

 1

ANALYSIS OF RXBOT

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Esha Patil

May 2009

 2

© 2009

Esha Patil

ALL RIGHTS RESERVED

 3

SAN JOSÉ STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Thesis Titled

ANALYSIS OF RXBOT

by

Esha Patil

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

 Dr. Mark Stamp, Department of Computer Science Date

__

 Dr. Robert Chun, Department of Computer Science Date

__

 Dr. Teng Moh, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

 Associate Dean Office of Graduate Studies and Research Date

 4

ABSTRACT

ANALYSIS OF RXBOT

by Esha Patil

In the recent years, botnets have emerged as a serious threat on the Internet. Botnets are

commonly used for exploits such as distributed denial of service (DDoS) attacks, identity

theft, spam, and click fraud. The immense size of botnets (hundreds or thousands of PCs

connected in a botnet) increases the ubiquity and speed of attacks. Due to the criminally

motivated uses of botnets, they pose a serious threat to the community. Thus, it is

important to analyze known botnets to understand their working.

Most of the botnets target security vulnerabilities in Microsoft Windows platform. Rxbot

is a win32 bot that belongs to the Agobot family. This paper presents an analysis of

Rxbot. The observations of the analysis process provide in-depth understanding of

various aspects of the botnet lifecycle such as botnet architecture, network formation,

propagation mechanisms, and exploit capabilities.

The study of Rxbot reveals certain tricks and techniques used by the botnet owners to

hide their bots and bypass some security softwares.

 5

TABLE OF CONTENTS

1 Introduction 10

1.1 What is Malware? 10

1.2 The changing trend in malware usage 10

1.3 Malware infection increases the threat 10

1.4 Hiding makes detection difficult 11

1.5 Evolution of Malware 11

1.5.1 Elk Cloner virus 12

1.5.2 Melissa computer worm 12

1.5.3 Storm botnet 13

2 Introduction to Botnets 14

2.1 Overview of Botnets 14

2.2 Botnet Architecture 15

2.2.1 Formation 15

2.2.2 Command and Control (C&C) 16

2.2.3 Harvesting bot army 16

3 IRC 17

3.1 Introduction to Internet Relay Chat (IRC) 17

3.2 IRC features 17

3.2.1 IRC Server 17

3.2.2 IRC Client 17

3.2.3 Command and Responses 18

 6

3.2.4 Channels 18

3.2.5 Modes 18

3.2.6 Operators 19

3.3 IRC Bots 19

4 Malware Analysis 20

4.1 Malware Overview 20

4.2 Malware Typology 20

4.3 Malware Analysis Process 21

5 Analysis of Rxbot 23

5.1 Overview of Rxbot 23

5.1.1 Definition 23

5.1.2 Features of Rxbot 23

5.1.3 Exploits 24

5.2 Analysis Infrastructure 24

5.2.1 UnrealIRCd 25

5.2.2 mIRC 25

5.3 Static code analysis of Rxbot 25

5.3.1 What is static code analysis? 25

5.3.2 Source code analysis of Rxbot 26

5.3.3 Modularity of Rxbot source code 26

5.3.4 Configuration of Rxbot 26

5.3.5 Different modules of Rxbot 33

 7

5.4 Dynamic analysis of Rxbot 35

5.4.1 What is dynamic analysis? 35

5.4.2 Building and executing the bot client 35

5.4.3 Process level analysis 36

5.4.4 Network level analysis 39

5.5 Tricks used by bot masters 42

6 Packing and Crypting 43

6.1 Introduction to packing and crypting 43

6.2 Packing and Crypting performed on rBot.exe 43

6.2.1 Packing rBot.exe 43

6.2.2 Crypting of rBot.exe 45

6.2.3 Anti Virus scanning results 49

7 Future Work 53

7.1 Inroduction to Honeypots 53

7.1.1 Where did the name come from 53

7.1.2 Definition 53

7.2 Types of Honeypots 54

7.3 The Value of Honeypots 55

7.4 Limitations of Honeypots 55

7.5 Proposed Future Work 55

8 Conclusion 57

Appendix A References 58

 8

LIST OF TABLES

Table 5.1: IRC Server configuration details 27

Table 5.2: Backup IRC Server configuration details 28

Table 5.3: IRC user and command configuration details 29

Table 5.4: Bot client configuration details 30

Table 5.5: Bot feature configuration details 31

Table 5.6: Service port configuration details 32

 9

LIST OF FIGURES

Figure 4.1: Malware Activities Diagram 21

Figure 5.1: Rxbot process level details 37

Figure 5.2: Windows registry key under "Run" for Rxbot process 38

Figure 5.3: Windows registry key under "RunServices" for Rxbot process 39

Figure 6.1: Packing of rBot.exe 44

Figure 6.2: OUTPUT.EXE 45

Figure 6.3: Crypting of OUTPUT.EXE 46

Figure 6.4: "Save As" dialog box prompted by Poisen Ivy Crypter 47

Figure 6.5: Encrypted form of rBot.exe 48

Figure 6.6: Distinction between rBot executable files 49

Figure 6.7: Comparison of Anti Virus scanning results 50

Figure 6.8: Original rBot.exe detected by McAfee 51

Figure 6.9: McAfee scan results for packed and crypted rBot executable 51

 10

Chapter 1: Introduction

This chapter introduces malware and emphasizes the changing trend in malware usage.

The purpose is to help the readers understand the importance of malware analysis.

1.1 What is Malware?

Malware is a term derived from the words "malicious" and "software." Malware is

software designed to damage a computer system without the owner's consent

(“Malware”, 2009). Malware includes harmful software like spyware, adware, trojan

horses, worms, and viruses.

