s Helix DRM. Rhapsody allows users to listen to a certain

number of tracks free each month; these tracks are encoded at 128Kbps. However,

Rhapsody 3.0 works on Windows XP, Me, 200 or 98SE platforms and there is difficulty

“logging onto” the service which may be attributed to high server traffic (France,

2006)(Chandak, 2005).

Other examples of P2P-based download services include eMusic, Yahoo Music

Unlimited 1.1, Sony, etc. eMusic offers a catalog of independent labels’ songs for

download in the unprotected “mp3” format encoded at Variable Bit-Rate (VBR). There is

a maximum download limit per month after which songs may be purchased (France,

2006)(Chandak, 2005).

 20

3 Design

Our proposed DRM system, P2PTunes, adapts the existing Fairplay DRM over a

P2P network. This section describes the design and architecture of P2PTunes.

3.1 A Hybrid Approach

The strength of P2PTunes lies in deriving the benefits of a P2P system while

ensuring the security aspects that are needed in a reliable DRM are incorporated into

P2PTunes. In addition, the design of P2PTunes ensures that it functions over any type of

P2P system.

The P2PTunes DRM allows users to purchase encrypted digital media such as audio

and video content over the P2P network. In the P2P network, each peer functions as both

a content provider (server) and a consumer (client). Client nodes broadcast queries for

specific digital content while server nodes service these requests. A node acts as a server

if it has the response to the broadcasted query. Nodes acting as client nodes in one

transaction, could act as server nodes in another transaction.

In P2PTunes transactions, digital content is always transmitted in encrypted form

over the P2P network. This prevents intermediary nodes and client nodes from

“grabbing” the content before a payment is made.

P2PTunes should as decentralized as possible by enabling peer nodes to share

encrypted digital content. However, certain transactions such as payments, billing, and

content authenticity verification must be performed at a centralized server to ensure

legality of P2PTunes transactions.

 21

A secure connection between the client node and centralized server is used for

payment processing. In addition, the centralized server validates the authenticity of the

purchased digital content.

The introduction of the centralized server in combination with the decentralized P2P

makes P2PTunes a hybrid model. The hybrid model enables achieving a reliable and

secure P2P network for sharing digital content and is the key to extending the existing

iTunes functionality to facilitate seamless functioning of P2PTunes.

3.2 Entities of P2PTunes

The main entities of this P2PTunes are listed below:

• Originator (O): a client node that initiates a request for digital content over the

P2PTunes network.

• Responder (R): a server node that can service the originator’s request.

• Intermediary Node (P): a node that forwards O’s and/or R’s messages.

• P2PTunes Server (PTS): a centralized server that completes a transaction by

handling the financial aspects. In addition, it verifies the authenticity of purchased

digital content. Necessary action is taken in case the content is not authentic. Note

PTS is a trusted component of this system.

3.3 Architecture of P2PTunes

This section describes the architecture of P2PTunes. The interaction between the

various entities of P2PTunes and how to securely distribute encrypted digital content over

the P2PTunes network is described in this section.

 22

3.3.1 Description of the iTunes Metadata

Every protected m4p file contains priv and iviv atoms enclosed within the moov

atom. The priv and iviv atoms are pivotal to the decryption process. Other atoms such as

user, key, and name contain user specific information: iTunes user ID, user key index,

and user name respectively. Figure 6 depicts these atoms. For a more detailed view of

atoms refer Figure 3.

Figure 6: Key Atoms in an m4p File

Different digital content use the same AES private key to decrypt the mdat atom.

However, the AES key is encrypted with a user key (which is user specific and differs

from user to user) and stored in the priv atom. The user key in turn is encrypted with a

system key while it is transmitted from the server to the client. The system key is both

User

Key

iviv

righ

name

priv

…..

 …..

ftyp

moov

mdat

m4p

 23

user and system specific, since each user can authorize different system to play the same

content. The P2PTunes Server (PTS) uses system information from the user’s system to

generate the system key. PTS stores different user keys per account and uses a user key

index (found in the m4p file) to retrieve a user key from its user database. Hence user-

specific atoms play a role in retrieving the user key from the server’s database.

3.3.2 Steps Involved in Purchasing and Playing a Song

Figure 7 illustrates a network of Originator, Intermediary and Responder nodes in a

sample P2P network.

Figure 7: A Sample P2PTunes Network

The steps involved in purchasing digital content are explained below.

O

P2PTunes

Server

R1

P5

P2

P1

P3

Pi

R4

P4

R3

R2

R

 24

Step 1: Initiate Request – Originator O (a client node) initiates a request for a specific

digital content, say a song ‘S’. The request S along with O’s identifier is broadcast over

the P2PTunes network. The identifier helps tie a request to a node.

Step 2: Respond to Query – Responder R (a server node) possesses the required digital

content. Upon receiving request S, R sends its identifier and song information (which

include title, song number, version number, etc.) to O. The identifier helps tie the

response to a responder node, similar to the previous case. Note there could be more than

one responder to a query.

Step 3: Select Response – Node O receives responses from ‘n’ responder nodes (R1…Rn).

