
TOWARDS AN UNDETECTABLE COMPUTER VIRUS

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Priti Desai

December 2008

© 2008

Priti Desai

ALL RIGHTS RESEREVED

ii

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

TOWARDS AN UNDETECTABLE COMPUTER VIRUS

by
Priti Desai

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp Department of Computer Science Date

Dr. Robert Chun Department of Computer Science Date

Mr. Vijay Seshadri Symantec Antivirus Company Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

iii

ABSTRACT

TOWARDS AN UNDETECTABLE COMPUTER VIRUS

by Priti Desai

Metamorphic viruses modify their own code to produce viral copies which are
syntactically different from their parents. The viral copies have the same functionality as
the parent but may have different signatures. This makes signature-based virus scanners
unreliable for detecting metamorphic viruses. But statistical pattern analysis tool such as
Hidden Markov Models (HMMs) can detect metamorphic viruses.

Virus writers use many different code obfuscation techniques to generate metamorphic
viruses. In this project we develop a metamorphic engine using code obfuscation
techniques. Our metamorphic engine is designed to produce highly diverse morphed
copies of the base virus. We show that commercial virus scanners cannot detect
metamorphic viruses produced by our engine. We then proceed to determine whether
HMMs can detect metamorphic viruses generated by our engine.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Mark Stamp for trusting me with his idea. A special thank to Dr.
Stamp for his guidance, encouragement, and support throughout the project.

This project would have not been possible without a special support of my loving
husband Mrugesh. I would like to thank Mrugesh for his encouragement, patience and
help throughout the process, especially for those sleepless nights accompanying me.

v

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. COMPUTER VIRUS .. 2

3. ANTIVIRUS DEFENSE TECHNIQUES .. 3

3.1 SIGNATURE DETECTION ... 3
3.2 HEURISTIC ANALYSIS .. 3

4. ADVANCED CODE EVOLUTION TECHNIQUES ... 4

4.1 ENCRYPTION ... 4
4.2 POLYMORPHISM ... 4
4.3 METAMORPHISM ... 4

4.3.1 Anatomy of a Metamorphic Virus ... 5
4.3.2 The Metamorphic Virus According to a Virus Writer .. 6

5. CODE OBFUSCATION TECHNIQUES ... 7

5.1 REGISTER USAGE EXCHANGE (REGISTER RENAMING) .. 7
5.2 DEAD CODE INSERTION .. 8
5.3 SUBROUTINE PERMUTATION ... 9
5.4 EQUIVALENT CODE SUBSTITUTION ... 10
5.5 TRANSPOSITION ... 10
5.6 CHANGING THE CONTROL FLOW (CODE REORDERING THROUGH JUMPS) ... 11
5.7 SUBROUTINE INLINING AND SUBROUTINE OUTLINING ... 11

6. SIMILARITY TEST .. 13

7. HIDDEN MARKOV MODEL .. 14

7.1 HMM AS VIRUS DETECTION TOOL ... 17

8. IMPLEMENTATION ... 19

8.1 INTRODUCTION .. 19
8.2 GOALS ... 20
8.3 CODE OBFUSCATION TECHNIQUES USED ... 20

8.3.1 Dead Code Insertion ... 20
8.3.2 Equivalent instruction substitution .. 24
8.3.3 Transpose ... 24

9. EXPERIMENTS .. 26

9.1 COMMERCIAL VIRUS SCANNER ... 27
9.2 SIMILARITY TEST .. 27
9.3 HMM .. 29

9.3.1 N generation viruses against the base virus model ... 29
9.3.2 The Base virus against the morphed virus model .. 30
9.3.3 Normal files against 9th generation virus model .. 31

