

CRYPTANALYSIS OF THE SIGABA CIPHER

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Heather Ellie Kwong

December 2008

© 2008

Heather Ellie Kwong

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Thesis Titled

CRYPTANALYSIS OF THE SIGABA CIPHER

by

Heather Ellie Kwong

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp, Department of Computer Science Date

Dr. Sami Khuri, Department of Computer Science Date

Dr. Robert Chun, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

Associate Dean Date

ABSTRACT

CRYPTANALYSIS OF THE SIGABA CIPHER

By Heather Ellie Kwong

SIGABA is a rotor-based cipher machine that is famous for its service during

World War II by the United States. Compared to other ciphers used in World War II,

such as the German Enigma or the Japanese Purple, SIGABA’s security was

undefeatable, as it was the only cipher to withstand all cryptanalytic attacks in the course

of its usage.

This thesis covers the history of SIGABA’s development, how SIGABA works,

and a cryptanalytic attack on SIGABA. The attack covered in this thesis has never been

implemented before and is divided into a primary phase and secondary phase. The attack

recovers SIGABA’s keyspace by targeting SIGABA’s rotor banks separately, while

demonstrating SIGABA’s strength in design that separates it from other ciphers.

 v

ACKNOWLEDGEMENTS

To my parents who taught me the value of an education and raised me to

be the person I am today.

 vi

TABLE OF CONTENTS

1. Introduction ...1

1.1. Introduction to Computer Security ..1

1.2. Introduction to Cryptography Terminology ...1

1.3. Project Overview ..2

2. Rotor Machines ...3

2.1. Simple Substitutions ..3

2.1.1. Simple Substitution Definition ...3

2.1.2. The Cryptanalysis of Simple Substitutions ...3

2.2. Poly-Alphabetic Substitutions ..6

2.3. Introduction to Rotor-Based Machines ..8

3. SIGABA the Cipher ..11

3.1. A Historical Background of SIGABA ...11

3.2. SIGABA’s Developmental Phases ..11

3.2.1. Pre-Developmental Phase ...11

3.2.2. M-134 ..12

3.2.3. M-134-C ..12

3.2.4. ECM Mark II ...13

3.2.5. SIGABA ..13

3.3. A Technical Description of SIGABA ..14

3.3.1. Overview ...14

3.3.2. Cipher and Control Rotors ..15

3.3.3. Index Rotors ..17

3.4. Stepping SIGABA ...18

3.5. SIGABA’s Keyspace ...20

4. The Cryptanalysis of SIGABA ...23

4.1. Overview ..23

 vii

4.2. Primary Phase ..26

4.2.1. Review ..26

4.2.2. Keyspace for Primary Phase ...26

4.2.3. Stepping Through the Primary Phase ...27

4.2.4. Primary Phase Analysis ..30

4.3. Secondary Phase ..32

4.3.1. Description ..32

4.3.2. Keyspace for Secondary Phase ...33

5. Implementation ...35

5.1. Overview ..35

5.2. Pseudocode ..36

5.2.1. SigabaCryptanalysis ..36

5.2.2. distinguishablePermutations ...39

5.2.3. distinguishableSettings ...39

5.3. Executable ..40

 5.3.1. Description ..40

 5.3.2. Example Usage ...41

5.4. Time Analysis ..43

6. Future Work ..46

6.1. Secondary Phase Improvements ..46

 6.1.1. Description ..46

 6.1.2. Inner Workings of Control and Index Rotors ...46

 6.1.3. Secondary Phase Algorithm ..48

6.2. CrypTool ..51

 6.2.1. Introduction ...51

 6.2.2. Usage...52

7. Conclusion ..54

References ..56

 viii

Distinguishable Permutations ... in pocket

Distinguishable Settings.. in pocket

Distinct Permutations .. in pocket

 ix

LIST OF TABLES

Table 1 – An example key for a simple substitution ...3

Table 2 – Digrams for the English language per 2,000 letters ...5

Table 3 – Common trigrams for the English language ..5

Table 4 – Message indicator example for secret messages ..21

Table 5 – Message indicator for confidential and restricted messages21

Table 6 – 32 equivalent permutations ..25

Table 7 – Random case ..31

Table 8 – Causal case ...32

Table 9 – Example cipher setting to primary phase ...42

Table 10 – Time analysis to permute through all possible settings44

Table 11 – Time analysis for primary phase ..45

Table 12 – Index to cipher example ...48

Table 13 – Index input pairs ..49

Table 14 – Stepping ratios ...50

 x

LIST OF FIGURES

Figure 1 – A typical distribution of English letters..4

Figure 2 – An Alberti cipher ..6

Figure 3 – Rotors for an odometer setup ...8

Figure 4 – A rotor ..9

Figure 5 – A rotor for the English Alphabet ..10

Figure 6 – A bank of rotors ..10

Figure 7 – SIGABA the cipher ..11

Figure 8 – SIGABA ...14

Figure 9 – SIGABA’s 15-rotor layout ...15

Figure 10 – Stepping in forward orientation ..16

Figure 11 – Stepping in reverse orientation ...17

Figure 12 – SIGABA’s rotors ..17

Figure 13 – Control rotors C0 through C4 ...18

Figure 14 – First round of primary phase ..28

Figure 15 – Second round of primary phase ...29

Figure 16 – Third round of primary phase ...30

Figure 17 – GUI for SIGABA’s cryptanalysis ...41

Figure 18 – Example GUI use ...42

Figure 19 – Control to index rotor mapping ..47

Figure 20 – CrypTool application ..53

Figure 21 – Enigma cipher application ..53

 1

1. Introduction

1.1. Introduction to Computer Security

As technology continues to thrive and grow, so does computer hacking. Hackers

are drawn to expose security gaps for a variety of reasons: greed, ill intent, a hobby, or

gaining the bragging rights to have defeated a system. Though this can be seen as

unfortunate, there is a silver lining. In order to avoid computer security breaches,

stronger code is developed with the following security goals and protocol in mind:

confidentiality, integrity, and authentication.

An important security goal is confidentiality, which prevents any unauthorized

reading of information so that only those who are authorized can access the data.

Integrity, the second security goal, prevents any unauthorized writing of information to

protect the data’s validity. Authentication protocols are used to confirm a person’s

identity to protect a computer system or resource [8]. Technology would not be where it

is today without these three cornerstones, and these three cornerstones would not be

possible without cryptography.

1.2. Introduction to Cryptography Terminology

Cryptography is the study and practice of encryption, the hiding of information.

The root of the word is derived from the Greek words krypto and grafo, which mean

“hidden” and “to write,” respectively. Today, the word cryptography holds a double

meaning that pertains to the study of mathematics and computer science [12].

 2

Encryption involves converting original data, called plaintext, to something

incomprehensible, called ciphertext. The reverse process of encryption is decryption, the

conversion of ciphertext back to its original plaintext.

A cipher is a machine that performs both encryption and decryption. Each cipher

contains a specific algorithm for both encryption and decryption based on a secret key.

Without the same key that was used to encrypt the plaintext in symmetric ciphers, the

ciphertext cannot decrypt to its original state [9].

The analysis and breaking of ciphers is called cryptanalysis. The term cryptology

refers to both cryptography and cryptanalysis [9].