O chooses any one Responder Ri.

Choosing a responder is based on certain parameters such as:

• The responder node may be a known and trusted by the originator.

• Actual digital content information such as title, version, singer, etc.

• Speed of connection between client and chosen server node.

Step 4: Inform Responder – Node O requests the chosen Ri to deliver the song S by

sending a download or “request-confirm” message to Ri.

Step 5: Transmit Encrypted Content – Upon receiving O’s message, Ri encrypts its

account information and a timestamp with the PTS public key. Note the PTS uses a

 25

public key cryptosystem such as RSA to generate a public and private key pair. Node Ri

computes the hash of the encrypted song and the encrypted account information.

Node Ri strips user-specific atoms such as name, user ID, etc. from the m4p file and

sends the content byte stream to O which consists of:

• encrypted song (excluding the user-specific atoms)

• node Ri’s encrypted account information and timestamp

• checksum of the encrypted song and the encrypted account information..

The purpose of encrypting Ri’s account information with the current timestamp is to

prevent misuse by O. Since it is encrypted with the PTS public key, O will not be able to

decrypt this message. Additionally, the timestamp enables the PTS to ensure that the

transaction is contemporary.

Intermediate nodes cache this content and can later forward the same content to

similar requests over the P2P network.

Step 6: Verify integrity at O – Node O receives Ri’s encrypted message.

Node O verifies the integrity of the song by computing the checksum of the

encrypted content and verifying it against that received from Ri. Once verified, O is left

with the encrypted song received from Ri.

Step 7: Verify Authenticity – It is important that O verifies the authenticity of the m4p

file it received from Ri over the P2P network.

 26

Node O computes the hash value/HMAC of the non-user specific atoms. User

specific atoms that vary from user to user such as priv, user, name, etc. are not present in

the byte stream and hence not used in the HMAC computation. However, other non-user

specific atoms such as mdat (which contains the song) that is encrypted with the same

AES private key for every user will be included in the computation. This computed hash

value and the hash key along with the unique song number are sent to the PTS for

verification. To verify the authenticity, the PTS simply compares the received hash value

with the computed hash value of the content. This enables PTS to verify if the hash value

received from O corresponds to the content.

In this way, the PTS verifies the authenticity of the content (section 5.1 explains the

benefit of this method). If the song is not authentic, the PTS informs O and O can try

another source.

An alternate approach would be for the PTS to send the hash key of the content

encrypted with node O’s system key to O. Node O can compute the HMAC using this

key and send the computed value to PTS (encrypted with its system key). The PTS can

verify if the computed HMAC for that content. This approach reduces the computation

task of the PTS.

Step 8: Payment Processing – To be able to play the song, O needs to be able to decrypt

the song, which it can after making a payment to the PTS.

At this stage, O connects to the PTS though a secure connection and sends the following

to PTS:

 27

• node O’s account information

• song information (including a unique song number)

• node Ri’s encrypted user information

A secure link is setup between PTS and O by the PTS to complete the payment.

Step 9: Include User-Specific Atoms – On completion of payment, the PTS has to ensure

that all of O’s user specific atoms are generated.

Node O sends its system information to the PTS, which uses this to generate a

system key. Node O’s user-specific atoms are encrypted with the system key by the PTS.

Note that the system key is stored on the client (i.e. O’s system).

The PTS sends node O’s priv atom for the content downloaded in step 5 to O.

Further, the PTS generates and sends O’s user-specific atoms pertaining to information

such as user key index, name atoms, etc. to O. The iTunes software functionality is

enhanced to be able to add these user-specific atoms received from PTS to the m4p file

downloaded in step 5. This step is very important since when O plays the song, the PTS

looks up information from these atoms to retrieve the user key.

Step 10: Play Purchased Content – Each time node O wants to play a track, it provides

the song request, user specific information (from the m4p atoms), and system information

to the PTS. The PTS uses the song and account information sent by O to index into its

database and retrieve the appropriate user key. The user key is then encrypted with a

system key generated by the PTS and sent to O. Three levels of decryption are done:

 28

• First level: O uses the system key (stored on the client) to decrypt the encrypted

user key received from PTS.

• Second level: The decrypted user key is used to decrypt the priv atom. This

retrieves the AES private key.

• Third level: The AES private key (from the second level) and initialization vector

(obtained by hashing the name and iviv atoms) are used to decrypt the audio data

in the mdat atom.

 This is similar to the way digital content is played in the current iTunes.

3.4 Benefits of the Proposed System

This section outlines the benefits of the proposed P2PTunes system:

• Presently digital content purchases are made to a centralized iTunes server and

iTunes services each request by providing the song. This consumes a lot of

bandwidth and creates a potential bottleneck at the centralized server. In our new

design, the download bandwidth is reduced at the server as user’s share content

over the P2P network.

• The new design has all of the advantages of a P2P community with active user

participation and community networking (Mannak, 2004).

• Each m4p files has user-specific metadata tags pertaining to a specific user which

is identical to the present iTunes system. Also, playing purchased content is

 29

identical to the existing iTunes system where users need permission from the

centralized server to play content.