vi

9.3.4 Morphed viruses against normal file model .. 33

10. CONCLUSION .. 34

11. FUTURE WORK ... 34

 REFERENCES .. 36

 APPENDIX B: EQUIVALENT INSTRUCTION SUBSTITUTION ... 39

 APPENDIX C: SIMILARITY TESTS ... 43

 APPENDIX D: HIDDEN MARKOV MODEL OF THE BASE VIRUS .. 47

 APPENDIX E: HIDDEN MARKOV MODELS OF NORMAL FILES ... 49

 APPENDIX F: HIDDEN MARKOV MODEL OF 9TH GENERATION VIRUSES .. 51

vii

LIST OF FIGURES

FIGURE 1: PSEUDO CODE OF A COMPUTER VIRUS [12]...2

FIGURE 2: PSEUDO CODE OF INFECT MODULE [12]...3

FIGURE 3: METAMORPHIC VIRUS GENERATIONS..5

FIGURE 4: ANATOMY OF A METAMORPHIC ENGINE [15]..5

FIGURE 5: TWO DIFFERENT GENERATIONS OF REGSWAP [4]...8

FIGURE 6: DEAD CODE INSERTION IN EVOL VIRUS [8]...9

FIGURE 7: SUBROUTINE PERMUTATION [4]..9

FIGURE 8: EXAMPLE OF CONTROL FLOW MODIFICATION [19]...11

FIGURE 9: SUBROUTINE INLINING..12

FIGURE 10: SUBROUTINE OUTLINING...12

FIGURE 11: SIMILARITY GRAPH...14

FIGURE 12: TEMPERATURE TRANSITION PROBABILITY..14

FIGURE 13: TREE SIZE PROBABILITY..15

FIGURE 14: HMM MODEL...16

FIGURE 15: TRAINING DATA ..18

FIGURE 16: HMM MODEL...18

FIGURE 17: THE RESULT FILE...19

FIGURE 18: BASE VIRUS OPCODES AND THEIR FREQUENCY...20

 FIGURE 19: OPCODES OF NORMAL FILE AND THEIR FREQUENCY..21

FIGURE 20: ALGORITHM TO INSERT NOP SEQUENCE ON ENTRY POINT...22

FIGURE 21: ALGORITHM TO INSERT RANDOM NOP SEQUENCE...22

FIGURE 22: ALGORITHM FOR TRANSPOSE..25

FIGURE 23: HIGH LEVEL ALGORITHM OF METAMORPHIC ENGINE...26

FIGURE 24: OVER ALL PROCESS..27

FIGURE 25: SIMILARITY RESULTS OF THE BASE VIRUS V/S 9 DIFFERENT GENERATIONS..........................28

FIGURE 26: GRAPH OF SIMILARITY OF TWO N GENERATIONS..29

FIGURE 27: N (1-9) GENERATION VIRUSES TESTED AGAINST BASE VIRUS MODEL..................................30

FIGURE 28: BASE VIRUS TESTED AGAINST N GENERATION MODELS..31

FIGURE 29: FAMILY VIRUSES AND NORMAL FILES TESTED AGAINST 9TH GENERATION MODEL32

viii

FIGURE 30: FAMILY VIRUSES AND 9TH GENERATION VIRUSES TESTED AGAINST NORMAL MODEL........33

FIGURE 31: CHANGE IN FILE SIZES OVER 9 GENERATIONS..35

ix

LIST OF TABLES

TABLE 1: METAMORPHIC VIRUSES AND CODE OBFUSCATION TECHNIQUES [19].....................................7

TABLE 2: EXAMPLES OF INSTRUCTION SUBSTITUTION USED BY W32/METAPHOR VIRUS [19]................10

TABLE 3: PROBABILITIES OF OBSERVING (S, M, S, L) FOR ALL POSSIBLE STATE SEQUENCES....................17

TABLE 4: ARITHMETIC DEAD CODE INSTRUCTIONS..21

TABLE 5: EVOL TRANSFORMATIONS [6]..23

TABLE 6: SUBSTITUTIONS FOR ADD..24

TABLE 7: HMM OF BASE VIRUS TESTED WITH 9 GENERATIONS...29

TABLE 8: THE BASE VIRUS TESTED AGAINST N GENERATION MODEL...30

TABLE 9: RESULTS OF 9TH GENERATION VIRUSES TESTED AGAINST 9TH GENERATION MODEL..............32

TABLE 10: RESULTS OF 9TH GENERATION VIRUSES TESTED AGAINST NORMAL MODEL.........................33

x

1. Introduction
A computer virus is a malware that, when executed, tries to infect other executables and
alter their default behavior [12]. A virus copies itself into an infected executable without
permission or knowledge of a user [13]. According to Fred Cohen, “A computer virus is a
program that can infect other programs by modifying them to include a possibly evolved
copy of itself" [17]. The first computer virus was a boot sector virus called Brain, created
in 1986 by two brothers, Basit and Amjad Farooq Alvi, operating out of Lahore, Pakistan.

Generally a computer virus causes damage to the host machine. The damage can be done
to a number of different components of the computer's operating and file system. These
include system sectors, files, macros, companion files and source code. The always
connected world of internet is a soft target for viruses. Viruses use internet connectivity
to spread across the world faster and create havoc. The early detection of viruses is
imperative to minimize the damages caused by them.

There are many antivirus defense mechanisms available today. These include signature
detection and code emulation. The signature based virus detection tools search all the
files on a system for a signature. Code emulation creates a virtual machine and executes a
virus on the virtual machine for detection. Once the virus is detected, it is no longer a
threat.