1.3. Project Overview

Cipher systems can be divided into two groups: classic and modern. This thesis

will focus on the classic cipher SIGABA, which is a symmetric cipher. We will discuss

SIGABA’s history, its internal hardware design, and a modern cryptanalytic attack on

SIGABA that is developed in SIGABA: Cryptanalysis of the Full Keyspace [10], which I

implement for the first time. We will refer to this paper as Cryptologia from this point

on.

 3

2. Rotor Machines

2.1. Simple Substitutions

2.1.1. Simple Substitution Definition

A simple substitution is a fixed one-to-one mapping of a plaintext letter to one

ciphertext letter. Consider Table 1, which contains a key for a simple substitution cipher.

Table 1. An example key for a simple substitution.

Plaintext A B C D E F G H U J K L M

Ciphertext i r d e j u a n f c q t o

Plaintext N O P Q R S T U V W X Y Z

Ciphertext h m w v g k b x s y l z p

Using this key, the plaintext letter a maps to i, t to b, and so on. Therefore, the

plaintext message

AttackAtDawn

will always encrypt to

ibbidqibeiyh.

2.1.2. The Cryptanalysis of Simple Substitutions

Simple substitutions are inherently weak ciphers, because their keys can easily be

deduced by studying the frequency of letters for any intercepted ciphertext. This study of

 4

frequencies is known as frequency analysis. Figure 1, reprinted from Wikipedia,

illustrates a frequency analysis for the English language. Notice that the letter e is most

common and z is the least common, which explains why contestants must pay extra for an

e in Wheel of Fortune.

Figure 1. A typical distribution of English letters.

Frequency analysis can also be applied to groups of letters, known as digrams

(groups of two letters) and trigraphs (groups of three letters). Table 2 lists the most

common digrams in the English language and the expected number of occurrences for

each given 2,000 letters [13]. The most common trigrams of the English language are

listed in Table 3 [8].

 5

Table 2. Digrams for the English language per 2,000 letters.

TH 50

ER 40

ON 39

AN 38

RE 36

HE 33

IN 31

ED 30

ND 30

HA 26

AT 25

EN 25

ES 25

OF 25

OR 25

NT 24

EA 22

TI 22

TO 22

IT 20

ST 20

IO 18

LE 18

IS 17

OU 17

AR 16

AS 16

DE 16

RT 16

VE 16

Table 3. Common trigams for the English language.

the for res

and tio ter

tha has con

hat edt ing

ent tis men

ion ers tho

Consequently, recovering the key to a simple substitution is not an impossible or

even a difficult task.

 6

2.2. Poly-Alphabetic Substitutions

A poly-alphabetic substitution is similar to a simple substitution only multiple

substitution alphabets are used. The first cipher to use a poly-alphabetic substitution was

invented by Leon Battista Alberti (1404 – 1472). Alberti’s cipher consisted of two cipher

wheels, each with the alphabet printed along the perimeter. The two wheels were

positioned so that one was inside the other [4]. Figure 2 illustrates an Alberti cipher

reprinted from Wikipedia [12].

Figure 2. An Alberti cipher.

The inner wheel was allowed to rotate per input so that multiple alignments were

created between the two wheels, and with each new alignment, a new simple substitution

was generated [4].

A more famous poly-alphabetic cipher is the aVigenère cipher. The aVigenère

cipher is a classic poly-alphabetic substitution cipher, whereas the World War II ciphers

 7

are more recent poly-alphabetic substitution ciphers. In the aVigenère cipher, the key

used to encrypt and decrypt messages is of the form K = (k0, k1,…, kn-1), where each ki ∈

{0, 1,…,25} and represents a particular shift in the alphabet. Equation (1) encrypts and

Equation (2) decrypts a letter using the aVigenère cipher [4].

ci = pi + ki (mod n) (mod 26) (1)

pi = ci – ki (mod n) (mod 26) (2)

where

ci is the ith ciphertext letter

pi is the ith plaintext letter

Another example of a poly-alphabetic substitution is a cipher with multiple

wheels that have an odometer effect. The most famous cipher known to follow an

odometer stepping pattern is the Enigma cipher that was used by the Germans in World

War II [4]. By using an odometer stepping pattern, the rightmost wheel, which we will

call F (for fast), advances one step for every input. The wheel directly to the left, M (for

medium), will advance one step for every complete rotation F makes. Likewise, the

leftmost wheel, S (for slow), will advance one step once M makes a complete rotation.

The order in which the wheels F, S, and M are placed is illustrated in Figure 3.

 8

Figure 3. Wheels for an odometer setup.

In this example, there are only three wheels. However, this stepping pattern is not

limited to three wheels and may be repeated for as many additional wheels that follow to

the left. Although ciphers stepping to the pattern of an odometer are significantly

stronger compared to a simple substitution cipher, it is still weak because the steps are

predictable. This ultimately led to Enigma’s downfall [4]. If Enigma’s designers had

designated either the leftmost or middle wheel to be the fast wheel, replicating an almost

odometer-like pattern, Enigma’s steps would have been irregular. Consequently, it would

have been much more difficult to break Enigma [4]. This almost odometer pattern is

used in SIGABA [4].

2.3. Introduction to Rotor-Based Machines

SIGABA is a rotor-based cipher, a type of electro-mechanical machine [4].

Before World War II, developing rotor-based machines received little attention within the

United States. However, interest in cipher machines increased drastically during World

War II when the need to develop secure methods of communication involving relatively

large amounts of data became a priority. While building secure ciphers was considered

important, scientists devoted far more time and research to breaking ciphers belonging to

the Axis Powers, many of which were rotor cipher machines. The popularity of rotor-

based ciphers lasted into the 1950s.

 9

As indicated by its name, the main components of a rotor-based cipher are its

rotors. A rotor is essentially a wired wheel. Each rotor is typically the shape and size of

a hockey puck. Along the perimeter of each rotor are a variable amount of evenly spaced

electrical contacts. This small array of electrical contacts lies on either side of the rotor

and functions in a simple substitution of letters. Figure 4, reprinted from Wikipedia [16],

illustrates what a typical rotor looks like.

Figure 4. A rotor.

Rotors can represent letters or numbers. If the rotor represents the English

alphabet, the rotor will have 26 contacts — one contact for each letter of the alphabet.

When there are 26 contacts, there are 26 different electrical signals, where each signal is

mapped to a specific contact on the rotor. When a signal is passed from one face to the

opposite face of the rotor, it is permuted into a different character. In Figure 5, reprinted

from Hellman [3], an input letter of R is permuted to output letter B. A bank of rotors is

a set of rotors that are connected via the electrical contacts that are shown in Figure 6,

reprinted from Hellman [3].

 10

Figure 5. A rotor for the English Alphabet.

Figure 6. A bank of rotors.

When rotors are connected in such a manner, an electrical input entering one rotor

continues to be permuted by all subsequent rotors. However, without applying any

stepping motion to any of the rotors, a bank of four non-stepping rotors is equivalent to a

simple substitution cipher, making it just as weak. In order to build a strong and secure

cipher, it is essential to change the permutation for at least one of the rotors per electrical

input. If rotors are given the ability to step, the number of possible permutations and

level of security generated from the bank increases dramatically. Recall that it is best for

a bank of rotors to have an unpredictable stepping pattern.

 11

3. SIGABA the Cipher

3.1. A Historical Background of SIGABA

SIGABA, shown in Figure 7, reprinted from the National Security Agency [7], is

a type of rotor-based cipher machine that was used by the United States during World

War II. The development of this cipher is credited to the director of the US Army’s

Signals Intelligence Service, William Friedman, and his associate, Frank Rowlett. What

separated SIGABA from all other ciphers used in World War II was its unique design

that made it able to withstand all crypt-analytical attacks in the course of its usage.

