Peer-to-Peer Botnets: Analysis and
Detection

A Writing Project
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

Submitted By:
Jeet Morparia

December 2008

© 2008
Jeet Morparia

ALL RIGHTS RESERVED
2

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp

Dr. Robert Chun

Dr. Teng Moh

APPROVED FOR THE UNIVERSITY

Abstract

Attacks such as spamming, distributed denial of service and phishing have become
commonplace on the Internet. In the past, attackers would use high bandwidth Internet
connection servers to accomplish their tasks. Since desktop users today have high-speed
Internet connections, attackers infect users’ desktops and harness their computing power
to perform malicious activities over the Internet. As attackers develop new methods to
attack from distributed locations as well as avoid being detected, there is a need to
develop efficient methods to detect and mitigate this epidemic of infection of hosts on the

network.

In this project, we aim to analyze the peer-to-peer botnet binary known as
Trojan.Peacomm and its variants. Reverse engineering techniques have been used to
disassemble the binary and to identify the techniques that the botnet binary uses to spread
itself and to make its detection difficult by current scanners. In the process, we establish a
framework and methods for malware analysis, which could be used to analyze other bot

binaries and malware.

Based on our findings we discuss a few techniques to detect and shut down botnets and

demonstrated an attack scenario used to disrupt their activity.

Table of Contents

I INEEOAUCTION ..ttt et ettt e st e st e st e e st e e sabaeenans 7
2 BOMIELS i e 10
2.1 Life Cycle of @ BOMELcc..ooiiiiiiiiiiriieiececcec e 10
2.2 Actions and Capabilities Of BOtNEtSceeevvieeriieeriieeiiieeieeeeeeeiee e 12
2.3 Botnet Detection SIrateIsoovueeriierieerieeiienieeieene et 14

3 P2P SYSIRIMIS c.utiiiiiieeiiie ettt ettt e et e et ee et eeeta e e e et e e eaaeeentaeeeaeeeenbeeennseaens 16
3.1 Kademlia- A P2P Protocolcoceeiieiiieniiiiiineceieeecceeeeee e 18

4 PE FIE .ottt 21
4.1 LLAYOUL. ...ttt ettt ettt 21
4.2 PaACKING c.eiiiiiieiiee et ettt e e e e enaes 23

5 Reverse Engineering of Trojan.Peacomm..........ccccoocveiiiiniiiiiiniiniiinieecneceee 23
5.1 OILYDDZ ..ot 24
5.2 IDIA PIO ittt ettt et 24
5.3 Black Boxing or Dynamic ANalysiS........cccceeeviieriiiieniiieeniieenieeeeee e e eiee e 26
5.3.1 PE DUmMP ANALYSIS c..eeeuviiiiiiiieiieeieeeeeeeeeeteeee e 27
5.3.2 UNPACKING ...tiieiiieeiteeee ettt ettt et bee e e e eanee s 28
5.33 Checking any resources it CONLAINSc.eeveerveenieerireenieenireenieenneeneennens 29
534 Extracting embedded reSOUICES........ceeruvieerieeeiiieeiieeeiieeeiie e 29
5.35 Running and monitoring the actual threat in a controlled environment.... 30
5.3.6 Running the threat using a fake DNS server:.........ccccoecvvvviiieviieenciieennen. 32

5.4 White Boxing or StatiC analysiScccceeveeroiieriiriieenienieeeenieeee e 32
54.1 Emulation evading teChniqUe...........cooeveeeriieeiiieeiieeieeceeeee e 35
54.2 DeCryption LOOP ..ccueeeiieriiiiieiiecieeeeeeee et 36
543 Dynamic process Callingcceeevveeeriiiiiiieeiieeeiee e 37
54.4 Finding a legitimate process t0 INJEC.......cevuerveereeriueeneenieeieenreereeneeens 40
54.5 Allocating Virtual MemOTYcoevvieeriieiiiieeieeereeeeeeeee e 41
54.6 Analyzing Injected COAEooviiriiiiniiniiiieeieceeeeee e 42
54.7 Other tricks USEd........coviviiiiiniiiiiiiiiiciceciceee e 43

6 Detection and Attacking StraleZIeS.......coovveeruierrernieenieeiienre et 44
6.1 Index poiSONing attackcoccueiiiiiiiiiiieiiie e 44
6.2 SYDIL ALEACK ... 46

T CONCIUSION: ... ittt ettt et s e st e s 47
8 REIEIENCES ...ttt 48

List of Figures

Figure 1: Life Cycle of BOMELS.......ccoocuiiiiiieeiieeieeeiieesite ettt eveeeiveesareesaee e 10
Figure 2: Actions and capabilities of @ DOtNEt..........ccceeeriiiieiiiiieiiieciie e 12
Figure 3: Resource Requirements and MEtIiCSocouvieriiiieiiiieeniieeiee e 13
Figure 4: Evolution Peer to Peer Protocols and Bots...........cccceeeviiieiiieiiiieiieeeieeeeee 17
Figure 5: K-BUCKELS ...evviiiiieeciieeee ettt et e e e are e snee e 19
Figure 6: PE File FOImMat.........cccoooiiiiiiiiiiiiiieciee ettt et 22
Figure 8: PE Dump showing PE File Informationc.cccoeceviiiniiniinniniiiicicceee 28
Figure 9: Peer LiSt FIle.......cooiiiiiiiiieiie ettt 31
Figure 10: Decryption Loop of the Packer.........c.cccocviiiiiiiiiiiiiiiececeeeee 33
Figure 12: Crashing the EMulator............ccociiiiiiiiiiionieeeeeeee e 35
Figure 13: Decryption LOOPc..cooiiiiiiiiiiiicececeee e 36
Figure 14: Dynamic Calling of Processes (Making Static Analysis Difficult)................. 38
Figure 15: Finding the Process: eXplOrer.eXe........ccooverieriienieniiiinienieeieeeeeeeesee e 40
Figure 16: Allocation of Memory in Virtual Address Spacecc.cccoceevvevieinveniieenneene 41
Figure 17: Snapshot of Index Poisoning Attackl........c.cccocuveiiiriiiniiniiniiiniececneeeee 45
Figure 18: Snapshot of Index Poisoning Attack?2............cccceeviiriiiiniiniinnieniiiiecnieeeee 46

1 Introduction

A botnet consists of a network of compromised computers controlled by an attacker or
botmaster. The term botnet is derived from software robots, or bots [6]. These bots can
be controlled remotely to perform large scale distributed denial of service (DDoS)
attacks, send spam, deliver Trojans, send phishing emails, distribute copyrighted media

or conduct other illegal activities [5].

The unique feature of a botnet is its controlled communication network [2]. Most bots
have a centralized architecture. i.e., they are connected to a command and control
(C&C) server. In such an architecture, the C&C server acts as a central point of failure
for the botnet. That is, the entire botnet can be shutdown if the defender captures the

C&C server [4]

Bot masters are now shifting to different architectures to avoid this weakness. In a peer-
to- peer (P2P) architecture a node can act as a client as well as a server and there is no
centralized point for command and control [1]. A P2P botnet requires little or no formal
coordination and even if a node is taken offline by the defender, the network still remains
under the control of the attacker. Thus P2P bots have become the choice of architecture

for bot masters [3].

Botnets are constantly evolving and are advancing towards more complex functionality
and destructive capabilities. Until recently, the term botnet generally referred to a

collection of IRC trojans, but today it can be any sophisticated network of malicious bots

[3]. A considerable amount of work has been done by bot writers in the following 2

areas:

¢ Design of new bot functionalities

In order to make bots stealthier and faster for propagation, bot writers have kept
on adding newer functionalities to their existing bots. The trend shows that older
bots were merely used for DDos (Distributed denial of service) attacks whereas
newer bots have functionalities to send spams, sniff passwords, gather email

addresses and credit card credentials.

¢ Design of new C&C strategy

Bot masters are concerned about the underlying network topology used therein. In
C&C architecture, the bot-servers provide a central point of failure for the bots.
Thus, a bot having millions of nodes can fail if the server crashes or is attacked by
some defender. In this case, the bot master fails to communicate and pass on its
commands to its zombies (compromised hosts). Hence, a network architecture
which is decentralized, distributed and has no central point of control is better and
is perfect for the purpose of operating a botnet. P2P architecture is decentralized,
distributed and does not have a central point of control, thus, meeting the above
mentioned criteria of a desirable network and becoming an obvious choice of the

bot masters.