• The new design seamlessly extends the current iTunes system over a P2P

network.

• Confidentiality is enforced to a certain extent since the responder node removes

its user-specific atoms from the protected file before sending it over the P2P

network.

3.5 Potential Issues

It is well-known (Saroiu, 2002) that nodes may simply misreport information such as

bandwidth in order to service fewer requests, or no requests at all. This creates an

environment of large number of client nodes and fewer server nodes which is not an

advantageous P2P scenario. Taken to the extreme, this would result in P2PTunes

degenerating into the existing iTunes model with a centralized server distributing the

content.

Another issue is that participants in P2PTunes may simply share unencrypted content

over P2PTunes or offline. Note that this scenario is also possible in the present iTunes

system, where a tool can be used to scrub content and the resulting unprotected content

can be shared by users. To encourage users to share encrypted content, it is suggested that

the server node from which the client made a purchase be rewarded with a small financial

incentive from the PTS. This would create a financial incentive for users to “play by the

rules”.

 30

No matter how strong the encryption scheme may be, the real vulnerability lies in the

point at which the song is being decoded to the format understood by a soundcard. At this

point, it is possible for a user to capture the unencrypted digital content and simply copy

it to a file. The key to preventing such attacks lies with using a trusted computing base

(TCB) enabled OS which can prevent inserting breakpoints in the application and also by

using dedicated tamper-proof hardware to decrypt the encrypted content and play it.

3.6 Functional Architecture

This section describes the interaction between the P2PTunes entities. The three

major entities of the system include the Originator (O), Responder (R) and the centralized

P2PTunes Server (PTS). Figure 8 illustrates the functional architecture.

The process of buying digital content over P2PTunes proceeds as follows. An

originator requests digital content through the underlying P2P network (step 1).

Responder nodes, which are able to service the request transmit an index containing

content information through the P2P system (step 2). Originator O chooses a responder

from the client browser based on its discretion and sends a download request message to

the chosen R (step 3). Responder R encrypts its account information with the PTS public

key, strips off user-specific atoms from the m4p file, performs an integrity computation,

and transmits the digital content to O through the P2P system. Node O proceeds to verify

the integrity of the transmitted content (step 6). The transaction is complete once O

communicates with the PTS to authenticate the content (step 7), complete the financial

payment (step 8), and finally receive user-specific atoms pertaining to the purchased

content (step 9). The PTS is entrusted with the responsibility of ensuring that R is the

 31

legal owner of the digital content. This is done by decrypting the encrypted account

information (sent to O from R) and verifying ownership against the PTS database. At the

end of the purchase transaction, the PTS provides R with an incentive to encourage

participation in the P2PTunes system.

Playing a purchased song requires communicating with the PTS to request a user key

specific to the content. This is explained in Section 2.3.3 above.

Figure 8: P2PTunes Functional Architecture

Underlying P2P Network

O
R PTS Provide an

incentive

1. Initiate

Request

7. Verify

Authenticity

8. Proceed with

Payment

9. Provide User-

Specific Atoms

Play a Song
Play a Song

Get Public Key

2. Choose a

Responder

3. Transmit

Encrypted

Content

2. Respond

to Request

6. Verify

Integrity

 32

4 Implementation

This section discusses the implementation details of the P2PTunes prototype. The

underlying idea of this prototype implementation is to demonstrate the functionality of

P2PTunes over a simple P2P network.

Java was used as the development language, with Eclipse as the development

environment, and Windows XP was the chosen development platform. All user interfaces

were implemented using Java swing.

The following sections present details of the implementation of the originator,

responder, and the centralized PTS server of P2PTunes as well as the creation of a basic

façade P2P network. A security analysis of the implementation is conducted in section 5.

4.1 Underlying P2P Network

The façade P2P network created consists of a simple fully-interconnected network of

nodes. Each node is built as a client-server pair and functions as an independent node in

P2PTunes. Nodes in this network run as separate Java Virtual Machines (JVM). Even

though the P2P network is implemented as a fully-interconnected network, the design

concepts of P2PTunes are flexible enough to be implemented over any other type of P2P

network.

Each client communicates with the other nodes of the P2PTunes network by

communicating with the servers corresponding to those nodes. The number of nodes in

P2PTunes can be specified by the user through a facadeP2P GUI. An online/offline

 33

functionality simulates a realistic P2P setting where nodes can log-in or log-out of the

system.

Java Remote Method Invocation (RMI) facilitates communication between the

nodes. Java RMI enables a programmer to create distributed Java technology-based to

Java technology-based applications in which remote methods of Java objects can be

invoked by other JVM’s, possibly on different hosts (Sun Developer Network,2006). In

other words, this enterprise-level solution enables a virtual machine to execute remote

methods of another machine’s class as if it were residing on that same machine. A local

object called stub, present on the client side of the JVM, has methods of the remote

machine that can be invoked by the client. On invocation of a method, the stub sends the

method call to the skeleton which is present on the server side. The skeleton then

implements this method on the server and sends the results back to the stub.