1.2 The changing trend in malware usage

The purpose of malware has evolved a great deal during the past several years. During

the early years, malware was written as experiments or pranks intended to cause mere

annoyance rather than serious harm (“Malware”, 2009). In recent years, the motivation

for writing malware has shifted from mere experiments to profit-based malware creation.

With the increasing use of the Internet, malware is being used for spam, identity theft,

distributed denial-of-service (DDoS) attacks, and monetary purposes (“Botnet”, 2009).

1.3 Malware infection increases the threat

Various types of malware include manual or automatic spreading mechanisms. Worms

can spread the infection automatically over the network. Viruses can spread the infection

with user intervention. Attackers employ smart techniques like personalized email

 11

messages, free softwares, and games to persuade users for getting their computer systems

infected. The spreading of malware increases the threat by broadening the infection area

(“Malware”, 2009).

1.4 Hiding makes detection difficult

Trojans have the intelligence of pretending to be innocent to hide the evil. The prime

motive of concealment is to get the victim systems infected without the owner's

knowledge and consent (“Malware”, 2009).

1.5 Evolution of Malware

Before the popularity of the Internet, the early virus infections were observed in programs

on personal computers or executable boot sectors of floppy disks. The targeted systems

ranged from Apple II and Macintosh to IBM PC and MS-DOS systems. These virus

infections required user exchange of software or boot floppies (“Malware”, 2009).

In 1988, the network-borne infectious programs called worms were first developed.

Worms originated on multitasking Unix systems. The worms were different from viruses

in exploiting the security vulnerabilities in network server programs. Rather than

spreading infection into executable programs, worms had the capability of running as a

separate process (“Malware”, 2009).

In the 1990s, it became possible to write macro viruses that infected Microsoft Word

 12

documents and templates rather than applications. These viruses exploited the fact that

macros in a Word document are executable (“Malware”, 2009).

Today, worms have extended the damage to home users and businesses via the Internet.

Worms today still behave like the worms in 1988. Worms are commonly targeting large

number of Windows systems (“Malware”, 2009).

1.5.1 Elk Cloner virus

During the early years, passive propagation of viruses through the exchange of floppy

disks was prevalent. A virus was found in 1982 on Apple II and was known as Elk Cloner

(“Elk Cloner”, 2009).

1.5.2 Melissa computer worm

With the first worms, propagation was extended to a worldwide scale. The Melissa worm

was first found on March 26, 1999 when Internet mail systems were shut down as a result

of getting clogged by emails infected by Melissa. Melissa is a mass-mailing macro virus

that can spread on word processors like Microsoft Word 97, and Word 2000 as well as

Microsoft Excel 97, 2000, and 2003. The way Melissa spreads is through execution of a

macro from a downloaded Word document and attempts to mass email itself. The victims

of mass emailing are the first 50 entries of the address book or alias list (“Melissa”,

2009).

 13

1.5.3 Storm botnet

With the increasing use of the Internet, the focus of malware shifted to ubiquity and

speed, and the motivation of attacks was money. First found in January 2007, the Storm

worm accounted for 8% of all malware on Microsoft Windows computers (“Storm

botnet”,2009). Storm is a trojan horse that spreads through spam email. The Storm botnet

is a network of zombie computers connected by the Storm worm and can be controlled

remotely. It was estimated, by September 2007, that the Storm botnet was running on

anywhere from 1 million to 50 million computer systems. This botnet is used for various

criminal activities. The United States Federal Bureau of Investigation has considered the

botnet as a major risk to increased bank fraud, identity theft, and other cybercrimes

(“Storm botnet”, 2009).

 14

Chapter 2: Introduction to Botnets

This chapter presents a brief overview of the botnet lifecycle and usage. The purpose is to

establish a clear understanding of the mechanics of botnets, before moving to the detailed

analysis of Rxbot.

2.1 Overview of Botnets

Botnets are one of the most dangerous and fast changing threats on the Internet today.

Traditional botnets are networks of compromised computers that can be controlled

remotely using Command and Control (C&C) mechanisms. Pieces of malicious code

called “bots” are installed on the victim machines. The originator of the botnet is known

as the "bot herder" or the “bot master.” The bot herder controls and commands the bots

remotely, using various C&C mechanisms (“Botnet”, 2009). Usually IRC is used for

C&C. However, recently there is a shift towards using peer-to-peer mechanism for C&C.

A bot is also referred to as "zombie" or "drone." Bots run automatically and are hidden.

Bots propagate themselves automatically to other victim machines. An attacker can

remotely control a large number (hundreds or thousands) of machines connected in a

botnet (“Botnet”, 2009).

Bots are not inherently evil. The first bots were programs used in Internet Relay Chat

(IRC) networks to provide gaming or messaging services (“Internet Relay Chat bot”,

2009). These were "good" bots that enabled real-time communication through IRC

 15

channels. Eventually bot code turned into malicious software serving nefarious purposes.

Botnets can be used for various monetary and destructive purposes including distributed

denial-of-service (DDoS) attacks, spam, click fraud, identity theft, and so on (“Botnet”,

2009).

2.2 Botnet Architecture

2.2.1 Formation

A malicious piece of code called the “bot client” is created by an attacker who acts as the

bot herder or the bot master. The bot herder infects a victim computer over the Internet

with this malicious bot code without the knowledge or consent of the computer owner.