The aim of the project is to find ways to detect and mitigate the propagation of such

botnets. But, before moving on to explore the techniques of detecting botnets and

mitigating their propagation, we need to first understand the history of botnets and their
method of operation. Thus, the first part of the report will cover the history of botnets and
the way in which they work. Once this basic understanding of botnets is captured, we
will next move on to focus on P2P systems, particularly on Kademlia [11], which is used
as a protocol by many botnets. Further, we will briefly describe the PE file format and a
detailed procedure to analyze a bot. Finally, we will showcase the entire understanding of
botnets and P2P systems through a case study of one such P2P bot known as

Trojan.Peacomm and present a method to disrupt its activity.

2 Botnets
2.1 Life Cycle of a Botnet

Victim 159

Bl Herdar

1 WViztim Machine
&1'- _

Expiloit mscking

)/
Y
<

Bt Controlier

Figure 1: Life Cycle of Botnets [7]

Fig:1 shows a life cycle of a botnet. The steps mentioned below indicate how a botnet

spreads its infection and propagates:

1. The bot herder (bot-master) uses a zombie (exploit machine) to send primary
infection to the victim machine. This can be done in form of email attachments.

2. Victim downloads the attachment and installs it on its machine by which it gets
compromised.

3. The malicious bot program which has been installed onto victim's machine opens
network ports enabling downloading of the secondary injection which could be a
spamming program, password sniffer or tool for further spreading the botnet. The

primary injection which installs the malicious program on the victim's machine

10

has a URL (Uniform resource locator) address from which secondary infection
can be downloaded.

4. Through the open ports the victim machine downloads the secondary infection
through which the machine becomes the part of the botnet.

5. The victim machine is now programmed to periodically send its status
information to the bot controller (generally an IRC server).

6. Controller sends a reply back to the victim. It can also pass any commands it has
in queue for the victim which have been given to it by the bot-master.

7. Bot herder sends commands to the controller, which it passes to all the victim

nodes. A botnet could have millions of nodes in its network.

Fig:1 indicates the bot controller as the central point from where all command and control
takes place. This is the reason why it is also called a C&C (Command and Control)
server. Though, it becomes easy to control all zombie nodes, it also results in being a
central point of failure for the network. A method to shut down such a botnet is to attack
its server (bot controller). Once the server is brought down, the bot master will lose
control over all of its nodes and botnet will be impaired. Bot masters also try to hijack
zombie nodes from other botnets by capturing its controller. To have multiple number of
controllers under them is advantageous because if one controller fails, only a section of
zombies is lost. They could still expand the botnet using the existing unaffected
controllers. However, the central point of failure is the main reason for bot masters to

search for different techniques to command and control their nodes.

11

2.2 Actions and Capabilities of Botnets

Propag. with
help of user
Self-replication X
Crownload rest Target Scanning |
I . of body selection engine E
i Persistent
OF config.,
— Stealth e

Sniffing

Figure 2: Actions and capabilities of a botnet

Fig:2 shows the general actions and capabilities of a botnet. The solid boxes indicate
mandatory action whereas dotted boxes indicate optional actions. As shown, for infection
to propagate, local system infection is mandatory. Generally, all botnets have capabilities
of persistence, stealth and remote access. They can reside on the victim host by hiding
their processes or frequently changing the names of the processes to avoid detection.
Some advanced botnets also have applications to configure Operating systems known as
rootkits. Rootkits can tweak the OS to hide their processes and leave no traces of their
existence. Remote access is for downloading the secondary infection from a remote URL
and spreading its infection amongst other nodes. Additional capabilities include

password, data sniffing and key-logging. Self replication is an optional function in a

12

botnet. Self replication means it can pass on its infection to other nodes. It can be done in

2 ways:

1. Manually: With the help of the user. E.g.: user forwards a malicious attachment
to other users. User shares infected files with other users. Transferring files over a
network etc.

2. Automatically: By downloading secondary infection from a remote URL which
has a function of self replication in it. For this to happen, the infection should
have target selection and scanning engine. A foolproof algorithm which generates

nearest random IP addresses to infect is a must.

Resource Metrics
CPU cycles DNIPS
Command list
network Mbps
IF list
Port list
Commumication graph
Command latency

M Smory MB storage
B information
Salue/bit

other Time unit, size unit, etc.

Figure 3: Resource Requirements and Metrics [1]
Fig:3 enlists the basic resources required by a botnet. The figure also lists the metrics for

each resource which can be used to characterize botnets.

13

2.3 Botnet Detection Strategies

We categorized botnet detection strategies broadly into 2 types:

1.

Host based detection: Host based detection pertains to detecting bot activities on a
single machine. Some typical symptoms through which botnets can be detected via

host based detection are:

e Infection detection by antivirus. This may or may not be a botnet activity but
certainly can be a starting point for infection. Many infections might not even be
detected.

e Slowing of the machine. Again, this can happen due to variety of reasons but if
this is a sudden change, one must check for spyware/adware on the system using
some scanner.

e Detection of rookits on the machine.

e Modification of Windows host / system files.

¢ Random popups indicating adware presence on the machine which can also be a
form of botnet click fraud activity.

e If your DNS resolution server is not your ISP's or company's server, then it might
have been replaced by a shady source and can forward your requests to shady

URLs.

Network based detection: Network based detection pertains to detecting bot
activities on a network. Some typical symptoms through which botnets can be

detected via network based detection are:

14

One can sniff IRC traffic across commonly used IRC (Internet Relay Chat) ports.
Most common ports used for IRC is port 6667. Many bot masters today use non
standard IRC ports for communication to avoid detection. So, observing the
suspicious outbound connections on non standard ports would be a good idea for
detecting bot activities. Also, the IRC traffic being generally in plain text, sniffing
for known IRC commands and keywords will help detecting a botnet activity.

By maintaining a check-list of known C&C servers, one can check for outbound
requests to those servers.

If many machines on the network are accessing same server at once, bot masters
keep changing their DNS servers to shift their location.

Keeping a check on ports 135, 139, 445 (ports for windows file sharing) may also
help detect presence of bots. A heavy traffic over these ports, is an indication of
some bot activity.

Huge amount of SMTP out bound traffic, especially from servers which are not

supposed to be SMTP servers indicates infection of malware spam in the network.

15

3 P2P Systems

A peer-to-peer (or "P2P", or, rarely, "PtP") computer network exploits diverse
connectivity between participants in a network and the cumulative bandwidth of network
participants rather than conventional centralized resources where a relatively low number

of servers provide the core value to a service or application [8].

In a P2P network, each node provides bandwidth, storage and computing power. Bot
masters take following advantages of P2P network: every node provides resources such
as CPU cycles, internet bandwidth and storage space which can be harnessed by the bot
masters to perform DDos, spamming attacks. This requires large amount of CPU power.
Additionally, more the number of nodes mean more power and bandwidth available to
bot masters. However, this may not hold true for a client server architecture system. In a
client-server model, adding nodes could degrade the performance of the server and
slower the data transfer rates to and from the peers. P2P networks are widely used for file

sharing and video streaming and comprises of most of the Internet traffic today [8].

Before discussing about the P2P network “Kademlia” which is used in this project, let us

review some of the terms related to a P2P system.

¢ Overlay network: A computer network built on top of another network [9]. P2P
networks are overlay networks on top of the Internet. If a node has knowledge
about some other node in a P2P network, there is a direct edge between the two in

the overlay network.

16

Unstructured P2P networks: Such type of a network is formed when peer
selection is done randomly. There is no specific relation between the peer and the
data that is to be searched. If a particular data has to be searched, the query has to
be flooded throughout the network. This may give good results for a popular
content, but for content that is shared by only a few peers, the result is unlikely to
be positive. Flooding also creates increasing traffic over the network reducing its
searching efficiency. E.g. Guntella, FastTrack [8].

Structured P2P networks: They have a global protocol by which every content
is associated with the peer in which it resides. Thus even the rarest content can be
searched efficiently. Distributed Hash tables (DHTs) is the most commonly used
structured P2P network, which is similar to a Hash Table where an IP address of
the peer is stored corresponding to the value of the content (file). E.g.: Chord,

Pastry, Tapestry, Kademlia.