4.2 P2PTunes - Class Diagrams

The class diagrams depict the relationship between the various system classes. The

class diagrams of P2PTunes are presented below:

• P2PTunes Server (PTS): is a centralized server system responsible to complete a

purchase transaction by performing billing tasks, authenticity verification, and

generation of user-specific atoms. Additionally, PTS provides user keys to enable

decryption of purchased digital content for playing the content.

• User Components: consists of the originator and responder classes. Methods

include client functions that search for digital content, display search results,

 34

compute checksum, initiate payment, replace user-specific atoms, and log-in or

log-out of P2PTunes.

4.2.1 Originator

Figure 9 illustrates the relationship between different classes related to the originator.

The “UserInterface” class displays results and receives inputs from the user. The

“RequestContent” class broadcasts user requests over P2P. The “ReceiveContent” class

performs various computations like integrity checks, HMAC calculation for authenticity

verification, etc. Communication with other nodes in the P2P takes place through the

“facadeP2P” class.

 35

+initiateContentRequest()

+displayResponse()

+requestContent()

+requestBilling()

+playDigitalContent()

+helpMenu()

+loginP2PTunes()

+logoutP2PTunes()

+exitP2PTunes()

-UserAccountId

-portNumber

-portName

UserInterface

+broadcastRequest()

+getContent()

-nodeId

facadeP2P

+fileIndex()

+extractZip()

+verifyIntegrity()

+initiateBilling()

+computeAuthenticity()

+getContentAtoms()

+getEncryptedKey()

-digitalContentId

-digitalContentInfo

ReceiveContent

+broadcastRequest()

+requestContentDownload()

-contentInfo

RequestContent

+verifyAuthenticity()

+processBilling()

+requestUserKey()

-contentInfo

PTS

communicate with responder / PTS

send requests

communicate

With client node
request digital content

«interface»processQueries

verify computations

Figure 9: Originator Class Diagram

 36

4.2.2 Responder

The function of the responder is to service requests for digital content. Figure 10

illustrates the responder class diagram. The responder “listens” to all content requests

made over P2PTunes network and determines if it is able to service a request. If so, the

“PrepareResponse” class prepares a file index containing details of the content and sends

this to the originator through the “facadeP2P” class. Once an originator node chooses a

responder, “ReceiveRequest” class will obtain the download request and the

“PrepareResponse” class will “bundle” up the content and transmit it to the originator

through the “facadeP2P” class. Note that in the process of creating the output content

byte stream, the responder communicates with the PTS to get the PTS public key which

is required to encrypt its account information.

 37

+sendFileIndex()

+sendContent()

-nodeId

-contentId

-nodeStatus

facadeP2P

+receiveRequest()

+receiveDownloadRequest()

-contentId

-nodeId

ReceiveRequest

+sendIndexFile()

+sendDigitalContent()

+prepareByteStream()

+encryptDigitalContent()

+readNodeStatus()

+encryptUserAccountInfo()

+computeIntegrity()

-contentId

-nodeId

PrepareResponse

+getPublicKey()

-contentInfo

-nodeId

PTS

«interface»processQueries

listen for content request(s)

service request(s)

fetch public key

send content

 Figure 10: Responder Class Diagram

 38

4.2.3 P2PTunesServer (PTS)

The centralized server is the key element involved in completing transactions over

P2PTunes. Figure 11 illustrates the PTS class diagram.

The centralized PTS server accepts requests for authenticity verification, payment

processing, playing a song, etc. from the originator and gets the public key for the

responder. Communication between all other nodes in P2PTunes and the PTS is a

standard client-server communication.

+verifyAuthenticity()

+performBilling()

+getDigitalContentKey()

+generateUserSpecificAtoms()

+getPublicKey()

-contentId

-nodeId

P2PTunes Server (PTS)

+checkAuthenticity()

+requestBilling()

+requestDigitalContentUserKey()

+sendUserSpecificAtoms()

-contentInfo

-nodeId

Originator

Request/response

+fetchPublicKey()

-contentInfo

-nodeId

Responder

Request/response

Figure 11: PTS Class Diagram

 39

5 Security

File-sharing capabilities of P2P technology threaten the privacy and security of

individuals and businesses through the disclosure of network IP and MAC addresses, and

could also potentially distribute viruses. Novice users who possess little technical

knowledge may accidentally breach systems by sharing certain folders or even the entire

hard drive (Bailes, 2004).

In spite of the many known weakness P2P networks are a formidable means of social

networking which itself has been gaining a lot of momentum in recent times. The

strengths as well as weakness of each aspect of P2PTunes are thoroughly analyzed in this

section.

5.1 Security Analysis

This section scrutinizes each step involved in purchasing content over P2PTunes.

Step 1: Initiate Request – An originator node broadcasts requests for content over the

P2PTunes network. At this stage every intermediary and responder node is aware of the

identity of the originator node. Anonymity is not considered and the responder is aware

of the originator’s IP address in order to respond to the query. An alternative would be to

use a secret-sharing-based mutual anonymity protocol (SSMP) to allow peers to issue

queries and responders to deliver responses anonymously (Han, 2005).