Once the computer is compromised, the bot can take over the computer, and the bot

typically remains hidden. The bot is programmed to accept and respond to commands and

communicate with the Command and Control (C&C) center established by the bot

master. Usually an IRC server is setup as the C&C center. When the bot successfully

infects a victim machine, it informs the C&C center. The bot client is then updated with

new commands. The bot client goes over the Internet attempting to propagate itself to

other victim machines. In this manner, a large number of machines are compromised and

connected to the botnet that can be controlled and instructed remotely by an attacker to

perform various types of for-profit and destructive activities (Nachreiner, 2009).

 16

2.2.2 Command and Control (C&C)

A bot master establishes a Command and Control (C&C) center to control and command

the network of bots. Typically, an IRC server is setup and configured to act as the C&C

center. Public IRC servers can be used for C&C purposes. However, today most bot

herders prefer to hide by setting up private IRC servers for their C&C mechanism. A bot

master can install the IRC server on any compromised machine. Using IRC channels, a

bot master can remotely command and control his army of bots (Nachreiner, 2009).

2.2.3 Harvesting bot army

Getting the first bot is the toughest job for a bot master. In order to install a bot client on

a victim machine, an attacker can use various hacking techniques such as spam email

with attachment, music download, exploiting unpatched vulnerabilities, hosting on a

website that pushes it to visitors. The bots are programmed with scanning commands

which can be used to spread the infection to many other victim machines over the

Internet. Once the first bot is propagated to a victim machine, the scanner commands of

the bot can add other machines to the malicious network. These compromised machines

then go on and add many other machines to the network. In this manner, a huge number

of machines can be forced to join the botnet. The bot masters can stop compromising

machines anytime they think they have a sufficient bot army (Nachreiner, 2009).

 17

Chapter 3: IRC

This chapter introduces the IRC mechanism typically used by botnets for Command and

Control. The operational knowledge of IRC will support a thorough understanding of the

analysis results presented in this paper.

3.1 Introduction to Internet Relay Chat (IRC)

IRC is a form of real-time Internet chat or synchronous conferencing. IRC was created in

1988. It is a teleconferencing system that uses the client-server model and runs in a

distributed manner (“Internet Relay Chat”, 2009). The IRC client-to-server protocol is

documented in RFC 1459 (Oikarinen, 1993). IRC enables one-to-one as well as group

communication through messaging. For group communication, IRC channels are

established (“Internet Relay Chat”, 2009).

3.2 IRC features

3.2.1 IRC Server

An IRC server is the central point of contact for various clients to communicate with each

other. IRC servers can connect to each other, thus forming an IRC network (“Internet

Relay Chat”, 2009).

3.2.2 IRC Client

IRC servers can be accessed by users via an IRC client. IRC clients are distinguished

 18

using a unique nickname that can contain a maximum of 9 characters (“Internet Relay

Chat”, 2009). A popular Windows IRC client is the “mIRC.”

3.2.3 Commands and Responses

IRC clients can send single-line messages to an IRC server and receive responses from

the server for those messages. Commands can be entered using the IRC clients by

prefixing each command with a “/”. Each message can contain three parts: an optional

prefix, the command, and the parameters for the command. The parts of a message are

separated by an ascii space character (0x20) (“Internet Relay Chat”, 2009).

3.2.4 Channels

Channels are the communication medium in an IRC session. Different users who want to

communicate with each other can join the same IRC channel using the command “/join

#channelname”. Once a user joins an IRC channel, the user can send a message on the

channel, which will be communicated to other users of the same channel. IRC channels

can be protected using passwords. Users are required to enter a password in order to join

a password-protected IRC channel (“Internet Relay Chat”, 2009).

3.2.5 Modes

There are two types of modes: user mode and channel mode. The modes can be set or

unset using a mode command. A mode is represented by a single case-sensitive letter. For

example, the letter “i” represents invisible user mode, or the letter “p” represents a private

 19

channel mode (“Internet Relay Chat”, 2009).

3.2.6 Operators

“IRC Operators,” also known as “IRCops,” are users who have superior rights over the

entire IRC network or their local IRC server. These rights allow a user to perform

network administration. An IRC operator can act as the channel operator. Usually,

channel administration and network administration are handled separately (“Internet

Relay Chat”, 2009).

3.3 IRC Bots

An “IRC bot” is an automated client that connects to IRC. The difference between a

normal IRC user and an IRC bot is that the IRC bot carries out functions in an automated

fashion. The early IRC bots were used in games. The usage evolved to serve special

purposes like managing channels for user groups, maintaining access lists, and providing

access to databases. Bots can perform many other useful functions, such as logging

activities in IRC channel, hosting games, creating statistics, etc. (“Internet Relay Chat

bot”, 2009).

 20

Chapter 4: Malware Analysis

The process of analyzing a piece of malware is explained in this chapter.

4.1 Malware Overview

As previously mentioned, the term Malware is derived from two words: Malicious and

Software (“Malware”, 2009). Malware is an intelligent piece of code that exhibits the

following behavior:

• It will infect its targets

• It will propagate itself, automatically or with human intervention

• It might install a resident program, which allows an attacker to access and master

the infected system

• It will remain hidden so as to prevent detection by the user of the system

4.2 Malware Typology

Malware occurs in different forms such as viruses, worms, trojan horses, rootkits,

backdoors, spyware, and adware. These forms differ in the type of activities they

perform. Various activities performed by any form of malware are shown in Figure 4.1.

 21

Figure 4.1: Malware Activities Diagram

4.3 Malware Analysis Process:

The malware analysis process includes the following three steps:

1. Build or adapt the analysis infrastructure

The first step of the analysis process of any malware includes setting up the required

infrastructure. Building the analysis infrastructure includes setting up computers with

specific target operating systems that are exploited for vulnerabilities, installing

various analyzers, setting up particular servers that are attacked, etc. (Buchs, 2007).