Figure 7. SIGABA the cipher.

 12

3.2. SIGABA’s Developmental Phases

3.2.1. Pre-development phase

Friedman’s first version of SIGABA was designed with the intent to fix the

inherit weakness of single stepping rotor machines. A single stepping machine consisted

of only one rotor so that with every input, the rotor advanced one step only to change the

permutation slightly. Friedman’s solution incorporated randomized stepping motions for

the rotors that were controlled by a paper tape. This paper tape is similar to the one

found in a teleprinter, which is now an obsolete electro-mechanical typewriter used to

communicate typed messages via simple electrical connections. Electric signals were

established when electricity was able to pass through the pattern of holes punched

throughout the tape that determined the stepping motion for the rotors. For every rotor

that advances, the tape will follow by advancing a step as well [17].

3.2.2. M-134

The M-134 is the first of Friedman’s design that went into a limited production.

M-134’s key size depended on the pattern of the holes punched throughout the paper tape

and the plugboard’s setting that determined which holes were connected to which rotors.

One significant disadvantage to the M-134 was the fragility of the paper tapes that often

broke under harsh field conditions [17].

3.2.3. M-134-C

In response to M-134’s weakness caused by the paper tape, Friedman and Rowlett

replaced the tape with another set of rotors. However, because there was a lack of funds

to develop an entirely new cipher, Friedman and Rowlett created an additional external

 13

device to work concurrently with M-134. Friedman and Rowlett gave this new external

device the name SIGGOO or M-229, which was a box that contained three rotors.

The SIGGOO or M-229 took five active inputs for every letter typed into the

cipher and had a maximum of five active outputs that determined stepping motion of the

rotors in M-134. The combination of M-134 and SIGGOO or M-229 is known as M-134-

C [17].

3.2.4. ECM Mark II

In 1937, Navy Commander Laurance Safford, Friedman’s counterpart in the

Navy’s Office of Naval Intelligence, saw great potential in the M-134-C. He and

Commander Seiler made further improvements to the M-134-C that resulted in an easier

method to build and transport the cipher. Their new generation of the machine was given

a new name as well – the Electric Code Machine (ECM) Mark II, also known as CSP-888

or 889 [17].

A separate version of ECM Mark II, known as POTUS-PRIME, was developed

specifically to provide communication between the President of the United States and the

Prime Minister of the United Kingdom. All rotors were set by hand, in which the settings

were specified in a codebook known as Message Indicators [1].

3.2.5. SIGABA

In the early 1940s, the Army learned of the Navy’s usage of ECM Mark II. In

1941, the Army and the Navy formed a joint cryptographic system based on ECM Mark

II, which became famously known as SIGABA within the Army.

 14

Figure 8, reprinted from the USPTO Databases [11], is a diagram of SIGABA

found from the original secret U.S. patent that was issued in 1944. It was not until 2001

that the patent was made available for the public [11].

Figure 8. SIGABA.

3.3. A Technical Description of SIGABA

3.3.1. Overview

SIGABA consists a total of a total of fifteen rotors – three times the amount of the

German Enigma. Out of SIGABA’s 15 rotors, five are cipher rotors, five are control

rotors, and five are index rotors. The cipher rotors are used to permute SIGABA’s inputs

while the control and index rotors are used to control the cipher’s stepping pattern.

 15

Figure 9, reprinted with permission from Chan [2], outlines the general layout of

all 15 rotors. Notice that the order in which the electrical input reaches the rotors is

control, index, and lastly cipher.

Figure 9. SIGABA’s 15-rotor layout.

3.3.2. Cipher and Control Rotors

Both the cipher and control rotors are identical in appearance and function,

making them interchangeable. Therefore, there are a total of 10 rotors available to form

two banks of five rotors, one for each the cipher and control rotor banks. Each of the

rotors is a 26-contact rotor with the alphabet letters A through Z printed on the outer edge

as shown in Figure 4 and Figure 5.

 16

With the exception of the appearance of the letters along the outer edge on both

the cipher and control rotors, the left face is identical to the right face. Because of this

property, all cipher and control rotors can be inserted backwards to operate in the reverse

orientation.

If a rotor is operating in forward orientation, the stepping of the rotor is in an

upward direction. Figure 10, reprinted with permission from Chan [2], illustrates either a

control or cipher rotor advancing two steps in forward orientation. Note that the initial

setting O changes to N with the first step, and changes to M on the second step.

Figure 10. Stepping in forward orientation.

If the same rotor is operating in reverse orientation, the rotors will physically

appear upside down on the machine and step in a downward direction. Notice how in

Figure 11, reprinted with permission from Chan [2], the initial position of O steps to P,

which steps to Q.

 17

Figure 11. Stepping in reverse orientation.

3.3.3. Index Rotors

Index rotors are similar in design to the cipher and control rotors, except index

rotors are 10-contact rotors instead of 26. Each of SIGABA’s index rotors permutes

integers ranging from zero to nine. Index rotors also do not step like the cipher and

control rotors do. Although they may be placed backwards on the machine, setting index

rotors in reverse orientation does not affect the cryptanalysis of SIGABA so this feature

will be ignored. The following picture in Figure 12, reprinted from Maritime Park

Association [5], is of an actual cipher or control rotor and an index rotor. The smaller of

the two is the index rotor.

Figure 12. SIGABA’s rotors.

 18

3.4. Stepping SIGABA

The stepping of the rotors in encryption mode start with the control rotors, which

we will denote as C0, C1, C2, C3, and C4 from left to right. These rotors are illustrated in

Figure 13.

Figure 13. Control rotors C0 through C4.

Rotors C1, C2, and C3 step in an almost odometer-like fashion: C2 steps for every

input, C3 steps once for every complete rotation of C2 (26 steps), and C1 steps once for

every complete rotation of C3 (26 steps). Essentially, C2 is the fast rotor, C3 is the

medium rotor, and C1 is the slow rotor. Rotors C0 and C4, however, do not step and

remain in their initial setting positions.

For every input into SIGABA, C4 receives four concurrent active inputs we

assume to be F, G, H, and I. Based on the control rotors’ permutations, four new letters

are outputted from control rotor C0. Before the output signals are sent to the index rotors,

they are combined by the following logical operations listed under Equation (3).

 I1 = B I4 = F ∨ G ∨ H I7 = P ∨ Q ∨ R ∨ S ∨ T

 I2 = C I5 = I ∨ J ∨ K I8 = U ∨ V ∨ W ∨ X ∨ Y ∨ Z (3)

 I3 = D ∨ E I6 = L ∨ M ∨ N ∨ O I9 = A

 19

where

Ii is the ith input into the index rotors, and i ∈ {0,1,…,9}.

For example, I4 will be active if any of the four outputs from the control rotors

include F, G, or H. Although there is an input I0, it is never an active signal. For this

reason, I0 is disregarded in Equation (3).

 At least one and at most four of the index inputs and outputs will be active. This

means that at least one and at most four of the cipher rotors will step. The cipher rotors

step according to the logical equations listed in Equation (4). Recall that the index rotors

do not step themselves. For example, cipher rotor C4 will step if either O1 or O2 is an

active output from the index rotors.