 40

Step 2: Respond to a Request – Responder nodes send a file index containing details of

the content and the identity of the responder node to the originator. The size of the file

index sent is in the order of a few kilobytes which is much smaller than that of the actual

song. Since the actual content is not sent to the originator node it prevents throttling the

P2P bandwidth. The potential drawback at this stage is malicious nodes could bombard

an originator with a large number of dummy file indices that might result in the originator

node’s system hanging.

Step 3: Choose Specific Content – The originator node makes a choice for a particular

content, based on details indicated in the response. A download request is sent to the

corresponding responder node over P2PTunes. The advantage at this stage is that the

originator can make an informed choice based on the content information and the

responder’s ID. This can be enhanced by devising a rating system in which trusted

responders can be certified by other users and the PTS.

Step 4: Chosen Responder’s Content Transmitted – At this stage, the requested content

from a responder is transmitted to the originator over P2P network. The content file

(protected m4p file) is made up of atoms each of which contains information pertaining

to the content (ex. artist name), identification information (ex. iTunes user ID), the

encrypted song, and cryptographic information (ex. encrypted keys). The responder strips

the user-specific atoms from the m4p file and prepares a byte stream. The absence of the

identification atoms prevents intermediate nodes from identifying the responder and

 41

hence provides a certain degree of anonymity. In addition, atoms essential to the

decryption process namely the priv atom (contains the encrypted AES key), name atom

(identification atom), etc. are excluded thereby preventing intermediate nodes from trying

to decrypt the mdat atom and play the song. Additionally, since user-specific atoms are

not present in the byte stream, intermediate nodes cannot fake acting as the responder

node and request user keys from the PTS. If a node adds its user-specific atoms to the

protected file and requests the PTS for the user key, the PTS would not comply since it

could easily verify from its database that the particular node has not purchased the song

and can take appropriate action. Hence, these preventive measures thwart unscrupulous

intermediate nodes from playing content involved in a transfer.

It must be noted that intermediate nodes involved in the routing are aware of the

content details since the remaining atoms of the m4p file include artist name, purchase

date, album name, copyright information, mdat atom (which contains the actual song) etc.

Nodes cannot decrypt the responder node’s account information (consisting of its

user name and user ID) from the byte stream since it is encrypted with PTS/centralized

server’s public key. Hence, neither the intermediary nodes nor the originator node can

view or alter the responder’s account information.

The responder computes a checksum of the byte stream using CRC-32 with which

the originator node verifies the integrity of the content.

Subsequently, the intermediate nodes can cache the content involved in the

transaction and later forward the same digital content to other similar requests originating

 42

from different nodes. This will make efficient use of the P2P bandwidth (Wikipedia,

2007).

As in the original system, content cannot be played from unauthorized machines

since the PTS requests system information from nodes which should match that in its

database to verify ownership and provide decryption keys (Apple Computers Inc, 2006).

Step 5: Originator receives song content – The originator verifies the integrity of the

content against the received checksum to be certain that the data has not been corrupted.

Subsequently, the originator verifies the content authenticity with the PTS (by computing

the HMAC) to ensure that an unscrupulous node did not tamper with the content.

A huge part of the computation steps such as integrity computations, authenticity

computation, “bundling” of the content is assigned to the participating P2PTunes nodes.

This leaves the centralized PTS system with fewer computation tasks and makes

resourceful use of the P2P bandwidth.

Step 6: Role of PTS – The role of the PTS is to verify the authenticity of the song and

throw appropriate error messages allowing the originator to choose a different source in

case of a failure. Furthermore, the PTS is responsible to complete billing and generate

user-specific atoms to be added to the purchased m4p file by the originator. Once the

originator receives the user-specific atoms, it can request the user keys from the PTS to

play any purchased content.

 43

Authenticity verification is done between the originator and the PTS. The originator

calculates the hash value of non-user specific atoms in the digital content using HMAC.

The calculated HMAC, HMAC key along with the content ID and encrypted account

information is sent to the centralized PTS which validates the received HMAC for the

specified content. In addition, the PTS verifies if the responder has purchased the song by

decrypting the responder’s account information and confirming ownership against its

database. This guarantees that the digital content is from an authentic source.

The user-specific atoms generated by the PTS are small in size compared to the size

of the entire m4p content file. The PTS generates a priv key and encrypts the AES key

with the newly generated priv key forming the priv atom. Additionally, the name atoms

(consisting of the user name) and the user atom (consisting of the user ID) are generated

and sent to the originator through a secure channel. The originator inserts these atoms

into MPEG-4 file thus forming a “complete” protected file which can be played.

Step 7: Playing purchased content – is not different from the present iTunes system, and

is described in section 2.3.3.

 44

6 Testing

The P2PTunes system provides a fresh approach to distribute digital content over a

P2P network. Most of the computation tasks are accomplished by the client nodes leaving

the PTS with minimal tasks. Additionally, this system makes efficient use of P2P

bandwidth to distribute content among peers.

The test cases involve distribution of content in the form of songs over P2PTunes.

Each song folder consists of various atoms normally found in an m4p file such as mdat

atom, name atom, artist atom, title atom etc. Each atom contains either encrypted

information or plain text indicating user or song details. Figure 12 shows a snapshot of a

song folder’s atoms.