 22

2. Static analysis

This step must be performed before executing the malware and infecting the target

machines for study. This type of analysis includes observations such as characteristics

of files, source code analysis, configuration study, etc. (Buchs, 2007).

3. Dynamic or “live” analysis

At this step, the analyst will record the behavioral characteristics of the malware such

as accesses to files, directories, disks, windows registry, automatic startup

mechanisms, and integrity checks of files (Buchs, 2007).

Dynamic analysis can be performed in following ways:

a. Malware process analysis

b. Network traffic analysis

 23

Chapter 5: Analysis of Rxbot

This chapter presents the detailed analysis of “Rxbot.”

5.1 Overview of Rxbot

5.1.1 Definition

“Rxbot” (also known as “rBot”) is a win32 computer IRC worm (written in C++) that

spreads to computers running Windows XP (“Agobot”, 2009).

5.1.2 Features of Rxbot

Rxbot has the following features (“Agobot”, 2009):

• Belongs to the Agobot family of worms

• Maintains modularity

• Targets the Microsoft Windows platform

• Uses IRC for Command and Control (C&C)

• Supports password protected IRC channels for bot communication

• Includes the following capabilities

o Port scanning

o Packet sniffing

o Key logging

• Includes Multi-threaded, Object Oriented, and Polymorphic code

• Uses SMTP client for sending spam and spreading copies of itself

• Uses HTTP client for click fraud and DDoS attacks

 24

5.1.3 Exploits

Attackers exploit Rxbot to perform the following harmful activities (“Botnet”, 2009;

“Agotbot”, 2009):

• Distributed Denial of Service (DDoS) attacks

• Identity Theft

• Spam

• Click Fraud

5.2 Analysis Infrastructure

The analysis of Rxbot was performed using the following infrastructure:

• PC #1 running Windows operating system used as the victim machine

o Rxbot infection was spread to this machine.

• PC #2 running Windows operating system used as the IRC Command and Control

(C&C) center

o UnrealIRCd was installed on this machine as a daemon process for the

IRC server.

o mIRC was installed on this machine as a Windows client for accessing the

IRC server.

• Private network established between PC #1 and PC #2

o Cross-cable connection was used between the two PCs.

The analysis was performed very carefully in a private network. The personal computers

 25

used for analysis were disconnected from the Internet in order to make sure that the

Internet was not endangered due to the experiments performed on Rxbot.

5.2.1 UnrealIRCd

“UnrealIRCd” is a very popular open source IRC daemon among the botnet community.

It runs on Windows and Linux operating systems. It is a light weight and easy to

configure daemon (“UnrealIRCd”, 2009).

5.2.2 mIRC

“mIRC” is a popular Windows IRC client. It is available for free, and it is relatively easy

to setup. mIRC provides a user friendly GUI to perform various IRC related operations

(“mIRC”, 2009).

5.3 Static code analysis of Rxbot

5.3.1 What is static code analysis?

Static code analysis is the analysis performed on computer software without executing

the programs built from that software. This type of analysis can be performed on source

code or object code. This can be performed in an automated fashion using various

available source code analysis tools or with human analysis of the code known as

program understanding (“Static code analysis”, 2009).

5.3.2 Source code analysis of Rxbot

 26

The source code of Rxbot was obtained from an underground forum (“Rxbot source

code”, 2009) as a “rar” file. After extraction, the C++ source code was retrieved. The

source code of Rxbot included a collection of C++ source and header files. Human

analysis was performed on the Rxbot source code, relying on knowledge of the C++

programming language and the Windows Operating System.

5.3.3 Modularity of Rxbot source code

The source code of Rxbot is very modular. Each individual feature of Rxbot has a

separate C++ source file. This enables the bot master to manage the botnet source code

easily. Adding a new module or removing any unwanted feature is simple. One can use

the original source code base and add new modules to it. Members of the Agobot family

are usually compatible with each other. A module written for one member can be easily

ported to another member. Modularity of Rxbot facilitates this mix-matching of modules

to meet the bot herder’s requirements.

5.3.4 Configuration of Rxbot

The configuration file for Rxbot is named as “configs.h”, and it is located under the

header folder. The configuration properties of Rxbot are organized below with brief

description:

� Primary IRC server properties

These properties are used to configure the IRC Command and Control server for the

 27

botnet. These should match the settings of the IRC server instance used for Command

and Control. The IRC server configuration details are described in Table 5.1.

Table 5.1: IRC server configuration details

Property Variable Description

IRC Server Name or IP char server[] = " " This is the IP or hostname

of the IRC server acting as

C&C center.

IRC Server Password char serverpass[] = "" This is the password

required to connect to the

IRC server.

IRC Server Port int port = 6667 This is the listening port of

the IRC server. The default

port is 6667.

IRC Channel Name char channel[] = "#pwn" This is the name of the IRC

channel the bot is supposed

to join.

IRC Channel Password char chanpass[] = "" IRC channels are protected

using passwords. This

property contains the

password required to join

 28

the IRC channel.

� Backup IRC server properties

There is an option of defining a secondary IRC server. This server acts as a backup for

the main IRC server if it goes offline. The properties for the backup IRC server are listed

in Table 5.2.

Table 5.2: Backup IRC server configuration details

Property Variable Description

IRC Server2 Name or IP char server2[] = "" This is the IP or hostname

of the backup IRC server.