 C4 = O1 ∨ O2 (4)

C3 = O3 ∨ O4

C2 = O5 ∨ O6

C1 = O7 ∨ O8

C0 = O0 ∨ O9

where

Oi is the ith contact or output of the index rotor, and i ∈ {0,1,…,9}

Cj is the jth cipher rotor, and j ∈ {0,1,2,3,4}

 When SIGABA is set to decryption mode, all but the cipher rotors are set and

 20

function exactly the same as in encryption mode. When SIGABA is in encryption mode,

the electric signals pass through the cipher rotors in the direction from left to right. When

decrypting, the signals are sent in the direction from right to left, which is the equivalent

to using the inverse cipher permutations.

3.5. SIGABA’s Keyspace

The number of possible settings for the cipher, control and index rotors

determines SIGABA’s keyspace. Each choice of setting includes the choice of rotors, the

initial settings, and the orientation of rotors for those that apply. Equation (5) calculates

the maximum possible keyspace for SIGABA.

 (26!)10 (10!)5 ≈ 2884 2110 ≈ 2994 (5)

where

(26!)10 is the total number of permutations for the cipher and control rotors

(10!)5 is the total number of permutations for the index rotors

 However, due to the index rotors’ inability to step, only 10! out of the (10!)5

permutations are distinct. This reduces SIGABA’s keyspace to 2906 (see Equation (6)).

This is still a considerably large number, but thankfully the actual keyspace for SIGABA

is much less due to several restrictions applied to the rotors.

 (26!)10 10! ≈ 2884 222 ≈ 2906 (6)

 Historically, there were only 10 rotors available to form both the control and

cipher rotor banks and 5 rotors available to form index rotor bank. Recall that the cipher

 21

and control rotors can also be inserted in either forward or reverse orientation. Although

each of the cipher and control rotors can be set to any of the 26 possible positions and the

index rotors can be set to any of the 10 positions, they are usually set to known default

settings specified in a Message Indicator.

 Two examples of message indicators are in the Table 4, reprinted from the

USPTO Databases [11], and Table 5, reprinted from the USPTO Databases, for secret,

confidential, and restricted messages. For each of these three types of messages, the

message indicator contains the following information:

- The order of cipher, control and index rotors for each day of the month.

- The orientation of cipher and control rotors, where R indicates reverse.

- 26 to 30 check groups to ensure all rotors are placed and positioned correctly.

Table 4. Message indicator example for secret messages.

Table 5. Message indicator for confidential and restricted messages.

 22

 If the Message Indicator is known, SIGABA’s keyspace is reduced to 248.4 (see

Equation (7)). For the attack implemented in this thesis, we assume the Message

Indicator is unknown.

 10! • 210 • 105 ≈ 248.4. (7)

 23

4. The Cryptanalysis of SIGABA

4.1. Overview

 This attack is divided into two parts: the primary phase and the secondary phase.

For both these phases, we require a certain amount of known plaintext and the

corresponding ciphertext. The primary phase exhausts all possible cipher settings.

Recall that each setting includes the choice of rotors, initial settings, and orientation for

each rotor. Any cipher setting that is consistent to the known plaintext, we deem the

setting causal. All other inconsistent settings are deemed random. For each causal

setting we require a secondary phase.

 The secondary phase exhausts all possible control and index settings. Recall that

the option for rotors to operate in reverse orientation does not apply to index rotors. For

each combination of causal, control, and index setting that is consistent with the known

plaintext, we recover the key.

 Dividing the attack into two phases reduces the work to recover the key by first

eliminating random cipher settings and for causal cases only do we exhaust all possible

control and index rotor settings. For both primary and secondary phases, we make the

following assumptions:

- All three rotor banks are set independently.

- There are only five rotors available to form the set of index rotors.

- There are a total of 10 rotors to form both the cipher and control rotors.

- Only the cipher and control rotors can operate in reverse orientation.

- The inner workings of SIGABA are known.

 24

Taking all the assumptions into consideration, SIGABA’s keyspace is

 10! • 210 • 2610 • 5! • 105 = 2102.3. (8)

where

10! is the number of permutations for choosing the order of cipher and control rotors

 since ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5
10

 • 5! • 5! = 10!

210 is the number of possible orientations for both cipher and control rotors

2610 is the number of possible initial settings for cipher and control rotors

5! is the number of permutations for setting the index rotors

105 is the number of possible initial settings for the index rotors

 However, recall that only 10! out of the total 5! • 105 index settings are distinct

since index rotors do not step. This reduces Equation (8) to

 10! • 210 • 2610 • 10! = 2100.6. (9)

 Further deductions to the keyspace can be made due to the fact that the outputs of

the index rotors are ORed together. Recall from Equation (4) that the index outputs are

combined by the following logical equations.

C4 = O1 ∨ O2

C3 = O3 ∨ O4

C2 = O5 ∨ O6

 25

C1 = O7 ∨ O8

C0 = O0 ∨ O9

Based on these five equations, each permutation has 32 equivalent permutations.

Take for example the following permutation of (5, 4, 7, 9, 3, 8, 1, 0, 2, 6). This means an

input of 0 is be mapped to an output of 5, an input of 2 is mapped to 4, and so on. Now,

let us generate the 32 equivalent permutations. From Equation (4), cipher rotor C4 will

step if either output O1 or O2 is active. If C4 steps using the above index permutation

example, C4 will also step if the index permutation is (5, 4, 7, 9, 3, 8, 2, 0, 1, 6). Table 6

consists of all 32 equivalent permutations for the above example.

Table 6. 32 equivalent permutations.

5,4,7,9,3,8,1,0,2,6 5,4,8,9,3,7,1,0,2,6

5,3,7,9,4,8,1,0,2,6 5,4,8,9,3,7,2,0,1,6

5,4,7,9,3,8,2,0,1,6 5,3,8,9,4,7,1,0,2,6

5,3,7,9,4,8,2,0,1,6 5,3,8,9,4,7,2,0,1,6

6,4,7,9,3,8,2,0,1,5 6,4,8,9,3,7,1,0,2,5

6,4,7,9,3,8,1,0,2,5 6,4,8,9,3,7,2,0,1,5

6,3,7,9,4,8,1,0,2,5 6,3,8,9,4,7,1,0,2,5

6,3,7,9,4,8,2,0,1,5 6,3,8,9,4,7,2,0,1,5

5,4,7,0,3,8,1,9,2,6 5,4,8,0,3,7,1,9,2,6

5,4,7,0,3,8,2,9,1,6 5,4,8,0,3,7,2,9,1,6

5,3,7,0,4,8,1,9,2,6 5,3,8,0,4,7,1,9,2,6

5,3,7,0,4,8,2,9,1,6 5,3,8,0,4,7,2,9,1,6

6,4,7,0,3,8,1,9,2,5 6,4,8,0,3,7,1,9,2,5

6,4,7,0,3,8,2,9,1,5 6,4,8,0,3,7,2,9,1,5

6,3,7,0,4,8,1,9,2,5 6,3,8,0,4,7,1,9,2,5

6,3,7,0,4,8,2,9,1,5 6,3,8,0,4,7,2,9,1,5

Therefore, the number of actual distinguishable index permutations is 216.8 (see

Equation (10)). SIGABA’s resulting total keyspace is reduced to 295.6 (See Equation

(11)).