Figure 12: Atoms in a Song

Creation of tests cases involved generation of system keys, priv keys, and encryption

of atoms such as priv and mdat. All mdat atoms consist of the encryption of the text

 45

“Playing song …<song name> by <artist name>” where the output would depend on the

song and artist name. This message is interpreted as the equivalent of an audio file

playing after the appropriate decryption steps have been performed. A stand-alone

function was used to create keys and to encrypt or decrypt data required to test P2PTunes.

The testing procedure validates the design objectives while maintaining an eye on

the system’s functions in order to confirm to the intended functionality. All the steps

involved in creation of the P2PTunes façade network, buying a song, playing a song,

emulating online and offline functionalities is demonstrated in this section. Sample test

cases are used to verify the implementation.

6.1 Creation of a façade P2P Network

This step involves creation of nodes in the P2PTunes network. The network created

is fully-interconnected allowing every node to communicate with all other nodes.

To create the P2P network go to Façade P2P->create and specify required number of

nodes. Figure 13 illustrates the GUI. Every node created will need virtual memory space.

Due to the memory limitation in the test system, creation of a large number of nodes will

result in the system slowdown or crashing as system gets low on available memory. For

testing purposes up-to 10 nodes can be created. On clicking “CreateP2P” button, 10 RMI

registries and client UI interfaces are created.

 46

Figure 13: FacadeP2P Creation GUI

The 10 client nodes can interact with each other through the client GUI. An

additional PTS node which functions as the centralized server is automatically generated.

Other features included in the GUI are:

Help->about menu which indicates the purpose of this frame.

File->exit menu allows users to exit P2PTunes.

6.2 Client Browser Windows

Figure 14 shows a client window. Each browser UI functions independently and can

purchase and play content over P2PTunes. Figure 14 shows one such client node.

 47

Figure 14: P2PTunes client UI

Other features included in the client GUI are:

File->exit menu which allows a user to exit client browser.

File->logout in which user can go into the offline mode thereby disabling all client

functionalities and disallowing other nodes to purchase content from this node.

File->login which allows a user online status in P2PTunes, enabling the client to play

or purchase content.

Help->about menu explains features of the client UI.

6.3 Purchasing a Song

Purchasing songs over P2PTunes requires a node to communicate with other nodes

in the system to request a song. To search for a song through the client UI, go to

 48

MusicSearch -> Search. Enter a song name and click on Search button as shown in Figure

15.

Figure 15: Request a Song through P2PTunes

A list of matching responses is displayed on the client UI as seen in figure 16. Note

that a single responder node can have many partial matches to a song name. Details of all

matching songs from all nodes are transmitted to the originator node.

Figure 16: Responses for Content

 49

Clicking on the “Details” button will present content/song details such as artist name,

track name, etc. as shown in Figure 17.

Figure 17: Details of Content

The user can make a choice at her discretion and pick any song by clicking on the

adjacent radio button and then initiate download by pressing “Download Song” button.

This will send a download request to the chosen responder node.

At this stage there are two possible scenarios:

• The responder node is able to service the request: It sends the song as a byte

stream to the originator after stripping off the user-specific atoms, encrypting its

user account information, and computing the integrity. Once the originator

receives the song, the client node requests payment from the user.

• The responder is unable to service the request: since it may be offline. In this case

an error message (Figure 21) is displayed on the client UI and the song is not

transmitted. The originator may request the song from another source. A node

which is offline will not communicate any matching requests. On the other hand,

 50

a node may go into offline mode after communicating matches with other nodes.

In this case too, an error message shown in Figure 21 is displayed. However, if

the responder node happens to come back into the online mode before the

originator makes the download request, the originator will be allowed to access

content from this responder node.

If the transaction is successful, the user is given two options: continue with payment

or purchase the song later as shown in Figure 18. If the user chooses to continue with

payment, integrity, and authenticity checks will ensue.

Figure 18: Request Payment for Downloaded Content

 Once PTS completes the transaction successfully, a success message informs the

user that the transaction is complete as seen in Figure 19.

Figure 19: Transaction Success Message

 51

On the other hand there could be issues if the authenticity of the song is incorrect or

the responder is not a legal owner. In these cases the originator is informed of the error

and she can pick another source. A transaction failure message due to authenticity failure

or if the responder is not the legal owner of the content is shown in Figure 20. Figure 21

indicates the error message if the chosen responder node is offline. Figure 22 shows the

error message received if the integrity of the byte stream is compromised by any node.

Figure 20: Transaction Failure Message

Figure 21 : Download Error Message

Figure 22 : Integrity Check Error Message

 52

 No payment is deducted from the user’s PTS account in cases of failed transactions.

The second option “Ask me Later” allows the user to purchase the song at a future point

in time. Later, when the user clicks on MusicSearch -> PlaySong and chooses the unpaid

song, a prompt initiates the payment as explained in the first case. This is shown in

Figure 23. If the transaction is successful, a dialog shown in Figure 19 is displayed and

the user can play the purchased content. Note, choosing “Ask Me Later” option will not

allow the user to play the content.