IRC Server2 Port int port2 = 6668 This is the listening port of

the backup IRC server.

IRC Channel2 Name

char channel2[] = "#pwn"

This is the channel name for

backup IRC server.

IRC Channel2 Password char chanpass2[] = "" This is the password

required to connect to the

IRC channel of the backup

IRC server.

� Other IRC properties

These include other properties required by IRC such as the command properties and user

 29

properties. These properties will define the rules that must be followed by the IRC

commands and users, in order to carry out the communication in the IRC channel. The

configuration details specific to IRC users and commands are explained in Table 5.3.

Table 5.3: IRC user and command configuration details

Property Variable Description

Channel Topic Command BOOL topiccmd = TRUE If set to “TRUE”, an IRC

command can be used as

the channel topic.

Command Prefix Char prefix = '.' This is the prefix character

for the IRC commands.

Nick Type int nicktype = CONSTNICK The nick type is identified

by this property. It can take

the values declared in the

file rndnick.h.

Random Numbers in Nick int maxrand = 7 This property indicates how

many random numbers are

allowed in the bot’s

nickname.

Nick Prefix BOOL nickprefix = TRUE This is a flag indicating the

presence of nick prefix.

Nick Constant char nickconst[] = This string is the first part

 30

"[skank]" of the bot’s nickname.

Bot Mode char modeonconn[] = "-x" The bot’s mode after

connection is identified by

this property.

� Bot client properties

The bot client properties define the characteristics of the bot client file such as ID,

version, etc. These properties are described in Table 5.4.

Table 5.4: Bot client configuration details

Property Variable Description

Bot ID char botid[] = "" This string defines the bot

ID.

Bot Version char version[] =” “ The bot version is defined

by this string.

Bot Password char password[] = "" This is the password to

connect to the botnet.

Bot Executable Filename char filename[]=”” This is the filename of the

bot executable created by

the Trojan installed on the

victim machine.

 31

� Bot feature properties

These properties define the configuration for the various features of the Rxbot such as

debug logging, key logging, etc. They also define the registry entries. Table 5.5 explains

these properties in detail.

Table 5.5: Bot feature configuration details

Property Variable Description

Debug Log Filename #ifdef DEBUG_LOGGING
char logfile[]="c:\\debug.crf";
#endif

This is the name of the

debug log file created

by the bot process on

the victim machine.

Key Logger Filename char keylogfile[] = "test.crf” The keylogging feature

of Rxbot will log the

victim’s keystrokes to

the file identified by the

value of this property.

Auto Start Flag BOOL AutoStart = TRUE This flag must be set to

“TRUE” to enable the

auto start registry keys.

Auto Start Value char valuename[] = "Microsoft IT

Update"

This is the registry key

value for the auto start

feature of the bot.

Pay Load Filename char This is the filename for

 32

szLocalPayloadFile[]="payload.dat” the pay load.

Exploit Channel Name char exploitchan[] = "#pwn" This is the redirection

channel for the exploit

messages.

Key Logger Channel

Name

char keylogchan[] = "#pwn" This is the redirection

channel for the

messages from the key

logging function.

Packet Sniffer

Filename

char psniffchan[] = "#pwn" This is the redirection

channel for the packet

sniffing messages.

� Ports for other services

The configuration properties for additional services are explained in Table 5.6.

Table 5.6: Service ports configuration details

Property Variable Description

sock4 Daemon Port int socks4port = 1243 The port for sock4 daemon

is defined here.

tftp Port int tftpport = 69 The port for tftp daemon is

defined here.

http port int httpport = 2001 The port for http daemon is

 33

defined here.

rlogin port int rloginport = 513 The port for rlogin daemon

is defined here.

5.3.5 Different modules of Rxbot

The analysis of some of the modules of Rxbot is presented below:

� rBot.cpp

This is the most important module of the Rxbot source code. It contains the core code of

Rxbot. This is the bot’s main “brain” from which the execution of different bot exploits

starts.

� autostart.cpp

This source code file provides the auto start functionality for a bot. It enables the bot to

add itself to the victim machine’s registry so that it can start automatically. For this

feature to be enabled, the Boolean variable “AutoStart” in configs.h should be set to

“true”. The value of registry entry will be picked up from the character variable

“valuename[]” in configs.h. Please refer to Table 5.5 for details of the above two

configuration properties.

� capture.cpp

 34

This module adds the functionality of capturing screen shots, images through webcam or

even videos playing on the victim machines. This would enable retrieving confidential

data of the victim machine’s owner for identity theft or any other harmful purposes like

morphing the images for creating porn.

� cdkeys.cpp

This module of the Rxbot provides the functionality of stealing CD keys of different

licensed software from the Windows registry of victim machines. This C++ file contains

definitions for different registry entry locations for various software. This instructs the

bot where to look for CD keys. If the registry entry locations for any popular licensed

software are known, a bot master can add these registry entries to this source file and

retrieve CD keys for that particular software.

� findpass.cpp

This module pulls the victim machine’s users’ passwords from memory and sends them

to the bot master over the IRC channel. The passwords can then be used to hack the

users’ email accounts or bank accounts.

� processes.cpp

The functionality of this module is to kill any process on the victim machines. For

example, one might want to kill an anti virus software running on a victim machine. A

bot master creates a list of processes to kill on the victim machines. Most of the processes

 35

would include Anti Virus, firewall, and security processes that are running on the victim

machines and can hinder to the bot functioning. This function also kills any other worms

running on the victim machines to reduce competition with other exploits.

Additional modules can be added to the Rxbot as required by the bot herder. Modules can

simply be plugged into Rxbot from different Agobot variants. Unwanted modules can be

removed from the source code.