 10!/32 = 113,400 ≈ 216.8 (10)

 26

 10! • 210 • 2610 • 216.8 = 295.6 (11)

4.2. Primary Phase

4.2.1. Review

The purpose of the primary phase is to eliminate all random settings and to keep

only the causal settings. Recall that the primary phase exhausts all possible cipher

settings, which includes the choice of the rotors, orientations, and initial settings. Only

the settings that are consistent to the known plaintext are causal.

4.2.2. Keyspace for Primary Phase

The number of possible cipher settings determines the keyspace for the primary

phase. Each setting includes the following factors:

- The choice of five rotors from 10 available rotors.

- The option for each cipher rotors to operate in forward or reverse orientation.

- A total of 26 possible initial positions for each cipher rotor.

Taking all these factors into account, there are 243.4 possible cipher settings for the

primary phase (see Equation (12)).

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5
10

 • 5!• 25 • 265 = 243.4 (12)

 27

4.2.3. Stepping Through the Primary Phase

 Recall that for each letter typed into the cipher, a range of one to four cipher

rotors can step. Suppose we have chosen our choice of cipher rotors, and the orientation

and initial setting for each rotor has been set so that the first known plaintext letter

encrypts to the first ciphertext letter. Before we determine if the second known plaintext

letter encrypts to the second ciphertext letter, we simulate all possible steps the cipher

rotors can take from the initial setting. The total number of possible steps is 30 since

30
4
5

3
5

2
5

1
5

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
.

 Each of these 30 new steps will give us a new cipher setting or permutation that

we will use to encrypt the second known plaintext. Any of the new 30 settings that are

consistent with the second pair of plaintext and ciphertext letters are kept, while the rest

that are inconsistent are discarded. We will make each consistent setting the current

cipher setting and generate an additional 30 steps each setting can take. Again, we keep

each of the new 30 settings that are consistent with the third pair of plaintext and

ciphertext letters and discard the rest. This process is repeated until all pairs of plaintext

and ciphertext letters are tested.

 Once all pairs of plaintext and ciphertext letters have been tested, we keep all

initial cipher settings that have generated the cipher setting that is consistent with the last

pair of plaintext and ciphertext letters. Recall that these cipher settings are what we call

causal. If it is the case that the last pair of plaintext and ciphertext has not been reached

and none of the new 30 cipher settings are consistent with the current pair of plaintext

and ciphertext, we know the initial setting is random and discard it.

 Note that the primary phase creates a treelike structure where the initial setting is

 28

the root of the tree and each child node of the tree is every subsequent consistent cipher

setting.

 Assuming that the cipher permutations are uniformly random, the number of

matches of plaintext to ciphertext follow a binomial distribution of p = 1/26 and n = 30,

meaning the number of expected matches per step is 30/26 = 1.154. Therefore, the

number of paths is expected to increase at any given step. This branching effect may

seem daunting, but keep in mind that we do not track the intermediate steps and the

primary phase also merges settings of equal value. Consider the following example.

 Suppose we have chosen our cipher settings so that the first plaintext encrypts to

the first ciphertext and the initial position of the cipher rotors is set to AAAAA. Recall

that because the initial setting yields a match between the first plaintext and ciphertext,

the next step involves generating all 30 possible subsequent settings that can occur where

the expected number of matches is 1.154. Taking this factor into account, suppose that

out of the 30 new cipher settings, only two yield consistent results with the second pair of

plaintext and ciphertext. Assume these cipher settings to be BBABA and ABABA as

indicated in Figure 14, reprinted with permission from Chan [2].

Figure 14. First round of primary phase.

 Settings BBABA and ABABA now become the current cipher settings and 30

possible cipher steps are generated for each. As indicated in Figure 15, reprinted with

permission from Chan [2], only one setting from BBABA is consistent and two from

ABABA are consistent with the third pair of plaintext and ciphertext. These three

 29

settings are BBBBA, BBBBA, and ACBBA.

Figure 15. Second round of primary phase.

 Notice that in the third round, two settings, BBBBA, are identical. In such

situations, we can merge these two settings together. By merging these settings, rather

than generating two sets of 30 new settings for each setting of BBBBA, we generate it

only for one.

 Applying the merging method does not cause us to lose accuracy to the primary

phase since the primary phase is only concerned with the initial cipher setting and not the

subsequent settings. The merging method is illustrated in Figure 16, reprinted with

permission from Chan [2].

 30

Figure 16. Third round of primary phase.

 This process of generating 30 possible steps for each causal cipher setting while

merging identical settings is repeated until all known plaintexts are tested or if none of

the 30 subsequent permutations yield any consistent results.

 If for this particular example there are only three known plaintexts available, then

the primary phase will be complete and we apply the secondary phase to this particular

causal setting.

4.2.4. Primary Phase Analysis

 Let us consider the statistics from the primary phase for both causal and random

settings. Given a set of known plaintexts that is indicated in the column labeled “Steps”

in Table 7 and Table 8, a variable amount of “Tests” were conducted for each. Each

“Test” consisted of generating either a random or causal cipher setting for the respective

tables.

 For each causal or random setting, the first known plaintext letter is encrypted and

compared with the first ciphertext letter. If the first plaintext letter encrypts to the first

ciphertext, then all subsequent 30 possible cipher steps are generated, where any of the 30

new settings that is consistent to second plaintext and ciphertext letters are saved. In the

case for all random settings, the probability for it to survive or be consistent with the

 31

plaintext is 1/26. This process is repeated until all plaintext letters have been tested, if

none of the 30 generated settings are consistent with the known plaintext, or if the

maximum number of steps has been reached.

 For each set of tests listed in Table 7, reprinted with permission from Chan [2],

and Table 8, reprinted with permission from Chan [2], we count the number of settings to

survive the primary phase along with the number of merged paths. For Table 7, we

conduct 105 tests for each different case, where the number of random settings expected

to survive out of the total 105 settings is denoted as “non-zero settings,” and the number

of merged paths to have been generated for each of the surviving settings is denoted as

“Avg. per non-zero.”

 For example, we see in Table 7 that in the case of using 50 consecutive known

plaintext letters, 290 out of 100,000 random settings are expected to survive with an

average of 28.4 merged paths to have occurred with a maximum value of 194.

 Looking at the same case in Table 8 for the causal case, we see that using 50

known plaintexts, each causal setting is expected to generate 54.1 consistent branches.

Out of the 100,000 tests generated, the numbers of consistent paths range from one to

404.

Table 7. Random case.

 32

Table 8. Causal case.

 The results of Table 7 are favorable, as we can see that most of the random

settings are eliminated. For this attack, this is all we need to concern ourselves with.

However, for the secondary phase refinement (see 6.1), the results of Table 7 can be a

negative aspect of the primary phase. The secondary phase refinement deals with using

all surviving merged paths, and we can see that as more plaintext letters are used, the

number of total merged paths increases as well, thereby increasing the work.

 We can further reduce the number of random settings by only keeping random

settings that lie above the mean found in Table 8 for each respective causal case.

However, this comes with the risk of eliminating causal settings and thereby decreasing

the success rate of this attack. For this reason, we will not apply this checkpoint for the

cipher settings.

4.3. Secondary Phase

4.3.1. Description

 The secondary phase exhaustively permutes through all possible control and index

settings for every causal cipher setting from the primary phase. If the combination of all

 33

three-rotor settings encrypts all plaintext letters to its respective ciphertext, we have

recovered the key. If none of the exhausted control and index settings gives consistent

results with the causal cipher setting, then the cipher setting has survived the primary

phase by chance and is discarded. This is the simpler method of two possible secondary

phases.