Figure 23 : Payment Required to Play Content

 53

6.4 Playing a Purchased Song

Go to P2PTunesSearch->Play a Song. A list of songs the user has purchased or

downloaded is displayed on the UI as seen in Figure 24. Choose the song to be played

and click the “Play Song” button.

Figure 24 : Downloaded Content on User’s System

 54

If the decryption process is successful, the “audio file” as seen in Figure 25 is

displayed indicating the song is successfully playing.

Figure 25 : Message indicates Song Playing

If the user downloaded the song but did not complete the payment, a request for

billing will be made as in Figure 23. On successful completion of the payment procedure,

the song can be played.

 55

7 Conclusion

The P2PTunes design is geared to efficiently utilize P2P bandwidth for content

transactions and effectively delegate as many computation tasks as possible to client

nodes. The role of the centralized system is reduced to validating data, performing small

operations, and handling financial transactions. This set-up significantly reduces the load

on the centralized server since the size of data involved in transactions between client

nodes and the PTS is small when compared to the original iTunes system. In addition,

P2PTunes provides a forum for users with similar interests in digital content to interact

and share content, fostering social networking. Rewarding participating nodes with

royalty payments or other forms of incentives such as a point-system wherein

accumulation of points in exchange for certain digital content, can generate user interest

and could possibly reduce attacks while increasing community participation in the

P2PTunes network.

The present centralized system handles multiple functionalities and its bandwidth is

occasionally under strain. For instance, swarms of online shoppers armed with iTunes gift

cards overwhelmed the iTunes music store over the holidays, prompting error messages

and slowdowns in downloads (Montgomery Advertiser, 2007). Additionally, digital

distribution of movies, TV shows, etc. requires more bandwidth and hence increases the

load on the server. The bandwidth bottleneck can be avoided in the P2PTunes system

wherein users in the P2P network can share music over the P2P network instead of

approaching the centralized system.

 56

At present there are many security challenges in sharing digital content over a P2P

network. The prototype developed here demonstrates it is feasible to extend iTunes over a

P2P system while employing sufficient security measures to deter users with malicious

intent. However, the model is not impregnable to all security attacks. Reverse-

engineering tools such as JHymn can be used to scrub protected files. Users could make

use of JHymn and share the resulting unprotected files with each other since it would be a

hard task to monitor the type of content exchanged over P2PTunes. Installation of

watermarking features such as geId atom (present in m4p file) that are detected by iTunes

before playing content is one way of deterring attackers. However, reverse engineering

tools such as JHymn take care not to strip information that iTunes detects before playing

content. So, this makes it a difficult task for the iTunes player to recognize if the content

is in the protected or unprotected format. Note that the above scenario is a challenge

faced by the present iTunes implementation as well.

Care has been taken to make P2PTunes reasonably secure and suitable for

deployment over P2P networks. The P2PTunes DRM system is strong enough to

withstand selected attacks but cannot be deemed totally secure, as is the case for all DRM

systems available today.

 57

8 Future Work

The P2PTunes DRM system can incorporate additional security measures and

several additional useful features. Some useful features and security measures that can be

considered for the future are discussed in this section.

The case of the anti-DRM tool “QTFairUse6” which captures AAC frames after the

song has been decrypted by iTunes version 6.0, but before the decoding step and copies it

to a file (ipod news,2006) illustrates that the real vulnerability lies at the point in which

the song is being decoded to a format understood by a soundcard and not in the

encryption scheme. Only a vigilant or trusted Operating System could prevent such an

attack. A suggestion for increased security measures would be to rely on trusted hardware

and use a trusted operating system. For example integration of P2PTunes with Next

Generation Secure Computing Base (NGSCB) offers secure storage of cryptographic

keys and secures media-access related processes (Microsoft, 2007).

Some additional features that could enhance P2PTunes further are outlined below:

• Client nodes of P2PTunes can invite other users in their “friends” list to buy

digital content from the each other. A user knows her friends’ music or content

preferences and can suggest appropriate purchases. This could increase the

marketability of content.

• There can be provisions for users to rate digital content and message boards to

discuss content and features of P2PTunes. This will increase awareness of

P2PTunes as well as that of digital content available for purchase/download. In

 58

addition participation of users in P2PTunes will grow since more users will be

aware of P2PTunes functionalities. P2PTunes could well become a widely known

forum to discuss viewpoints on digital content and make informed purchases.

• In the present system, the PTS server is able to identify if responder nodes have

illegally sent content to service originator’s request. This could be used by the

PTS to blacklist nodes. Then originators can avoid purchasing content from

blacklisted responder nodes.

 59

References

Androutsellis-Theotokis, Spinellis (2004).

 A Survey of Peer-to-peer Content Distribution Technologies. [Electronic Version].

 ACM Computing Surveys (CSUR), 36, 335-371.

Anonymous (2005). Hymn Manual. Retrieved on August 30, 2006

 at http://hymn-project.org/documentation.php

Apple Computers Inc. (2006). MPEG-4. The Container for Digital Media.