Date Name Tyvpe Distingunishing Description

121993 Ezzlrop MNon-Malicioas Bot Recogmzsd as sarly popular non-malicions IRC bot
041998 GThbot Variants Malicions Bot TR.C bot based on mIRIC executables and se1ipis
05/1999 MNapster Pear-to-Pear Furst wadely uzed hybnd central and peer-to-pesr service
11/1959 Dhirect Commect Pear-io-Pear Vanation of Mapster hybrid model

032000 Goutella Pear-io-Pear First decentralized peer-to-peer protocol

022000 elhomboesr Pear-to-Pear Uzed chacksum dirsctory lockup for fils resources
03,2001 Fast Track Pear-io-Pear Use of supemoedes within the peer-to-peer architectuze
052001 Winh Pear-io-Pear Propristary protocel similar to FastTrack

62001 Arvas Pear-to-Pear Hasz ability to penstrats INAT: with TUUDP punching
072001 BitTorment Pear-io-Pear Uses bandwidith cunmency to foster quick dowmloads
O 2002 SDbot Variants Malicious Bot Pronvided owm IFC chent for better sfheiency

1072002 Azobot Vartamts Malicious Bot Incredibly robust, Heable, and modular design
02003 Spybet Vartants Malicions Bot Extensive feature sat based on Agobot

052003 WASTE Pear-to-Pear Small VEN-style natwork with ESA public kevs
022003 Sinit Malicions Bot Pear-to-peer bot nsmg random scanming to fimd peers
112003 Eademlia Pear-to-Pear Uses distributed hash tables for decentralized architectuae
032004 FPhathot Malicious Bot Pear-to-peer bot based on WASTE

032006 SpamThen Malicions Bot Pear-to-peer bot nsmg custom protocel for backup
02006 Ihigachs Malicious Bot Pear-to-peer bot commecting to predefined peers
012007 Peacormm Malicious Bot Pear-to-peer bot based on Kademlia

Figure 4: Evolution Peer to Peer Protocols and Bots [1]

17

Fig:4 shows how P2P networks evolved over the years. One of the first well
known bot which was non malicious is EggDrop, an IRC based bot. It was
developed with the intention to enhance automation over the internet which
includes playing games, legal file transfers and automated channel admin controls
[1]. Napster was the first P2P centralized system. It allowed users to find music
with other peers on the network [1]. A centralized server was used to save indexes
of the files on the user’s computer which enabled other users to search for it and
download the media from the user’s machine. It was shut down because of the
illegal trading of music on the Internet. This promoted the idea of having
decentralized networks to evade authorities. Guntella was the first P2P
decentralized protocol. Protocols such as Kademlia, Chord and Tapestry made use
of distributed hash tables (DHT) for improving searching efficiency. Agobot
started the trend of malicious bots and became most widespread because of its
design and modular code base [1]. Later Trojan.Peacomm emerged as the most

destructive bot and it was named Storm Worm.

3.1 Kademlia- A P2P protocol

The working of the Kademlia protocol is very crucial for this project as one of the attacks

on Trojan.Peacomm, Index poisoning attack is directly based on the disrupting the P2P

system rather than attacking the bot itself.

Kademlia uses distributed Hash Tables for decentralized peer to peer computer network.

UDP packets are exchanged between the peers to transmit and receive data. Each UDP

packet contains a triplet of <IP address, UDP port, Node ID>. An overlay network is

18

formed by the participating nodes. Every node is assigned a 160 bit node ID (not
necessarily unique). To publish and find <key,value> pairs, Kademlia relies on a notion
of distance between two identifiers. Keys too are 160 bit identifiers, where key =
hash(file) and value = IP address of the file location. Distance is calculated as the XOR
value of the node ids. Each peer contains a data structure called K-bucket which store
<key, value> pairs of the ids at the distance of 2" and 2™' from it. Fig:5 gives us the

visualization of how the K-bucket should look like.

K - Buckets

» Ids at a distance
Z2'and 2™ stored
In each k=buckel.

ks i=0 i=1 i—160

Figure 5: K-Buckets

19

The algorithm for updating the K-bucket is as follows [11]:

Algorithm:

Initial state of the peer:
x(node id) : = node id;
status : = sleep;
On receiving of (IP address; UDP port; Node ID (y)) from some node n;
status : = awake;
Calculate the d(x, y);
Choose a values of triplets whose distance is the least from its k-buckets;
forward triplet to node n;;
If d(x, y) =0 then //node already present in the peers k-bucket
Move the corresponding triplet to the tail of the k-bucket;
terminate;
else
Is k-bucket full ? then
Remove least recently seen triplet from k-bucket;

Add the triplet to the head of the k-bucket;

The algorithm can be exploited so that the values in the K-buckets are poisoned with fake
entries, i.e. Entries of legitimate files pointing to shady sources (IP addresses). The

details of it will be described in later sections.

20

4 PE File

In order to reverse engineer a binary, it is very essential to understand the PE file format
file format for executables, object code, and DLLs, used in 32-bit and 64-bit versions of
Windows operating systems [12]. Packing and unpacking of executable files are common
practices while reverse engineering a binary. In the following sections we have covered

some basic knowledge required to reverse engineering a PE file.

4.1 Layout

A PE file is divided into different sections and headers. A linker maps them into the
memory. Fig:6 represents how a PE file appears on the disk. Its headers and the sections
contain all the information to map it to the virtual memory.

From bottom, i.e. offset O, starts the PE header. Executable files can be identified as those
files whose header starts with “MZ”. While reverse engineering a malicious file, we
should always look for the header to check if the file is a valid executable or a corrupt
file. Also a valid file would have PE signature: “PE/0/0” at the location specified on
offset 0x3C of the file.

The image file header and the optional headers contain information about target machines
of the executable file, number of sections, time and date stamp, number of symbols,

address of the entry point in the code and the image base.

21

Codeview DOebug Information

COF F Symbal=s

COFF Line Murmbers

aeloc
.idats
sedat a

Sections
.data

ket

Section Table [array of
IM&AGE_SECTION_

HEADER=)]
| Dlaka Dirsctony
IMAGE QP THOMAL
IMAGE_MTI _
HEADERS ||-|EP.DEF:
IMAGE_FILE_HEADEFR
"PELI" FE Signature
Off et 0 Mz MS-D0S Header

Figure 6: PE File Format [13]

The major sections in a PE file format are as follows:

The .text section contains the code in the file. For a C++ compiled file, it is referred to as
.CODE section. Usually the entry point in the file lies in this section [13].

A .data section consists of all initialized variables (global and static) at compile time.
The local variables are all in the .tls (thread local storage) section. All the exports
contained in the file are stored in .edata section. Exports refer to the functions and data,
that the file contains, which are used by external modules.

.Jddata section also known as the import table contains the table of addresses of all the
imports to the file so that they can be mapped in the memory. It contains information
about the functions and modules imported from external dll files [13].

.reloc section contains information about the base adjustments that need to be performed
if the loader cannot load the file in its preferred address location. If no base adjustments

are required, then this section is neglected.

22

.rsrc section (not shown in the diagram) contains all the resources of the file. In the PE
file format these resources are maintained in a hierarchical fashion in the form of
directories. The top level directory is found at the beginning of the .rsrc section. The sub
directories of the top level directory depict different types of resources such as dialogues,
menus and string tables. For each resource there will be individual sub directories. Each
sub directories in turn will have ID subdirectories, having unique IDs for each resource

[13].

4.2 Packing

Packing also known as executable compression is any means of compressing an
executable file and combining the compressed data with the decompression code it needs
into a single executable [22]. Packing is often used to hamper reverse engineering or to
obfuscate the contents of the file. For e.g.: to hide viruses and worms from antivirus
scanners. It is not impossible to reverse engineer a file which is packed, but it increases
the cost of its analyses. While packed files require less storage space they have a slower

loading time since the original file has to be extracted before it is executed.

5 Reverse Engineering of Trojan.Peacomm

The results and findings in this section are gathered by reverse engineering the bot
binaries of Peacomm and its variants. Herein we explain the detailed procedure used to
analyze Peacomm. Since all variants have some common behavior, a variant of the bot:
i.e. PeacommD was used as the base file for our analyses. For convenience of our
analysis and explanation we performed black boxing or dynamic analysis on PeacommD

and white boxing or static analysis on Peacomm and its variants (Peacomm.exe,

23

PeacommbD.exe, and PeacommC.exe). Black boxing and white boxing are explained in
detail in the following sections. We have chosen important sections of code to be shown
in this report which include: how it obfuscates the code, tricks used to hamper analyses
performed on it, decryption loops used in different variants and code injections in a
legitimate process to avoid detection. Some sophisticated tools for reverse engineering
are IDA Pro and OllyDebug. These were the tools used for majority of our analysis. All

tools used for analysis are described in the subsequent sections.