5.4 Dynamic analysis of Rxbot

Dynamic analysis of Rxbot was performed by executing the bot in the controlled

environment described in section 5.2.

5.4.1 What is dynamic analysis?

Dynamic analysis is the analysis of computer software performed by executing it on a

real or virtual processor (“Dynamic program analysis”, 2009).

5.4.2 Building and executing the bot client

Dynamic analysis requires a Trojan that would install the bot client on the victim

machine. To build the Trojan, the Rxbot source code was obtained from underground

forums and was compiled using Visual Studio 6. The build process produced rBot.exe

which was used as the Trojan to infect the victim machine.

 36

The rBot executable was transported manually to a personal computer running Windows

XP and was executed on the machine. In the real world scenario, the bot master will

spread the bot executable on target machines as email attachments, through music

downloads, or using various other means for installation of the malicious executable.

5.4.3 Process level analysis

� New bot process

Upon execution of the Trojan rBot.exe, a new bot executable file is created with the name

specified in the configuration file as property “char filename[]”.This executable is located

under “C:\Windows\System32” as a hidden file. A new bot client process is started on the

victim machine. Figure 5.1 shows the process level details of the bot program.

 37

Figure 5.1: Rxbot process level details

� Auto start

If the Boolean variable “AutoStart” in the configuration file is set to “true”, a registry

entry for auto starting the bot process is created in the Windows registry with the value

specified in the configuration property “char valuename[]”. The following registry keys

are observed:

 38

1. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\

Run

Figure 5.2: Windows registry key under “Run” for Rxbot process

2. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\

RunServices

 39

Figure 5.3: Windows registry key under “RunServices” for Rxbot process

5.4.4 Network level analysis

Even though the bot has infected the victim machine, it can neither inform the bot herder

nor accept commands from the bot herder. For this communication between the bot

 40

clients and the bot master, the master has to establish a Command and Control (C&C)

server. The master controls his army of bots using this Command and Control center.

� Establishing IRC Command and Control center

Since Rxbot follows the IRC protocol, an IRC server is required for Command and

Control. Publicly available IRC servers can be used for this purpose. Some bot masters

also prefer to setup their own private IRC servers to better hide their bot. It is very

important for a bot master to hide his Command and Control center since it serves as the

heart of the botnet. If the Command and Control center for a botnet is detected, it is easy

to bring down the whole botnet (which might comprise hundreds or thousands of PCs) by

shutting down the Command and Control server. A bot master can even install the IRC

server for C&C on a remote, victim machine.

PC #2 with UnrealIRCd (described in section 5.2) was used as the IRC C&C server for

the experimental analysis of Rxbot. The UnrealIRCd instance was configured with the

settings exactly matching the IRC configuration properties (described in Table 5.1) of the

Rxbot client. UnrealIRCd instance was running on PC #2 and listening on port 6667.

� Creating IRC Channel and Gaining Operator Rights

The IRC client program mIRC (described in section 5.2.2) was used to connect to the

IRC C&C server. It is required that a user creates a nickname before connecting to the

C&C server. A user with nickname “CS299BotMaster” logged into the IRC server

 41

instance using mIRC. After a successful connection was established with the IRC server

instance, user “CS299BotMaster” created and joined an IRC channel with the channel

name “#CS299IRCchannel” that was configured in the bot client. Since user

“CS299BotMaster” was the first user to join channel “#CS299IRCchannel”, the user

obtained operator privileges over the channel. A symbol “@” was observed preceding the

user’s nickname in the mIRC console. The IRC channel operator is indentified by the

“@” symbol preceding the nickname. The channel operator has administrative rights over

the channel.

� Recruiting bots

The first bot of this IRC botnet was PC #1 (described in section 5.2). It was infected with

rBot.exe. This bot was configured to connect to the UnrealIRCd server instance running

on PC #2 and join channel “#CS299IRCchannel” created by the bot master

“CS299BotMaster”. The mIRC console and the debug logs written on the victim machine

(PC #1) displayed messages indicating that a new nick joined the IRC channel

#CS299IRCchannel”. In a similar manner, a number of other machines can be infected

with the rBot.exe and added to the botnet. The victim PC can also scan other PCs for

vulnerabilities and spread the Rxbot infection.

� Controlling the botnet

The bot master can control the bots using the following features of Rxbot:

o Password-protected channels

 42

The IRC channels are secured using passwords. This prevents the bot rivals

from gaining control of the botnet channel.

o Prefixed IRC commands

The bots are configured to accept commands prefixed with a specific letter.

This assures that the bots will not accept commands from rival bot masters.

o Moderated mode

A bot master can protect a channel by operating it in a moderated mode. This

ensures that only the bot master can talk on the channel.

5.5 Tricks used by bot masters

The analysis reveals the following tricks used by bot masters:

• The default value for IRC server port is 6667. However, bot masters prefer to use

a different port to make it difficult to detect the IRC C&C center.

• The bot masters can assign a tricky filename to the bot executable that is created

on the victim machine after the Trojan is installed. This file can be named to

indicate it is an Anti Virus scanner or some type of security software. This would

prevent the victim machine’s owner from noticing the installed bot executable file

or the bot process that is running.

• The bot master can trick the victim by using unusual file extensions like “jpeg”,

“crf”, etc., for the debug log files and the key logger files.

 43

Chapter 6: Packing and Crypting

This chapter explains two processes: packing and crypting that can be performed on bot

client executables to protect the malicious bots from being detected by Anti Virus

softwares.