 The alternative option is called the refined the secondary phase (see 6.1).

Although the refinement has not been fully implemented, analysis has been done for

selected issues mentioned in the refinement that prove its correctness [10]. The work I

implement in the secondary phase also adds to the analysis already done in Cryptologia.

4.3.2. Keyspace for Secondary Phase

 Although there are 10 rotors that can be used to construct the set of control rotors,

five have already been designated for the set of cipher rotors. This leaves a total of 5!

Possible rotor choices, each with 26 possible initial positions, and each with the ability to

operate in reverse orientation. With only five index rotors, there are also 5! Possible

index rotor choices, with 10 initial possible initial positions each. Recall that the index

rotors do not operate in reverse orientation. This gives the secondary phase a total of

 5! • 25 • 265 • 5! • 105 ≈ 258.9 (13)

possible settings.

 This workload is considerable since it is applied to each causal cipher setting that

survives the primary phase. However, recall from Equation (10) that there are only 216.8

distinguishable index permutations. This reduces the secondary phase keyspace to

 216.8 • 5! • 25 • 265 ≈ 252.2 (14)

 34

that is applied to each causal setting.

 35

5. Implementation

5.1. Overview

 The cryptanalysis, which includes both the primary phase and the simpler

secondary phase, is developed using Microsoft Visual C++ .Net version 7.1. The

cryptanalysis project is named SigabaCryptanalysis. The keyspace for the primary and

secondary phase under the worst-case scenario is

 243.4 • 253.2 ≈ 296.6. (15)

 That is, if every cipher setting survives the primary phase, the attack will further

permute 253.2 settings to recover control and index settings in the secondary phase.

Because applying the attack to SIGABA’s full keyspace still takes a considerable amount

of time to compute, (see 5.4), I ease the process by allowing the user to specify a range of

cipher and control rotors to target.

 I initially created two side projects in Microsoft Visual C++ version 6.0 to create

data files for SigabaCryptanalysis to use. These two projects are named

distinguishablePermutations and distinguishableSettings.

 The project distinguishablePermutations generates all 10!/32 (113,400)

distinguishable index permutations and writes them into a text file,

distinguishablePermutations.txt (see pocket).

 The project distinguishableSettings determines which index setting (choice of

index rotors and initial settings) generates each of the distinguishable index permutations.

The results are written into distinguishableSettings.txt (see pocket). There are four

 36

columns in distinguishableSettings.txt: the row number the permutation is located in

distinguishablePermutations.txt, the index permutation, the index order, and initial setting

in order from left to right.

 What I have found is that not all index permutations can be generated from the

index rotors. I created a third project called distinctPermutations to exhaust all index

settings and find all distinct permutations. However, the end results showed only

1,811,873 permutations out of the expected 10! are able to be generated from the index

rotors. These permutations are in distinctPermutations.txt (see pocket). This is a factor I

had to take into account while generating all 10!/34 index permutations for

distinguishablePermutations (see 5.2.2). Without taking this fact into consideration, only

56,567 out of the 113,400 distinguishable permutations ended up having an equivalent

index setting.

5.2. Pseudocode

5.2.1. SigabaCryptanalysis

Main()

{

 FOR each possible cipher setting

 Apply the primary phase

 IF primary phase returns value > 0

 Keep current causal cipher setting

 Determine which rotors are available to make the control rotors

 FOR each possible control setting

 FOR each distinguishable index setting

 Apply secondary phase

 IF secondary phase returns value of 1

 37

 Keep the current setting for all ciphers

 ELSE

 Discard current setting and keep permuting

 ELSE cipher setting is random

}

int Primary Phase()

{

 Place cipher rotors in correct order

 Set initial positions for all cipher rotors

 Set orientation of cipher rotors

 Save current cipher rotor offsets before any rotor steps

 IF first plaintext encrypts to first ciphertext

WHILE there are plaintexts to test

 IF there are no saved cipher rotor offset

 Break

 FOR each saved cipher rotor offset

 Set the cipher rotors configuration to saved offsets

 FOR each of 30 possible cipher rotor step

 IF next plaintext encrypts to next ciphertext

 IF offset is not the same as any offset

generated by one of the 30 steps

Save the offset

 Delete all previous offsets

Keep only the new offsets generated from the 30 new steps

that are consistent to known plaintext and ciphertext

ELSE

 Do nothing

 RETURN number of saved offsets

 38

}

int secondaryPhase()

{

 Place cipher rotors from primary phase in correct order

 Set initial positions for all cipher rotors

 Set orientation of cipher rotors

Place control rotors in correct order

 Set initial positions for all control rotors

 Set orientation of control rotors

 Place cipher rotors in correct order

 Set initial positions for all cipher rotors

 Set orientation of cipher rotors

Place cipher rotors in correct order

 Set initial positions for all cipher rotors

 Set orientation of cipher rotors

 Set Boolean variable match to true to indicate whether encrypted plaintext

 encrypts to ciphertext

 WHILE there are plaintexts to test

 Send plaintext through control rotors

 Use control outputs as index rotor inputs

 Step cipher rotors based on index rotor outputs

 Output encrypted plaintext

 IF encrypted plaintext is not equal to ciphertext

 Set match to false

 RETURN match

}

 39

5.2.2. distinguishablePermutations

main()

{

 Create an array to hold all distinct permutations

 Generate all 3,628,800 permutations for “0123456789”

Create a map structure so that each permutation is a key paired with the value

FALSE

FOR each of the 3,628,800 permutations

 IF permutation can be generated by index rotors

 IF map[permutation] is FALSE

 Generate32Equivalents(array, permutation, map)

 Write all contents of array to distinguishablePermutations.txt.

}

void Generate32Equivalents(array, permutation, map)

{

 FOR 32 rounds

 Swap the all indices that are mapped together via Equation (4)

 FOR each of the 32 equivalent permutations

 Flag each permutation in the map to TRUE

}

5.2.3. distinguishableSettings

main()

{

Create a map structure so that each key is a distinct index permutation in

indexPermutation.txt paired with the row index number (map1)

 40

Create a map structure so that each key is an index ranging from 0 to 113,400

paired with the value FALSE (map2)

 FOR each possible index setting

 Place index rotors in correct order

 Set initial positions for all index rotors

 Generate the permutation from the index rotors

IF the permutation is one of the distinct permutations

(map1[permutation])

 Get the index of the permutation in indexPermutations.txt

IF an equivalent permutation has not already been written

(!map2[index])

Write the index setting to distinguishableSettings.txt

}

5.3. Executable

5.3.1. Description

Figure 17 is the GUI developed for SIGABA’s cryptanalytic attack. There are

inputs to specify both cipher and control settings, each of which include the choice and

order of rotors, initial settings, and orientation for each rotor. The left input for each of

these settings indicates the start of the target range and the input on the right indicates the

end of the target range. If the start of the range is specified without an ending value, this

will indicate to target the starting range value only. If neither start nor ending range is

specified for any setting input, this will indicate to the program to exhaust all possible

settings.

 41

Additional inputs include the filenames containing the known plaintext and

ciphertext, and the maximum number of letters of the known plaintext to test.

Figure 17. GUI for SIGABA’s cryptanalysis.

5.3.2. Example Usage

Consider the following example shown in Figure 18 in which we specify a

targeted range for SIGABA’s cipher rotors.

 42

Figure 18. Example GUI use.