5.1 OllyDbg

OllyDbg is a 32-bit assembler level analyzing debugger for Microsoft® Windows®. It is
used for binary code analysis especially when source is unavailable [14]. Some of its
features are:

e [t can recognize procedures, API calls and most of the C functions.

¢ Finds references to memory and strings.

¢ Can debug Dlls too.

¢ Any running program can be attached and debugged.

e Many third party applications and plug-ins are available.

¢ Can update and patch an executable.

5.2 IDA Pro

IDA Pro (Interactive Disassembler) is a commercial disassembler used for reverse
engineering [15]. It is a prime tool for assembly code analysis because of the following
reasons:

e Supports large number of executable formats and Operating Systems.

24

Allows naming, commenting, structure creation.

Analyses the assembly code and separates them into sections. It also recognized
common used API calls.

Supports scripting for additional modifications to the generated code. E.g.
scripting for decrypting part/parts of a file.

Provides graphical view of the file for better understanding of function calls and

loops.

25

/ r PE Dump | \ / / \ \
v \ [OllyDbg]
Unpacking
'd * N\
Resource Hacker DEBUGGING
. \ 4 § K j
Extracting
Embedded Files
I II: 4 N\
4 N
Run Threat in a [IDA Pro]
Controlled
Environment and
Monitor CODE
~ - ANALYSIS
\ 4
[Fake DNS Server] k j
BLACK BOXING WHITE BOXING

_ /

Figure 7: Flow Chart indicating Summary of Analysis

Fig:7 represents our method of analyzing Trojan.Peacomm. It is broadly classified as
black boxing and white boxing. In black boxing we used various tool and techniques to
understand the behavior of the threat. While performing white boxing; debugging and

code analysis were performed using tools OllyDbg and IDA Pro respectively.

5.3 Black Boxing or Dynamic Analysis

Black box analyses involve analyzing the file without looking at the actual code or
assembly of the file. We try to understand the behavior of the file by actually running it in

a controlled environment.

26

5.3.1 PE Dump Analysis

PE Dump is a tool which shows the structure of the file. We used it in order to check
whether the file is a valid PE file. It shows all the sections in a PE file. Also an internal
tool which shows any strings and appended data in a PE file if any was used. One can
know from a glance whether there is appended data to the file or is there another file
embedded inside the resource section of the file. These are common techniques used by
trojans to place their code in a file. Appended data means the actual malicious code of the
file which lies after the object end in a PE file. The entry point of the original code
consists of a jump statement to the appended code so that malicious code can execute
first and jump back to the legitimate or extra code kept to deceive virus scanners. We

opened the PeacommD file in PE Dump for analysis. Our observations are as below:

27

File H'?adf_’l‘ : UirtSize: ABE@A3SA UirtAddr: AOAA10G
Hachine: A14C (I1386) raw data offs: OOBAA4AB raw data H
Number of Sections: Aap4 relocation offs: DOBBAGEE relocati
TineDateStamp: 48618989 -> Tue Jun Line 3 oirssi, DUNRRA, Jine Xs*
Eolgtes}gsyﬂhgﬂahle: gggggggg CODE EXECUTE READ ALIGN_DEFAULT(16)
LLmbE R ymho 152
SizeOfOptiunalHeader: ARER B2 .rdata UirtSize: ABARSEEY U:i.rtﬂclclr:_

Char AR ALl raw data offs: PABPPARAA raw data s
haracteristics: relocation offs: BOAAABPA velocation

RELOCS_STRIPPED line # offs: PAPARARA line #'s:

har, rigtics: 40000040
ggg?g{aggﬁﬂagncE 2 lélliléll?l:gi.:llzgl:;iDﬂTﬂ READ ALIGN_DEFAULT (16>

A3 .data VirtSize: @UAA31ES UirtAddr:
ptignal Header raw data offs: GBBE640A 3
. relocation offs: PARBAARAR
Magic . 0108 line # offs: A00RAEEA
li!.l'lkel‘ VEPS10N .00 characteristics: COAAAA4Q
size of code 4060 INITIALIZED_DATA READ WRITE ALIGN_DEFAULI(16

size of initialized data 1Chud B4 .tdata UirtSize: MOAL3ABA UirtAd

size of Iun1n1t1a112etl data @ raw data offs: BOBAY6HAB raw data

entrypoint RUA 1183 relocation offs: BAPARAGA relocati

T 1908 line # offs: 0ABAAGED line #'s: 206ABAR

characteristics: 4000A04@
]?ﬁse of data 2000 INITIALIZED_DATA READ ALIGN_DEFAULT (16>
image hase 4h0ARA

section align 1888
file align 2088
1 ; Imports Tahle:
required 05 version 4.008 KERNEL32.d11
image version A.68 Import Lookup Table RUA: BBBA7ABA
snhe ue ag o TimeDateStanp: BAPRBRRG
subsystem version 4.08 ForvarderChain: e
Win32 Uersion a DLL Name RUA: @ABAZAFE
gize of image 208080 Import Address Table RUA: B0B8200@
aim n Ordn Mame
"il""ekgf headers gﬂﬂ 416 GetProcAddress
ChECksum . 897 UirtualAlloec
Subsystem 882 Mindows GUID 386 GetModuleHandleW
DLL flags #2008 e Dl
. Import Lookup Table RUA: GBOR7ACH
stack reserve size 106866 TineDateStanp: #AAERRA0
stack commit size 1888 Eﬂi:uﬂrd”%ﬁi": gggggg?g
M sz ame :
heap reserve size 180668 Import Address Table RUA: OAOE2A1A
heap conmmit size 1080a Ordn Name

RUAs & sizes 18 5 EnumProcesses

Figure 8: PE Dump showing PE File Information

No appended data was found. Any kind of strings (web addresses, IP addresses, known
APIs used by malicious files) in a file are useful in analyses of a file. The internal tool
extracted all ASCII strings in the file. Strings did not seem to make sense. This is an

indication that the file is packed or obfuscated.

5.3.2 Unpacking

Packers are commonly used for code obfuscation or compression. Trojans commonly use

them to avoid signature detection. We used custom built tool to try and unpack the file.

28

This tool contains un-packers for all known packers. It finds signatures of known packers
in the file and applies corresponding unpacking function on it.

¢ Unpacking was unsuccessful.

e Conclusion: A custom built packer is used. Peacomm avoids using known

packers to avoid its detection.

An emulator was used to emulate the threat. It creates a limited user account where the
threat cannot write files and has no network privileges. We ran the PeacommbD file in the
emulator. It collects the memory dump of the emulation in a file which we can analyze.
Emulation fails. There is a possible use of emulation evading techniques used by the

Trojan. It is described in section: 5.4.1.

5.3.3 Checking any resources it contains

Resources in a file are valuable information one can get about the file. These resources
are placed in the .rsrc section of the PE file as explained in the section 4.1. It can give us
version information, icons and image files embed in the PE file. Often malicious files
have embedded dlls and executable files in them. Resource hacker, a free tool, was used
for this purpose. No resources were found. Since the file is packed, Resource hacker was

unable to find the resource information from the file.

5.3.4 Extracting embedded resources

A custom tool was used which extracts dlls and exe files from the original file

PeacommbD, if present. No files were extracted again because it is packed.

29

5.3.5 Running and monitoring the actual threat in a controlled
environment

A custom tool was used for this purpose. The tool is similar to the free tool “HijackThis”
[23] by security company TrendMicro. It monitors all API calls, registry creations and
modifications, creation and deletion of files and folders and processes and dlls utilization
by the threat.
The observations were:
e It copies itself to msvupdater.exe in c:\windows directory.
¢ C(reates a sub key to auto run on boot:
HKEY_CURRENT_USERWMicrosoft\Windows\CurrentVersion\Run\"msvupdate
" = "%Windir%\msvupdater.exe"
e Msvupdater.exe creates processes netsh.exe (to monitor and control machine from
command prompt)
e Netsh.exe sets msvupdater.exe as an authorized application and changed firewall
settings. The following command was used to do that.
o netsh firewall set allowedprogram "C:\\WINDOW S\\msvupdater.exe\"
enable
o The following Registry entry was created:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedA
ccess\Parameters\FirewallPolicy\StandardProfile\Authorized Applications\List
\C:\WINDOW S S\msvupdater.exe
e Uses common APIs to connect to the internet: wsaStartup(), Socket(), Bind().
Using these APIs, it connects to massive number if peers creating different thread

for each connection.