 Retrieved on August 21, 2006

 at http://www.apple.com/quicktime/technologies/mpeg4/

Bailes, Templeton (2004). Managing P2P Security. [Electronic Version].

 Communications of the ACM, 47, 95-98.

Bornstein, Neil (2004). Hacking iTunes. Retrieved on April 05,2007

 at http://www.xml.com/pub/a/2004/11/03/itunes.html

Chandak, George, C.E (2005). Can iTunes be weTunes? - Is FairPlay Playing Fair?

 [Electronic Version]. 20th BILETA Annual Conference, 2005.

Daswani, Garcia-Mollia &Yang (2003). Open Problems in Data-Sharing

 Peer-to-Peer Systems. [Electronic Version]. Proceedings of the

 9
th

 International Conference on Database Theory, 2572, 1-15

France, Moore, Dreier (2006). Napster. Retrieved on April 07, 2007

 at http://reviews.cnet.com/Napster/4505-3669_7-31302303.html

France, Jasmine (2005). Rhapsody 3.0. Retrieved on April 07, 2007

 at http://reviews.cnet.com/Rhapsody_3_0/4505-9239_7-20050753.html?tag=also

France, Kim (2006). eMusic. Retrieved on April 07, 2007

 at http://reviews.cnet.com/eMusic/4505-9240_7-30974740.html?tag=also

Futureproof (2006). JHymn project. Retrieved on August 24, 2006

 at http://hymn-project.org/jhymndoc/

Han, Liu, Xiao et al (2005). A Mutual Anonymous Peer-to-peer Protocol Design.

 [Electronic Version]. Proceedings of the 19
th

 IEEE International Parallel

 and Distributed Processing Symposium, 68a-68a.

 60

Indigo group (2005). Fairplay: Effectiveness and Weaknesses of Apple’s Digital

 Rights Management Technology. Retrieved on August 20, 2006

 at http://www.simson.net/ref/2005/csci_e-

170/p1/indigo.pdf#search=%22indigo%20fairplay%22

iPod FAQ (2007). iPod: Frequently Asked Questions. Retrieved on April 02,2007

 at http://docs.info.apple.com/article.html?artnum=60920#faq16

iPod news (2006). QTFairUse6 circumvents iTunes DRM. Retrieved on August 30, 2006

 at http://www.ipodnn.com/articles/06/08/30/itunes.drm.circumvented/

Jobs (2007). Thoughts on Music. Retrieved on April 04, 2007

 at http://www.apple.com/hotnews/thoughtsonmusic/

Kalker, Epema, Hartel et al (2004). Music2Share-Copyright-Compliant Music Sharing

 in P2P Systems. [Electronic Version]. Proceedings of IEEE, 92, 961-970

Mannak, Ridder, Keyson (2004). The Human Side of Sharing in Peer-to-Peer Networks.

 [Electronic Version]. ACM International Conference Proceeding Series, 84, 59-64.

Microsoft (2007). Next Generation Secure Computing Base.

 Retrieved on March 17, 2006

 at http://www.microsoft.com/resources/ngscb/default.mspx

Microsoft (2006). Peer-to-peer file sharing: Help avoid breaking copyright laws and

getting unwanted software. Retrieved on April 03, 2007

 at http://www.microsoft.com/athome/security/online/p2p_file_sharing.mspx

Montgomery Advertiser (2007). iTunes Slowdown.

 Retrieved on January 03, 2007

 at http://www.montgomeryadvertiser.com/apps/pbcs.dll/frontpage

Rodrigues, Liskov, Shrira (2002). Peer-to-peer: The design of a robust P2P system.

 [Electronic Version]. Proceedings of the 10th workshop on ACM SIGOPS

 European workshop: beyond the PC, 117-124.

SourceForge (2006). AtomicParsley. Retrieved on September 16, 2006

 at http://atomicparsley.sourceforge.net/

Saroiu, Gummadi, Gribble (2002). A Measurement Study

 of Peer-to-Peer File Sharing Systems. [Electronic Version]. Multimedia

 Computing and Networking, 153, 156-70.

 61

Stamp, Mark (2006). Information Security: Principles and Practice.

 Wiley-Interscience, ISBN: 0-471-73848-4

Sun Developer Network (2006). Remote Method Invocation.

 Retrieved on March 12,2007

 at http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

Tanin, Nayar, Samet (2005). An efficient nearest neighbor algorithm for P2P settings.

 [Electronic Version]. Proceedings of the 2005 national conference on

 Digital government research, 89, 21-28.

United States Computer Emergency Readiness Team (2005). Risks of File-Sharing

 Technology. Retrieved on November 03, 2006

 at http://www.us-cert.gov/cas/tips/ST05-007.html

Wen, Howard (2005). JHymn Goes Behind Atoms and Apple to Bring DRM-Free

 Music. Retrieved on September 14, 2006

 at http://osdir.com/Article3823.phtml

Wikipedia. Fairplay. Retrieved on August 21, 2006

 at http://en.wikipedia.org/wiki/FairPlay

Wikipedia. Peer-to-peer. Retrieved on October 07, 2006

 at http://en.wikipedia.org/wiki/Peer-to-peer