Based on these input values in Figure 18, the primary phase will be applied for all

nine cipher settings specified in Table 9.

Table 9. Example cipher settings to primary phase.

Call to Primary Cipher Order Cipher Init Cipher Orient
1 01234 AAAAA 00010
2 01234 AAAAB 00010
3 01234 AAAAC 00010
4 01235 AAAAA 00010
5 01235 AAAAB 00010
6 01235 AAAAC 00010
7 01236 AAAAA 00010
8 01236 AAAAB 00010
9 01236 AAAAC 00010

 43

5.4. Time Analysis

 Table 10 and Table 11 lists specific tasks performed in this attack along with the

amount of time it takes to compute.

 Table 10 shows the amount of time it takes to permute through all possible rotor

settings in this attack, and does not include any function calls to the primary or secondary

phase, which are separately indicated in Table 11. Recall that permuting through the

cipher settings are nested within each other (see 5.2), similar to the following

pseudocode:

FOR all possible cipher order settings

 FOR all possible initial cipher settings

 FOR all possible cipher orientations

 Likewise, permuting through all control and index rotors for the secondary phase

follows the structure of the following pseudocode:

FOR all possible control order settings

 FOR all possible initial control settings

 FOR all possible control orientations

 FOR all possible distinct index permutations

 44

Table 10. Time analysis to permute through all possible settings.

Rotor Setting to Permute Total Iterations Time (milliseconds)

Cipher Order 30,240 0.708

Initial Cipher Setting 265 6017.025

Cipher Orientations 32 0.0

Control Order 5! 0.099

Initial Control Setting 265 6115.415

Control Orientations 32 0.0

Index Permutations 113,400 0.0

 The results of Table 10 indicate that the amount of time it takes to compute all

possible cipher settings in the primary phase is about

0.708 + 30,240 • (6,017.025 + 265 • 0.0) ≈ 250,939,057.786 ms

= 250,939.058 sec

= 4182.318 min

= 69.705 hours.

 The amount of time to compute all control and index settings in the secondary

phase for each surviving cipher setting is about

0.099 + 5! • (6115.415 + 265 • (0.0 + 32 • 0.0))

≈ 9220003.939 ms

= 9220.004 sec

= 153.667 min

 45

= 2.561 hours.

 Table 11 shows the different times it takes to calculate the primary phase for the

same set of plaintext given different numbers of plaintext letters to test (“Max Value”

column).

Table 11. Time analysis for primary phase.

Max Value 5 10 15 20 25

Time (ms) 1.623 2.925 3.801 5.418 6.586

Max Value 50 75 100 125 150

Time (ms) 28.356 59.805 103.571 142.282 171.788

 46

6. Future Work

6.1. Secondary Phase Improvements

6.1.1. Description

 Further work can be done to the secondary phase to improve the workload by

using all the merged paths that survived the primary phase versus just the initial cipher

settings. However, recall from Table 7 and Table 8, this can be a disadvantage since the

numbers of merged paths tend to increase as more plaintext letters are tested.

6.1.2. Inner Workings of Control and Index Rotors

 Before discussing the details of the secondary phase refinement, let us first review

how the control and index rotors operate. For every letter typed into SIGABA, the inputs

F, G, H, and I are activated into the control rotors simultaneously. Based on these active

signals and the control rotors’ permutation, one to four of the control rotor outputs or

index rotor inputs will be active. After these signals are permuted through the index

rotors, one to four of the index outputs will be active. The index outputs are combined in

pairs as indicated in Figure 19, reprinted with permission from Chan [2], and Equation

(4). Depending on which index outputs are active, one to four of the cipher rotors will

step.

 47

Figure 19. Control to index rotor mapping.

 For example, if the outputs of the control rotors are A, M, and N, index inputs 9

and 6 will be active. Which of the cipher rotors will step depends on the index

permutation. Consider the following example to illustrate this point.

 Suppose the index inputs (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) are mapped to outputs (5, 4, 7,

9, 3, 8, 1, 0, 2, 6) accordingly. Therefore, under this permutation, if index input 0 is

active, output 5 will be active, which results in cipher rotor C2 taking a step.

 For each input into SIGABA, we assume all 26
4

⎛

⎝
⎜

⎞

⎠
⎟ outputs from the control rotors

are uniformly random. However, notice the control rotor outputs are not grouped

uniformly. For example, the probability for index input 8 to be active is much higher

than the probability for index inputs 1, 2, and 9 to be active. Therefore, the probability

for each cipher rotor to step is directly related to which group of control rotor outputs it is

mapped to via the index permutation. Table 12, reprinted with permission from Chan [2],

illustrates this point for the current index permutation of (5, 4, 7, 9, 3, 8, 1, 0, 2, 6).

 48

Table 12. Index to cipher example.

 From Table 12, cipher rotor C4 will step if index rotor output 1 or 2 is active.

From the above permutation, index output 1 or 2 is active if input 6 or 8 is active. Index

input 6 or 8 is active if the control rotor outputs belongs in the groups L, M, N, O or U,

V, W, X, Y, Z respectively, which gives “control rotor count” in Table 12 a value of 10.

In comparison, we see cipher rotor C4 steps far more than cipher rotor C2, which has a

“control rotor count” value of 1. Therefore, the outputs from the index rotors are not

evenly distributed, meaning the probability for each cipher rotor to step is not equally

likely.

6.1.3. Secondary Phase Algorithm

 The goal of this refinement is to reduce the number of index permutations by

using the information gained in the primary phase. From the primary phase, we know the

initial and ending positions for the cipher rotors that encrypt the plaintext to the

ciphertext. By knowing these two positions, we can determine how much each cipher

rotor steps. For example, if the five initial positions are set to AAAAA and ends at

positions DCBAA, we can infer cipher rotor C0 stepped three times, C1 stepped twice, C2

stepped once, and C1 and C0 did not step at all.

 Table 13, reprinted with permission from Chan [2], lists all 45 possible input pairs

into the index rotors. Associated with each input pair is the number of control rotor

outputs that are directly connected (“Letters”).

 49

Table 13. Index input

pairs.

 By knowing the number of times each cipher rotor steps, we can gain information

related to the “count” column of Table 13. From the “pairs” column, we can then infer

index permutation restrictions.

 The data in Table 14, reprinted with permission from Chan [2], lists the “stepping

ratio” for a cipher rotor when it is connected to any possible number of control rotor

outputs, which range from one to 11. To compute these ratios, we generate all possible
26
4

⎛

⎝
⎜

⎞

⎠
⎟ = 14,950 outputs from the control rotors. Recall that each of these outputs is

assumed to be equally likely. For each set of generated control outputs, we count the

number of times each pair of index inputs occur, which is indicated in the “step count”

column. The ratios are then calculated by dividing each step count by 14,950.

 50

Table 14. Stepping Ratios.

 By combining the information gained in Table 13 and Table 14 with the putative

cipher stepping counts, we can determine which control outputs are most likely mapped

to which cipher rotor. Since the mapping between control outputs and cipher rotors are

dependent on the index permutation, we obtain restrictions for the index permutations.

 Note for an index permutation to be valid, it is required to contain five pairs of

index inputs listed in Table 13 in which the numbers zero through nine appear only once.

Another requirement is that the associated number of control outputs sum to 26, since all

26 letters must be connected.