30

Runs these commands to synchronize time:

o WinExec “w32tm.exe /config /syncfromflags:manual

/manualpeerlist:time.windows.com,time.nist.gov”

o WinExec “w32tm.exe /config /update”
Spreads by copying itself to local and remote drives by searching for .exe files in
the folder. If a .exe file is present it copies itself to that folder
Creates a key value for a unique ID of the node on a P2P network. Sets the key to
0x 1F6F6DDO0= (527396304);
HKEY_LOCAL_MACHINEWiicrosoft\Windows\ITStorage\Finders\ID
Creates a file named msvupdater.config in %Windir%\ which contains

information about the peers to connect to.

. Lister - [c\ WINDOWS msyupdater.config]

File Edit Options Help

[config]

ID=5273963084

[locall]

uport=210483

[peers]

A00008F 2DEAS A1 23D5F37587A4AIIBEOC=7BCOGEDCASAD AR
818092 7A376D3IFA23I0202ERGF BAFEVLA=7AALLTI1B?1BOAAA
B200FF 2ZEAEZAEGBAEBLEBF 7 9AEGGOC21=592230173FD280
820003 4E7o4DOAZCDO 7 OICSAYFSBAEZA=7D12F 2711618248
AL OADAGSEEGF2I3BFGICADICT 24D 1IA=8D2B15A03 062 AA
A5 08DLMGGCBIB 7 77FGC2M02FELNS2AZC79=BE26FAADG23 700
86002655 186BD25FSFB13A7FIIIS98778=7AA2ZABAC3IFA7AA
87 00ALSDFFARLABBA913DDICDCAFSAZA=76ACCPES1CBEARA

Figure 9: Peer List File

The file contains the unique ID of the computer on the network. The registry entry
for it was set as explained in the previous point. It contains the port number to use
to connect to other peers and lastly the list of peers in the format:

<128 bit md4 hash>=<IP address><Port><2 byte flag>

31

It then creates multiple threads, each establishing a connection to a single peer.

The list keeps on updating as more number of machines get infected.

5.3.6 Running the threat using a fake DNS server:

The DNS server was set to 127.0.0.1. Thus all the outbound requests are redirected it to
the local host at. We set up a fake web-server at the local host to monitor its requests and
serve any files it requests.
Observations:

1. Request caught: GET /getbackup.php HTTP/1.1

Host name: cadeaux-avenue.cn (which is a malicious domain name)

2. Accesses host time.windows.com : for time synchronization.

5.4 White Boxing or Static analysis

White box analysis involves analysis of actual code. Since we have the executable file of
the Trojan and not the source code, we have to reverse engineer it and analyze its

assembly code.

32

From Black Box analysis we know that the file is packed. Viewing it in IDA-Pro:

Ltext:@0412ABD ; at start eax is always 8 and any stack vars are =1

Jtext:80412ABD ;
text:00412ABD
.text:00412ABD
Jtext:B0412ABD start
.text:00412ABD
Ltext:00412ABD arg_18
text:00412ABD

public start
proc near

= dword ptr 1Ch

* .text:@B0412ABD nov ebp, [esp+1Ch]
* Ltext:88812ac1 sub ebp, 78h i
* Ltext:88M12ACH add ebp, 1%h i

Jtext:00412aC7

ebp=FFEFFFFF
ebp=FFFFFST
ebp=FFEFFFab

Ltext:@A412AC7 div loopi:

* Ltext:888124C7 sub ebp, 1684h
* .text:88412ACD dec gax

* .text:88412ACE add ebp, BABhH
* .text:BBM12ADY or ebp, ebp

Ltext:00412aD6
Jtext:00412aD8
Ltext:00412aD8
Ltext:00412aD8

inz short div_loop1

* Ltext:084124DD lea ebx, [eax+edi] ;

* .text:BB412AER xchg ebx, ecx

* .text:BB412AE2 push ecx

* .text:004124F3 nov esi, ecx H
text:A84124E3 i

* .text:004124F5 shr ecx, 1Fh

* .text:00412AE8 add ecx, BF9BDS1EAR

¢ .text:00412AEE add ecx, 642AFF1h

Jtext:80412AF4

; loop: FFFFFFaB/{104-ad)

CODE XREF: start+19}j

Division Loop

in negative

eax=FD70A3D8 = -28f5c28
edi= 2d1bc28h
ebx= 2d1bc28h - 28f5c28 = 426000

esi=426008

esi is starting addr of mem to be decrypted

Jtext:88412AFY decrypt: :
.text:B0412AFY / mov eax, [esi]

EﬁﬁE—ﬁﬂEEQ\itart+59¢j
_{Decryption Loop

965ECAR

-text: 00412619 RS

* .text:@0412AF6 lea esi, [esi+i]

¢ .text:00412AF9 nov edx, eax

* .text:00412AFB shr eax, 1

¢ _text:88412AFD shl edx, 1Fh

* .text:@8412B08 lea eax, [edz+eax+1]
* _text:88412B04 or ebx, BFFFFFFFFh

* _text:884128087 add ebx, BFFFFFFFDh

* .text:B80412B8A nov [esi+ebx], eax

* .text:@80412B6D xor dword ptr [esi-4],
¢ Ltext:Beu12B14 sub ecx, 1

* .text:@80412B17 \\\\> inz short decrypt
*Ltext:aey12819 Fetn :

goes o 426000

Figure 10: Decryption Loop of the Packer

We have marked the assembly code with comments for better understanding. Most

packers have their decryption loop at the entry point of the code. Here it starts at

0x412AF4. The instruction mov eax,[esi] at 0x412AF4 shows that register ESI contains

the starting address of the encrypted code. To know what ESI contains we need to know

the value of ECX at 0x412AE3. Since contents of EBX were exchanged with EBX at

0x412AEO xchg ebx,ecx, we want to know contents of EBX. Now at the start of the code

33

EAX is 0 and any stack variables are FFFFFFFF. This is true for all NT based systems.
Win9x systems have EAX set to entry point at the start of the code. So this file would not
run on a Win9x system. There is a division loop just before the decryption loop, which
gives the value 0x426000 to EBX at 0x412ADD. The value 0x426000 is passed to ESI at
the start of the decryption loop. We can run the code in a debugger till the end of the
decrypt loop and dump the memory starting from 0x426000 into a file. Since OllyDbg is
good for debugging and IDA Pro is better for code analysis we use them for their
respective purposes. Further, we need to load this additional .bin file, dumped using
OllyDbg into IDA Pro where Peacomm file is already open. Fig:11 shows how to do that.
We see, at 412B19, that the function returns to address 0x426000 which is the real start

of the file.
1 . IDA - i jeet' peacomm_data',PeacommbD.idb (PeacommD.exJilll oad Additional Binary File x|

_'||_F|Ie Edit Jump Search View Debugger Options Windows

File name: C:hjeet\peacommn_datahFeacommD exe

0 Mew
F B? OpEn... Loading zegment Ox4260 ~| lin paragraphs]
I :
| 1 Produce file i additional binary file, .. Eile offset in bytes |0x0 =
| [£ 1DC file., 105 file. . Humber of bytes =0 *| (0 means maxmimum]
&3 IDC command. . FDE file...
||_ [save DBG file... b=t "
= : w Lreate segments
E saveas. 7D file . [¥ Code seament
l B FLIRT signature file. ..
1. ciljeetipeacomm_datz Parss Cheadst fils... CirhFo 0K Cancel Help

2. C:AINFY 100418090 1.idb

Figure 11: Add a Binary File in IDA Pro

We set the loading segment as 0x4260 and offset as 0x0 since we want to load the binary
file at 0x0042600 in the existing IDA file. Thus, we can see the decrypted instructions on

those locations instead of the encrypted data, which is easy for analysis.

34

5.4.1 Emulation evading technique

Fig:12 shows the code at entry point of a Peacomm variant. We saw some simple

techniques to trick the emulator and make it crash

push] ; lproduleName
call ds:GethoduleHandlel
mov [ebp-8], eax eax contains handle to the file used to create

since input is null, it will return the

; the calling process
; handle to peacomm.D file

add ebx, edi

dec ebx

not ecx

push offset ProcHame ; “sfdbee”

push duword ptr [ebp-8] ; hHodule

call ds:GetProchddress

mov [ebp-4], eax ; eax contains addr of the function sfbee
; in peacomm.D file

inc edx

neq eax

jnp dword ptr [ebp-4] ; jump to sfbee function

Figure 12: Crashing the Emulator

One can see the API calls to Windows functions, GetModuleHandleV and
GetProcAddress. GetModuleHandleV returns the handle to the specified module [16].
We see a null being pushed just before the call. This means the module name parameter
passed to the function GetModuleHandleV is null. According to MSDN, it should return
its own handle. Thus register EAX will contain handle of the file itself.