6.1 Introduction to packing and crypting

These are optional processes an attacker can perform on bot executable files to facilitate

easy spreading of the bots and bypass some security softwares. Packing reduces the bot

client file size. Smaller files spread over the Internet quickly, and signature scanning

becomes difficult. Crypting encrypts the bot client so that Anti Virus scanners and other

security softwares cannot detect the bot (Nachreiner, 2009).

6.2 Packing and Crypting performed on rBot.exe

6.2.1 Packing rBot.exe

The rBot.exe obtained by compiling the RxBot source code, was passed through packer

software called “PEPACK” (“PEPACK”, 2009). Figure 6.1 illustrates the packing

process performed on rBot.exe.

 44

Figure 6.1: Packing of rBot.exe

The command “pepack rBot.exe –o” instructs the “pepack” executable to pack the file

named “rBot.exe.” The switch –o indicates that the output of the packer will be written to

a file named “OUTPUT.EXE.” Code, data and resource sections of the rBot executable

file are compressed by pepack, and the compressed output is written to OUTPUT.EXE.

 45

Figure 6.2 shows a new file named OUTPUT.EXE being created in the folder where the

pepack command was executed.

Figure 6.2: OUTPUT.EXE

6.2.2 Crypting rBot.exe

An encrypting tool called “Poisen Ivy Crypter” is very popular among the black hat

community. This tool was obtained from underground forums and was used to encrypt

the packed rBot.exe (“Poisen Ivy Crypter, 2009).

Figure 6.3 shows the encryption process performed using Poisen Ivy Crypter on

OUTPUT.EXE obtained in the packing process explained in section 6.2.1.

 46

Figure 6.3: Crypting of OUTPUT.EXE

As shown in Figure 6.3, OUTPUT.EXE is selected as the input file to Poisen Ivy Crypter

and the button labeled “Build” is clicked. Fig… shows the next step in the encryption

process after the “Build” button is clicked.

Poisen Ivy Crypter prompts a dialog box to save the encrypted target file. This file can be

saved with any desired filename and .exe as the file extension. Figure 6.4 shows the

“Save As” dialog box.

 47

Figure 6.4: “Save As” dialog box prompted by Poisen Ivy Crypter

A new executable file is created with the filename provided in the “Save As” dialog box.

Figure 6.5 shows the newly created executable file which is an encrypted form of the

rBot.exe.

 48

Figure 6.5: Encrypted form of rBot.exe

The original bot client file rBot.exe is of size 548 KB. The packed bot client file

OUTPUT.EXE is of size 210 KB which is less than half the size of the original bot client

file. The encrypted bot client file rBotPackedNCrypted.exe is of size 660 KB. The

encryption process increases the file size. However, since the file was already packed, the

file size after encryption is much smaller than what it would have been without the

intermediate packing process. Figure 6.6 shows a distinction between the different

executable files for the RxBot.

 49

Figure 6.6: Distinction between rBot executable files

6.2.3 Anti Virus scanning results

The bot client executable files were scanned through multiple Anti Virus scanners to

observe the effect of packing and crypting on the bot detection.

An online malware scanning website was used for obtaining the scanning results (“Online

malware scan”, 2009). Figure 6.7 shows the comparison of scanner results on the bot

client before and after packing and crypting.

 50

Figure 6.7: Comparison of Anti Virus scanning results

The difference in virus detection after encrypting the executable can be clearly observed

through the results in Figure 6.7. The “AntiVir” scanner is not able to detect the

malicious executable at all after the Crypting process. Other scanners fail to detect the

specific Rbot as it was detected by the same scanners before the Crypting process.

Another scanning experiment was performed using McAfee’s On-Access scan on the

original bot client and the encrypted bot client executable files. The original rBot.exe was

detected and deleted by McAfee’s On-Access scan as shown in Figure 6.8.

 51

Figure 6.8: Original rBot.exe detected by McAfee

McAfee’s On-Access scan failed to detect the encrypted RxBot executable file as shown

in Figure 6.9.

Figure 6.9: McAfee scan results for packed and crypted rBot executable

 52

Thus, a bot herder can take an old bot executable that was previously detected and make

it undetectable simply by passing it through the packing and crypting processes.

 53

Chapter 7: Future Work

In this section, the use of honeypots for the detection of Rxbot is proposed as future

work.

7.1 Introduction to Honeypots

The primary goal of a honeypot is to gather information about different attacks that take

place in the wild. Honeypots can store mischievous activities of an attacker who interacts

with them. This information can then aid the study of various tools and techniques

employed by the attackers to perform destructive attacks (“Honeypots”, 2009).

7.1.1 Where did the name come from?

A pot of honey kept at the entrance of a trap can attract a bear into a trap. Once the bear is

inside, the lid of the trap can be closed or rather kept open for the bear to explore, and his

actions can be recorded for study (Spitzner, 2002). In the Internet world, the bear

resembles the black hat community. A honeypot is a trap set to attract attackers to interact

with it, and the actions of the attacker are recorded (“Honeypots”, 2009).

7.1.2 Definition

Spitzner (2002) defines honeypots as “an information system resource whose value lies in

unauthorized or illicit use of that resource.”

 54

7.2 Types of Honeypots

Honeypots can be categorized into the following two types based on their complexity and

the amount of interaction that is allowed (“Honeypots”, 2009):

• Low-interaction Honeypots

• High-interaction Honeypots

Low-interaction honeypots are simple to deploy and maintain. Also, they pose less of a

risk because they do not work with real production systems. However, due to the

emulation of operating systems and other services, they do not give much control to the

attacker (Spitzner, 2002).