 In the simpler secondary phase, 10!/32 distinguishable index permutations are

tested against the plaintext for each control setting. This refinement further reduces this

number to 28, which is significantly smaller [10]. Equation (16) calculates the new work

factor for the secondary phase.

 28 • 5! • 25 • 265 ≈ 243.4 (16)

 51

 Compared to the work factor for the simpler secondary phase computed in

Equation (14), this new work factor is significantly reduced. In addition to reducing the

number of index permutations, further work can be done in the primary phase to reduce

the number of merged paths.

 I created my project to have a modular design by creating a separate function for

each task I needed to complete. In doing so, the simpler secondary phase is its own

function that is independent of everything else, which includes the primary phase and

rotor settings set up. This way, future students who develop the refined secondary phase

can take the work I have already done and simply substitute the simpler secondary phase

function with their own.

6.2. CrypTool

6.2.1. Introduction

 CrypTool is a free interactive learning tool built for Windows that is available

worldwide for education or training purposes in universities and industries. CrypTool is

available in three different languages including English, German and Polish, and focuses

on cryptology. Users are allowed to run and analyze both classic and modern ciphers

available in CrypTool. Some of these ciphers include the Enigma, Caesar, RSA and

AES. CrypTool also includes cryptographic protocols such as the Diffie-Hellman key

exchange, and number theories like the Chinese Remainder Theorem that are useful for

other cryptosystems.

 In addition to cipher simulations, CrypTool also includes applications for

cryptanalytic attacks for various ciphers. Since most of these attacks are not intuitive,

CrypTool also provides documentation outlining and explaining the attacks in full detail.

 52

 CrypTool is also an open source project that allows users to enhance its features

by adding new applications. Because CrypTool does not currently include any

application to simulate SIGABA cipher or any cryptanalysis pertaining to the cipher,

future work can be done to integrate my thesis into CrypTool. In doing so, users can be

further educated on what makes a rotor-based cipher strong and secure. For users who

are up to the challenge, they can either develop and add the secondary phase refinement

into CrypTool or develop additional refinements to the attack that are not already

mentioned in this thesis.

6.2.2. Usage

 CrypTool targets users of all backgrounds: people with little or no knowledge on

cryptology to people with a comprehensive background. CrypTool’s intuitive design

makes it easy for users to understand and use and also includes an extensive help feature

that comes equipped with several step-by-step demonstrations and explanations to help

users become familiar with the application as well as more knowledgeable on the

cryptographic method.

 One of the positive attributes of CrypTool is the interactive feature. Figure 20

and Figure 21 illustrate activating an interactive application of the Enigma cipher in

CrypTool.

 53

Figure 20. CrypTool application.

Figure 21. Enigma cipher application.

 54

7. Conclusion

 This thesis covers SIGABA: what it is, how it was made, and the significance it

has played in history. This thesis also covers a modern day attack on SIGABA, which

was developed in Cryptologia, but I implemented for the first time.

 SIGABA’s total keyspace of 2906 is infeasible to exhaustively search. Even under

the assumptions that either the message indicator was intercepted or that the attacker

knows all the available 15 rotors and the internal workings of the cipher, the respective

keyspaces of 248.4 and 295.6 would still have been impossible to break in World War II

(see 5.4), given the limited computing power available in the 1940s.

 To reduce the workload of recovering the key, the cryptanalytic attack on

SIGABA is divided into two phases, the primary and secondary phase. Both of these

phases target SIGABA’s rotor banks separately, ultimately resulting in recovering the

key.

 The primary phase exhausts all possible cipher settings and keeps every setting

that is consistent with the known plaintext, known as causal settings. For each causal

setting we require the secondary phase. The secondary phase exhausts all control and

10!/32 distinct index settings. If the combination of the causal setting from the primary

phase, the index permutation, and control settings is consistent with the known plaintext,

we have recovered the key.

 There is still a considerable amount of work that can be done to refine this attack.

Possibilities lie in either reducing the number of merged paths in the primary phase or

reducing the number of index permutations used in the secondary phase. Though

SIGABA is now obsolete and considered broken, the fact that so much research can still

be done to break this cipher proves Friedman and Rowlett’s design remains amazing even

 55

to this day.

 56

References

[1] A Cryptographic Compendium. “The ECM Mark II, also known as SIGABA, M-

134-C, and CSP-889.” Electrical and Mechanical Cipher Machines,

http://www.quadibloc.com/crypto/ro0205.htm (accessed September 1, 2008).

[2] Chan, Wing. “Cryptanalysis of SIGABA.” MS diss., San Jose State University,

2007.

[3] Hellman, Martin E. “Privacy and Authentication: An Introduction to Cryptography.”

Proceedings of the IEEE 67, no. 3 (March 3, 1979),

http://www.cs.berkeley.edu/~prabal/resources/osprelim/DH79.pdf

[4] Low, Richard, and Stamp, Mark. Applied Cryptanalysis. Hoboken, New Jersey:

John Wiley and Sons, Inc., 2007

[5] Maritime Park Association. “Electronic Cipher Machine Mark II.” USS Pampanito,

http://www.maritime.org/ecm2.htm (accessed June 10, 2008).

[6] Maritime Park Association. “Operating Instructions for ASAM 1 (a.k.a. ECM Mark

II)”. USS Pampanito, http://www.maritime.org/ecminst.htm (accessed November 1,

2008).

[7] National Security Agency Central Security Service. “Photo Gallery.” National

Security Agency, http://www.nsa.gov/public/publi00007.cfm (accessed June 10, 2008).

[8] Oracle Think Quest Library. “Letter Frequency Analysis.” Think Quest,

http://library.thinkquest.org/28005/flashed/thelab/cryptograms/frequency.shtml (accessed

September 1, 2008).

 57

[9] Stamp, Mark. Information Security Principles and Practice. Hoboken, New Jersey:

John Wiley and Sons, Inc., 2006.

[10] Stamp, Mark and Chan, Wing. “SIGABA: Cryptanalysis of the Full Keyspace.”

Cryptologia 31 (2007): 201 – 222.

[11] United States Patent and Trademark Office. “USPTO Patent Full Text and Image

Database.” United States Patent, http://patft.uspto.gov/netacgi/nph-

Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrc

hnum.htm&r=1&f=G&l=50&s1=6175625.PN.&OS=PN/6175625&RS=PN/6175625

(accessed October 10, 2008).

[12] Wikipedia The Free Encyclopedia. “Alberti Cipher Disk.” Wikipedia,

http://en.wikipedia.org/wiki/Alberti_Cipher_Disk (accessed November 25, 2008).

[13] Wikipedia The Free Encyclopedia. “Bigram.” Wikipedia,

http://en.wikipedia.org/wiki/Bigram (accessed September 1, 2008).

[14] Wikipedia The Free Encyclopedia. “Cryptography.” Wikipedia,

http://en.wikipedia.org/wiki/Cryptography (accessed July 10, 2008).

[15] Wikipedia The Free Encyclopedia. “Frequency Analysis.” Wikipedia,

http://en.wikipedia.org/wiki/Frequency_analysis (accessed September 1, 2008).

[16] Wikipedia The Free Encyclopedia. “Image: K17 rotor 1.jpg.” Wikipedia,

http://commons.wikimedia.org/wiki/Image:Kl7_rotor_1.jpg (accessed July 10, 2008).

 58

[17] Wikipedia The Free Encyclopedia. “SIGABA.” Wikipedia,

http://en.wikipedia.org/wiki/SIGABA (accessed September 1, 2008).