GetProcAddress function returns the address of a function in a file if passed its name as a
string. We see a string named “‘sfdbee’ passed to the function. Thus, it will return the
offset of that function in the file. On jump, it will go to the offset address.

Point to be noted here: only jump statement could have been used to go to the ‘sfdbee’
function. A ‘jmp’ statement is easily emulated by the emulators and a virus can then be
analyzed easily. There are too many APIs for emulators to handle. Many APIs cannot be

35

resolved by the emulators. Many current emulators cannot resolve GetProcAddress. Also,

by using GetProcAddress function, it has to evaluate the offset of the function at runtime,

which emulators cannot perform, thus evading analyses by emulators.

5.4.2 Decryption Loop

The purpose of the another piece of code which is in the “sfdbee” function is to XORs

32000 bytes(c80 bytes) from 0x00408000 with a 16 byte key at address: 0x00402018.

JLext: 00401098 1ess than o:

. text: 00401690

Jtext: 00481890
' text: DOuH1092
' text: 00481094
L text:OuH1097
L text: 041690
' text: OUH169D
' text: 00401600
" text: BBuE 6a7
" text: BBUE1 609
" text:0R4010AB
" text: 0R4010AD
' text: 0R4610BA
" text: 0R401082
' text: DR4B10BY
' text: 0R4010RG
' text: 09401088
' Text: BR40168A
' Text: 09401088
' . text: 0461 6BD
' text: 0461600
' . text:BB4616C3
' . text:BB4616CH
" . Text:BB4616C9

neq

Xor
nov
nov
lea

| ; CODE XREF: sfdbee+Bt]

aay ; 2's complinent negation
; 1f operand zero than CF=@ else CF=1
pay, Pay ; eay=l Decryption
ec, [ebp+ctr 8] ; eck has value of ctr 8
Key

eax, [eopvar 1] ; eax has 00488060
pax, [eax+ecx+d] ; eax points to ever
pey, [ebpecte 4] 5 ecy has thessar of ctr 4

eck, ds:dord 402818[ecx+y] P ecx points to every 4th byte from 462018

oy e from 468000

<:::::§@f:::::l;:fli_gff ; %oring data at 48800 with data starting fron &
g

nov
novsy
neq
nov
lea
and
chp
dec
nov
inc
nov
inc
cap
il

esi, esp
psi, al ; esi increases by 4 each time, till fF
edx

ecy, edy

ebx, [edx]

edx, esp ; at this point ecx=eds=eby

ebx, ecx ; ebx and ecx are always qoing to be the sane

edi ; edi started vith fFFfffaa and dec in every loop
eds, eby

[ebpectr 8] ; increment ctr 8 by 1

pax, [ebp+ctr 8] 5 move counter:ctr § to eax

[ebpectr 4] ; increment ctr 4 by 1

eax, [ebp+ctr Linit C] ; compare ctr 8 to counter linit ctr c=c8@
short loc 401861

Decryption
Function

Figure 13: Decryption Loop

At the start of the loop, values for some counters and temporary variables are as follows:

ctr_8= 0, ctr_4= 0 and var_10= 0x408000. Thus, XOR is the function for decryption

which is at 0x004010A7. ECX = 0x402018, which is where the decryption key is placed.

36

In every loop counters ctr_8, ctr_4 are incremented by 1 and multiplied by 4 while
performing an XOR so that every 4 bytes of data are XORed each time. The loop

continues till counter variable ctr_limit_C= 0xC80 which is 32000 bytes.

We have made some observations as to how different variants of Peacomm behave.

These are some common observations.

5.4.3 Dynamic process calling

In Fig:14 below one can see many calls to GetProcAddress function. This function

returns the handle to the function whose name is passed in ASCII as a parameter to it.

37

* seqBB0:00LA2CB2
* seq@00: 0O4A2CRT7
seq00:00402CR7
* seq@d0: A4A2CRC
* seq0: AA4A2CC2
* seqBB0:AOLA2CCT
* seq@00: R4A2CCE
* seqBB0:00LA2CCH
* seqB00:00402CCF
* seq@00: AR4A2CDS
* seqBB0:00402C07
* seqB00:00402C09
* seq@80: AR4A2CDC
* seqB00:0ALA2CE2
seqA00:00402CE2
* seq@00: 0O4A2CER
* seqB00:0ALA2CEE
* seqBB0:0OLO2CEF
seqf00: 00402CEF
Seq00: 004 02CEF
seq00:00402CEF
* seqd00:AOLAZCFA
* seqB00:00402CF7
* seq@00: O4A2CFY
* seq00: O4A2CFA
Seq00:00402CFA
* seq@00: BA4A2CFC
* seqon: aauA20 82
* seqB00:00402085
* seq00: 00482006
seqf0n: 064 A2D 86
* ceq0B0:00402008
* seq@00: 004020 BE
* seqBB0:08402011
* seqBB0: 00402012
seqf00: 00402012
* seqB00:00402014
* seqBBn:00LA2D16
* seq@00:0O4A2D18
* ceq000:0040201B
seq00: 00402018
* seq@00:004A201D
* seq000:00402020
* seqda0: 0a4A2023
* seq00:0O4A2029
* seqB00:00402038
* seqd00: 0O4A2032

push offset Hame ; "SeDebugPrivilege”
call inc_previlidge ; gets

; previliges
push ; 1pString
call, decodes strings
pop ecx
pop BCx

push Kerneld2 dll ; Kernel32.dll
call LoadLibraryA

nov edi, eax

test edi, edi

noy [ebp+h | kernel32], edi

clean lea
pusn CreateToolhelpa2Snapshot>; 1pProchane :CreareToolHelpa2Snapshot

nov esi, GetPrucﬁddress
push edi ; edi = hilodule = h_kernel3d2
call esi ; GetProcfddress ; CreareToolHelp32Snapshot:
; takes snapshot of the specified process, heaps,
; modules and threads
;—eax = handle to CreateToolHelp32Snapshot
pu 4 cHame
nov eb¥, eax ; ebx = eax = h_CreateToolHelp32Snapshot
push edi ; edi = hHodule = h_kernel3d2
tall esi ; GetProcAddress ; Process32First
; eax = h_Process32First

pus Processd2Next ; 1pProcHame
noy ehp+h-Proce irst], eax
push edi ; edi = hilodule = h_kernel3d2

tall esi ; GetPrucnddress ; Processd2Hext

ax= h _Process32Next

nov [ebp+h_Process32Hext_and virtualAllocEx], eax
push edi 5 edi = hHodule = h_kernel32
call esi ; GetProchddress ; OpenProcess
; eax= h_OpenProcess
push @ ; th32ProcessID = B ie current process
push TH32CS SHAPALL ; includes all process, threads, heaps and modules
nov [ebpth_OpenProcess_and_basefddrUirtuallenm], eax
call ebx ; calling CreateToolhelp32Snapshot
; eax = handle to the snapshot
cmp eax, BFFFFFFFFh ; checking if err
nov [ebpth_snapshot_thisFileProcess_and_zwwritevirtual], eax

j2 an_le ; if err clean and leave
m__esplorer_exe, 0O
jz short Ioc_502DA7

nov duord ptr_[ehp—l], offset explorer exe

Figure 14: Dynamic Calling of Processes (Making Static Analysis Difficult)

We can see a call at 0x402CC2 to a function which we named as decode_strings, since
after returning from that function all the encrypted strings in the code can be seen in clear
text. We ran this piece of code in OllyDbg to confirm this. There is a certain memory

range in the code where all the strings used in the file are kept encrypted so that, once

38

decrypted, they are used as parameters to the function GetProcAddress. In Fig:13 , the
circled strings are the decrypted strings.

The process CreateToolHelp32Snapshot at 0x402CE2, takes a snapshot of the specified
process and heaps, modules and threads used by this process [17]. The code proceeds to
calls the functions Process32First, Process32Next and OpenProcess and at address
0x402D29 we have a decrypted string “explorer.exe”. Process32First gives the
information about the first process encountered in system snapshot [18]. Process32Next
retrieves the information about the next process in the system snapshot [19].
OpenProcess opens a local process object for the specified process Id with desired
privileges [20]. This indicates the program is trying to search the process “explorer.exe”
in the snapshot and inject malicious code into its memory range as we have explained in

the following sections.