High-interaction honeypots expose real operating systems and applications to the

attackers for interaction. They work with real systems rather than emulated systems. This

allows an analyst to capture a wide range of information that can aid in learning about

new tools and techniques used for attacks. The disadvantage of high-interaction

honeypots is the complexity and difficulty involved in deployment. The level of risk is

high, since the attacker can possibly gain control of the honeypot. For example, an

attacker might take over the honeypot and use it to attack non-honeypot systems

(Spitzner, 2002).

 55

7.3 The Value of Honeypots

The advantages of honeypots can be summarized in brief (Spitzner, 2002):

• Simple design, hence minimal resources are required

• Deployment cost is less since expensive, high end computers are not mandatory

• Smaller sets of data with very high values are collected

• All activities that come in contact with a honeypot are recorded

• Interaction is allowed only with attackers

• New technologies and tools used by attackers can be detected with the help of

honeypots

• Low probability of mis-configuration

7.4 Limitations of Honeypots

Honeypots have certain disadvantages (Spitzner, 2002):

• Honeypot can only track activity that interacts with it

• Attackers may be able to take over the honeypot and use it for harmful purposes

• Attacks against other systems cannot be captured unless they interact with the

honeypot setup

7.5 Proposed Future Work

The next step in the analysis process of Rxbot will be using a honeypot for gathering data

concerning on-going, real-world, bot activity and analyzing the collected data (Provos,

2007). A trap can be set in the form of a honeypot and a large volume of data can be

 56

collected for Rxbot activity that is occuring on the Internet. Once a real botnet is

detected, a fake client can become part of the botnet, and the attacker’s tools, techniques,

and strategies can be studied in detail. Various open source honeypot daemons are

available. Nepenthes (“Nepenthes”, 2008) or Honeyd (“Honeyd”, 2008) appear to be

ideal for this type of experimental work.

 57

Chapter 8: Conclusion

The analysis performed on Rxbot using static and dynamic analysis techniques aids

understanding of the botnet formation, propagation, and exploitation capabilities. The use

of IRC for Command and Control enables the bot herders to remotely control their

botnets. Password-protected IRC channels allow the bots to communicate in private and

protected channels. The bot herders employ various tricks to keep their bots hidden from

view. The bots have the capability to spread their infection to other PCs and compromise

a huge number of PCs on the Internet.

The study of packing and crypting reveals the capability of these processes to trick

antivirus scanners and other security software. It is evident from this study how bot

herders prevent their botnets from being detected. Packing contributes to the spreading

speed of a bot by making the bot client file smaller, whereas crypting helps the bot to

bypass security software.

Malware exploits are increasing at an alarming rate. The Internet is continuously

endangered by black hats. It is thus essential to encourage the study of malware in order

to develop highly effective measures to curb black hat operations.

 58

Appendix A: References

Agobot (computer worm). (2009). Retrieved February 10, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Agobot_(computer_worm)

Botnet. (2009). Retrieved February 10, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Botnet

Buchs, C. (2007). Malware Analysis [PowerPoint slides]. Retrieved from Institute For

Information And Communication Technologies.

Dynamic program analysis. (2009). Retrieved February 10, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Dynamic_program_analysis

Elk Cloner. (2009). Retrieved February 05, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Elk_Cloner

Honeyd. (2008). Retrieved Feb 18, 2009, from Development of the Honeyd Virtual

Honeypot: http://www.honeyd.org

Honeypots (computing). (2009). Retrieved February 18, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Honeypot_(computing)

 59

Internet Relay Chat, (2009). Retrieved February 07, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/IRC

Internet Relay Chat bot. (2009). Retrieved February 07, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/IRC_bots

Malware. (2009). Retrieved February 05, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Malware

Melissa (computer worm). (2009). Retrieved February 05, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Melissa_(computer_worm)

mIRC. (2009). Retrieved Jan 15, 2009, from mIRC: http://www.mirc.

Nachreiner, C. (2009). Botnets Part 1. Retrieved January 15, 2009, from WatchGuard

Video Tutorials: http://www.watchguard.com

Nachreiner, C. (2009). Botnet Source Code for Overachievers. Retrieved January 15,

2009, from WatchGuard Video Tutorials: http://www.watchguard.com

Nepenthes. (2008). Retrieved February 18, 2009, from Nepenthes – finest collection:

http://nepenthes.carnivore.it

 60

Oikarinen, J., & Reed. D. (1993, May). Internet Relay Chat Protocol. Retrieved February

10, 2009, from Request for Comments: 1459 Web site: http://tools.ietf.org/html/rfc1459

Online malware scan. (2009). Retrieved Jan 18, 2009, from Jotti’s virus scan:

http://virusscan.jotti.org

PEPACK. (2009). Retrieved Jan 18, 2009, from Rapid Library: http://rapidlibrary.com

Poisen Ivy Crypter. (2009). Retrieved Jan 18, 2009, from Rapid Library:

http://rapidlibrary.com

Provos, N., & Holz, T. (2007, August). Virtual Honeypots. Massachusetts: Addison-

Wesley.

Rxbot source code. (2009). Retrieved Jan 10, 2009, from Rapid Library:

http://rapidlibrary.com

Spitzner, L. (2002, September). Honeypots: Tracking Hackers. Addison-Wesley.

Static code analysis. (2009). Retrieved February 10, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Static_code_analysis

 61

Storm botnet. (2009) Retrieved February 05, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Storm_botnet

UnrealIRCd. (2009). Retrieved Jan 15, 2009, from UnrealIRCd:

http://www.unrealircd.com