39

5.4.4 Finding a

RHTDLLAG DL A TS

5eq000: 00402054 find explorer exe:

ceqBe0: A6u0205Y
Seqbe0: 06u02054
seqBo0: oy 0205A
seqBed: oy 02058

legitimate process to inject

; CODE XREF: start+E7}]
; start+181)

lea eax, [ebp+ptr PROCESSENTRY32stru] Check if next
Bosl e rocess is
push [e hisFileProcess and zwiritevirtual] p

call ext_and virtualAllocEx]

explorer.exe

* 5eqB06: 084 02D5E

seqdnq: aau 02061 test eax, #a®
seqd00: bau 2063 jz short loc 482095
seqd80: 08402045 a mov eax, [ebp+explorer.ese] - N\
seqBb0: AL 02068 push dword ptr [eax] ; 1pString2
' 5eq000: 004 62D6A lea eax, [ebp+process list]
' 5eq000: 60462070 push eax ; 1pStringl = eax = “systen” then "csrss.exe” and so on...
' 5eq060: 80402071 call Lstrcmpif
' 5eq000: 00402077 test eay, eax
' 5e0000: 00402079 _ jnz short find explorer exe J
* 5eq000: 08402078 push [ebp+PROCESSENTRY32stru processID] ; 7b%4 for the 1st time
* 5eq000: 00402081 e push eax ; eay =0. means dont inherit N\
* 5eq000: 08402082 push 43fh
* 5eq006: 08402087 call [ebp+h OpenProcess and basefddrUirtialien] ; opens a local process object
* 5eq00G: 0840208 moy ebx, eax ; ebx = handle to explorer.exe
* 5eqB00: 0B402D8C test ebx, ebx
* 5eqB06: 084 02D8E Moy [ebp+h_explorer.exe], ebx
* 5e0006: 66402091 _ jnz short got_explorer_handle J
! 5eq000: 00402093 inp short find explorer exe

SeqB00: 06402095 ;

Get handle and
open an object of

Figure 15: Finding the Process: explorer.exe explorer.exe

The Fig:15 shows the loop to find the process: explorer.exe in the snapshot taken by the
Trojan. At address 0x402DSE, Process32Next is called. It gets the next process in the
snapshot of the process taken earlier. Next piece of code shown runs a loop to check if
the next process is explorer.exe. When it finds explorer.exe, it gets its handle and opens

its object.

40

5.4.5 Allocating Virtual Memory

seﬁuuu:uuuuznnn got_explorer_handle:

; CODE XREF: start+FFtj
of f 48567C ; 1pProcName = “closeHandle"
edi ; hilodule = kernel32.d11.7cBA0660
esi ; GetProcAddress ; close handle

; eax= h_closeHandle
[ebpth_snapshot_thisFileProcess and_zwuritevirtual]
[ebp+h_closeHandle], eax

eax ; closing the snapshot

; Bax= non zero val if success
ebx, ebx ; checking if explorer process is live
clean_leave ; 1f no explorer process then leave

GetHoduleFileNameR ; 1pProcHame

[ebp+var 3BE], @

[ebp+var_21C], @

[ebp+var SEE], 1

edi ; hilodule =kernel3?.dl1.7c800068

esi ; GetProcAddress ; eax = h_GetHoduleFileName

ecx, [ebp+lp Filename] ; ecx contains the address to the filename of the module

eax = returnd handle to ntdll.dll
if no handle then exit

184h ; size of the buffer
ecx
]
eax 3 out var ecx=ntdll.7c91056d
; eax=2M
ntdll d11 ; 1pLibFileName
LoadLibraryd ; loads module in the addr space of calling fn

eax, eax
clean_leg

wilriteVirtualbemory™ LpProcHame
p = fittodule

esi ; GetProcAddress ; eax=h_zwwritevirtualmemory

eax, eax
[ebpth_snapshot_thisFileProcess_and_zwuritevirtual], eax
ctlean_leave

* 5eq000: 00462E1F push virtualAlloc v 1pProcHame
* seq000: BOLB2E2S push pdi 7 hilodule

* 5eq000: 004682DAA push
* seq000: 604062DE0 push
* 'seq000: 00402081 call
seqB0@: 86462081
* 5eq000: 00462083 push
* seq000: 00462086 mov
* seq00: B8462DBC call
seqBa: 0eua20BC
* 5eq000: B84 B2DBE test
* seq00: BB4E2DCA jz
* 5eq000: 004682DCH push
* seq000: BO4B2DCC and
* seq000: 88462003 and
* '5eq000: 00468200A mov
* seq000: 00402DEY push
* seq000: 00462DES call
* seq00: B04B2DE7 lea
* 5eq000: 004B2DED push
* seq000: BB4B2DF2 push
* seqBA0: B4B2DF3 push
* 5eq000: 004B2DFS call
seqBoa: 0Bua2DFS
* seq000: 884620F7 push
* 5eq000: 00462DFD call
seqBoa: 0eua20FD
* seq000: 00462E 63 test
* seq000: 004 B2E 05 jz
* 5eq000: 004 62E 0B push
* seq000: 00462E11 push
* seq00: BO4A2E12 call
* 5eq000: 00402E14 test
* seq000: BO4B2E16 nov
* seq00: B4B2E19 jz
* seq000: 00462E26 call
* 5eq000: 00462E28 mov
* seq000: 00462E2B mov
* seq000: 00462E32 mov

seq000: bBLB2EIY

esi ; GetProcAddress ; eax=h_UirtualAlloc
[ebpth Process32Hext and virtualAllocEx], eax
[ebp+explorer.exe], offset F424

edi, 1006h

Figure 16: Allocation of Memory in Virtual Address Space

After getting the handle and creating an object for the process explorer.exe, it writes its

malicious code in the virtual memory space of explorer.exe. ZWriteVirtualMemory

function writes the memory and VirtualAlloc function allocates it and returns a handle to

the memory allocated. From this point debugger will have no control over the code since

the process will run in an external module which is not part of this process.

41

It is important to note, why this activity was not registered while black-boxing. The
reason is: the worm allocated its memory to an already running legitimate process. Most
scanners only hook API calls of new processes created while executing a threat and not
the processes already running. The worm writer has intentionally injected its code into a

legitimate process to avoid detection.

5.4.6 Analyzing injected code

There is a way to analyze injected code too. We have the handle to the Allocated space in

the Virtual memory, and we also know the process name to which the code is injected.

1) We can open another instance of OllyDbg and do File-> Attach. This would give us the
list of current processes running. Choose explorer.exe from the list. In the mean time,
we can let the earlier instance of OllyDbg with Peacomm run and let it execute the
process explorer.exe. In the OllyDbg instance, where explorer.exe is running, we can
put a breakpoint at the starting address of the virtual address of the allocated space.
Thus we get the starting point of the injected code in the virtual memory so we can
analyze it further.

2) Another method used, was to capture memory ranges of all the threads and processes
running for explorer.exe. This was done by a custom built tool. This tool accepts a
running process name as its input. It then gathers information of all the processes
calling that running process along with the information of its memory ranges and
access rights assigned to those ranges. When explorer.exe was given as an input to the
tool, we had the list of processes accessing it. From the list it was easy to pick up the
memory ranges which were being accessed by Peacomm. We dumped those memory

ranges using a memory dump tool.

42

5.4.7 Other tricks used

1)

2)

Some variants of Peacomm terminated their process quickly so that the memory
dump of it could not be taken. There are tools available which can run a threat in a
recursive loop, so that they can be in the memory and their dump can be taken easily.
Most worms connect to some shady URL to download their payload. A DNS hooking
tool was used on port 80 to divert its request to 127.0.0.1 which is the local host, to
capture its request and to run it in a safe environment.

Some variants also use IP addresses instead of URLs, to bypass the DNS server.
Since DNS only hooks all URL requests made and returns its IP address. In this case
Microsoft loop-back adapter was installed. It creates a virtual network adaptor and

loops any calls to the IP addresses to local host [21].

43

6 Detection and Attacking strategies
6.1 Index poisoning attack
This form of attack is an attack on the P2P system rather than the bot itself. It works in

the following way:

e We generate hash of the keyword to be searched (known keyword used by bots).
e Then generate a random identifier not related to any file.
e Publish <key, value> pair where key = hash value of keyword, value = random id.

e Now, when there is a request which corresponds to that keyword, it is routed to
the random id which does not exist and hence malicious content is not

downloaded by the host sending the query.

e Second way to do it is to choose a duplicate id; fill its <key, value> pairs with
fake entries; where values correspond to duplicate ids. Doing this, malicious ids

can be re-routed to legitimate ids.

A demo implementation of Index poisoning attack has been demonstrated below. The
implementation contained 32 peers, each having data structure as shown on Fig:5. The
values of node 13 are as seen in Fig:17. Key=9 has a value 234 and nearest node to 9 is

node 1 which is stored in k-bucket.

44

BN C\Windows\system32\cmd.exe - Jr Kad |E|E|i-J

4_Print
L. Exit
2
3o ~aE-af o o ~IaF-Jnf oo ~ef-aF-Jnf oo et TeF-Jnf—Jof o ~IeF-Jaf- oo -eF-Tef-Juf—Jof-ef-eE-ef-E-E-
Inputs: Hodeld. Modeld to store. Key Value:i, 13.9. 234
3030 - 30330 3o o - JmE 30 30 3o - o - JmE 30 30 oo - Jo 3o o - o230 3o oo JmE oo o
STORING IN K-BUCKET of Mode:13
Storing Key Ualue Pair
id=
value

Choose an operation:
1.Add Mode

2.S8tore Ualue

3 .Find Hey

4. Print

L.Exit

2

3mE—30E- 3030 30 3030 3o -3of 3030 -3of-3oE-3of 3o 3o -30E-oE 33030 030 Iof- 0o 3o oo E-

Inputs: Hegquestingld,Key:8,
3o ~3aE- oI ~Jof e ~oE-mf-Jof 3ok e - JoE-Jmf-Jof-Jof 3ot o~ Jof e ~oE-Jof-JmE-Jof e -eE-Jof-Jui-Jof e eE- - -

Walue ofthe Key found

Mode 8 zends find

Mode 8 =zends find_key to Mode: 13
Jalue of the key 9 is 234

Choose an operation:

Figure 17: Snapshot of Index Poisoning Attackl
Next step is to generate a duplicate node 13, and inserting fake <key,values> pairs in it.
Performing search routing through this node will generate different result as before i.e.

567 in Fig:18 instead of 234 in Fig:17.

The implementation is done in JR programming language which is an extension of

JAVA, specially meant for distributed computing and simulations.

45

BN C\Windows\system32\cmd.exe - jr Kad | [e
. .

EaEaEatateokotaototetotototetotatotototototetotatotekatatotokatakaked
Inputs: Modeld.Associating Node:13,. 2
EaEalatatatatetatatatatadstatatatatatetalatetatstakakatsbatatstatatal
STORING IN K—BUCKET of Mode:2
Mode:2 sends back response
zsends find_node RPC toMNode:18
IN E—BUCKET of Mode:18
sends back response
zsends find_node RPC toMNode:2
zends find_node RPC toMNode:@
Choosze an operation:

Inputs: Hodeld, Hodeld to store. Key Ualue:2, 13.9. 567
-E-3nf 3o 3o Jof 30 -3ef 3o - -JoE-Jof o -3eE-JoE- o -E-Jof o -uf e -Jof -t -Jef- 3o o -eE-Jof 3o 3o oo

STORIMG IN K—-BUCKET of Mode:13
Storing Key Ualue Pair
id=13

id=1
ey value

Inputs: Requestingld.Key:8. 9%
aEakeiaietaokstetetatatokstatetatotokatetetsdatokatstotskatetststatad
Ualue ofthe Key found

M zends find_key to Node: 9
Mode B sends find_key to Node: 13
Ualue of the key ? is 567

Chooze an operation:

1 .Add Node

Figure 18: Snapshot of Index Poisoning Attack2

6.2 Sybil attack

In this attack, an attacker can create large number of counterfeit nodes and can divert the
queries of the legitimate nodes to the nodes they want. This method can be taken
advantage of by us to disrupt the botnet activity. But doing this may also affect other
legitimate traffic and queries. Clever bot masters may use Certificates to authenticate a

peer which wants to enter the network. This will prevent other nodes to enter the system.

46

7 Conclusion:

Through this paper, we have explained the working of a P2P botnet. Although
architecturally it is different than the conventional command and control botnets, their
purposes are similar i.e. to share information amongst nodes, to download secondary
injections and use individual nodes as attack vectors. P2P botnets are difficult to shut-
down because they do not have a single point of failure like the C&C botnets.

Our study on one such P2P bot binary, Trojan.Peacomm, demonstrated how such bots
spread infection, self-replicate, download rest of their body and maintain stealth to avoid
detection. The reverse engineering techniques, black boxing and white boxing analysis
used in a systematic manner laid a framework for analyzing future bot binaries and
malwares.

We have presented strategies to attack the network in order to shut down the malicious
activities of the bots. We also suggested detection strategies naming Host based detection
and Network based detection so that its infection can be mitigated.

As part of future work of the analysis presented in this paper, we may consider detecting
botnet activity on a host, find the list of peers it connects to before it joins the P2P
network and automate an attack on the Kademlia network using that peer list. For this we
would simulate a network on the OverSim simulator [10] which can simulate thousands
of Kademlia nodes. Using the simulator it is possible to define malicious behavior and

the probability of malicious nodes on the network.

47

8 References

[1] David Dagon, Julian Grizzard, Vikram Sharma, Chris Nunnery, Brent Kang, “Peer-to-
Peer Botnets: Overview and Case Study”,
http://www.usenix.org/events/hotbots07/tech/full _papers/grizzard/grizzard.pdf

[2] Ping Wang, sherri Sparks, Cliff C. Zou, “An Advanced Hybrid Peer-to-Peer Botnet”,
http://www.usenix.org/events/hotbots07/tech/full papers/wang/wang.pdf

[3] Elia Florio, Mircea Ciubotariu, Symantec Security Response, “Peerbot: Catch me if
you can”, http://www.symantec.com/avcenter/reference/peerbot.catch.me.if.you.can.pdf

[4] André Fucs, Augusto Paes de Barros, Victor Pereira, “New botnets trends and
threats”, http://www.blackhat.com/presentations/bh-europe-07/Fucs-Paes-de-Barros-
Pereira/Whitepaper/bh-eu-07-barros-WP.pdf

[5] Anestis Karasaridis, Brian Rexroad, David Hoeflin, “Wide-scale Botnet Detection
and Characterization”,
http://www.usenix.org/events/hotbotsO07/tech/full papers/karasaridis/karasaridis.pdf

[6] http://en.wikipedia.org/wiki/Botnets

[7] http://images.ientrymail.com/securitypronews/botnet_lifecycle.jpg

[8] http://en.wikipedia.org/wiki/Peer-to-peer

[9] http://en.wikipedia.org/wiki/Overlay_network

[10] OverSim: The Overlay Simulation Framework
http://www.oversim.org/

[11] Petar Maymounkov, David Mazi eres, Kademlia: A Peer-to-peer Information
System Based on the XOR Metric”
http://www.cs.rice.edu/Conferences/IPTPS02/109.pdf\

[12] Portable Executable, (2008). Retrieved Oct/20,2008, from
http://en.wikipedia.org/wiki/Portable Executable

[13] Pietrek Matt “Peering Inside the PE: A Tour of the Win32 Portable Executable File
Format”
http://msdn.microsoft.com/en-us/library/ms809762.aspx

[14] OllyDbg (2000). Retrieved Oct/09, 2008, from
http://www.ollydbg.de

48

[15] Interactive Disassembler, (2008). Retrieved Oct/21,2008, from
http://en.wikipedia.org/wiki/Interactive_Disassembler

[16] GetModuleHandle Function. Retrieved Nov/1,2008, from
http://msdn.microsoft.com/en-us/library/ms683199.aspx

[17] CreateToolhelp32Snapshot Function. Retrieved Nov/5,2008, from
http://msdn.microsoft.com/en-us/library/ms682489(VS.85).aspx

[18] http://msdn.microsoft.com/en-us/library/ms684834(VS.85).aspx

[19] http://msdn.microsoft.com/en-us/library/ms684836(VS.85).aspx

[20] http://msdn.microsoft.com/en-us/library/ms684320.aspx

[21] Install Microsoft Loopback Adapter. Retrieved Nov/5,2008, from
http://technet.microsoft.com/en-us/library/cc708322.aspx

[22] Executable compression
http://en.wikipedia.org/wiki/Executable compression

[23] TrendMicro™ HijackThis™ Overview
http://www.trendsecure.com/portal/en-US/tools/security tools/hijackthis

49