To bypass signature detection technique, virus writers have to create new viruses or
change the existing viruses. Virus writers evade signature detection by generating
metamorphic copies of a virus. Metamorphic viruses change their appearance while
keeping the same functionality. Metamorphic viruses use different code obfuscation
techniques to change the structure of the code. These techniques include code reordering
through jumps, subroutine permutation, dead code insertion, equivalent instruction
substitution, and rearrangement of instruction order (transposition).

The statistical pattern analysis is the most successful technique to detect metamorphic
viruses [2]. Hidden Markov Model (HMM) is the well known statistical pattern analysis
tool. HMM has been widely used in speech recognition and protein modeling. HMM has
been extended to detect metamorphic viruses.

Metamorphic viruses with combination of code reordering through jumps and dead code
insertion evades signature detection but are detected by HMM [9]. In this project we
determine whether extensive metamorphism can evade HMM.

The aim of this project is to develop a metamorphic engine. We used code obfuscation
techniques like equivalent instruction substitution, dead code insertion and rearrangement
of instruction order. We designed our metamorphic engine to generate highly discrete
copies of the base virus. These morphed copies are tested against the HMM model of the

1

base virus family, normal files, and our own morphed copies. We also tested our
morphed copies against commercial virus scanners.

This paper is organized as follows:

• Section 2 contains information about computer viruses.
• Section 3 discusses various anti-virus technologies currently used.
• Section 4 contains information about the evolution of viruses.
• Section 5 details a few code obfuscation techniques that are used for generating

metamorphic variants.
• Section 6 describes our virus similarity test.
• Section 7 introduces HMM as virus detection tool.
• Section 8 and 9 details the design, implementation, and experimental results of

our metamorphic engine.
• Section 10 draws conclusions based upon our findings.
• Section 11 discusses additional future enhancements.

2. Computer Virus
“A computer virus is a malicious program that modifies other host files to replicate. The
host is modified to include a complete copy of the malicious code program. The
execution of the infected host file infects other objects” [16]. Generally a computer virus
consists of three modules [12].

Figure 1: Pseudo code of a computer virus [12]

Infect defines how a virus spreads. One common infection mechanism is to modify host
to contain copy of virus code. Trigger is a test to decide to deliver the payload or not.
Payload defines damage done by the virus. Trigger and payload are optional. Figure 1
shows pseudo code of a virus.

2

def virus() :
infect ()
if trigger () is true then

payload ()

Figure 2: Pseudo code of infect module [12]

Infect module selects a target to infect. Generally k targets are selected on each run.
Select_target defines criteria by which a target is selected. The same target should not be
selected repeatedly otherwise infecting the same code repeatedly may reveal the presence
of the virus. infect_code performs actual infection by inserting virus’s code into the
target.

3. Antivirus Defense Techniques
This section presents some of the most popular techniques used by antivirus software to
detect computer viruses.

3.1 Signature Detection

A signature is a string of bits found in a virus [1]. An effective signature is the string of
bits which is commonly found in viruses but not likely to be found in normal programs.
Generally each virus has its own unique signature. All known signatures are organized in
a database. A signature-based virus detection tool searches for a known signature in all
the files on a system. The following example is a signature of W32/Beast virus in
infected executable files [22].

83EB 0274 EB0E 740A 81EB 0301 0000

The virus scanner searches executables for this signature. If this signature is present in
any executable file, it is declared as the Beast virus.

3.2 Heuristic Analysis

Heuristic analysis is useful in detecting new or unknown viruses. Heuristic analysis can
be static or dynamic. Static heuristics mainly analyzes the file format and the code
structure of virus body. Dynamic heuristics use code emulators to detect unusual
behavior while the virus code is running inside the emulator. The following examples are
the suspicious characteristics of heuristic analysis of 32 bit windows viruses [4]:

• Code execution starts in the last section

3

def infect() :
repeat k times:

target = select_target()
if no target then

return
infect_code (target)

• Virtual size is incorrect in PE header
• Possible “Gap” between sections
• Suspicious code section name
• Suspicious imports from Kernel32.dll by ordinal

Heuristic analysis creates many false positives. A false positive is to declare a benign
program as a virus. An antivirus scanner creating many false positives looses user’s trust
and interest. The following section explains techniques used by virus writers to evade
signature detection and heuristic analysis.

4. Advanced Code Evolution Techniques
To bypass detection by the user or antivirus software, viruses use different concealment
strategies. Some of the concealment strategies are listed below.

4.1 Encryption

Encryption is the simplest way to hide virus body. Encryption changes the appearance of
a virus. An encrypted virus consists of a small decrypting module (a decryptor) and an
encrypted virus body. Generally simple encryption methods are used like XOR of the key
with each byte of the virus body. And if a different key is used for each infection, the
encrypted virus body will look different. But the decryptor always remains constant. As a
result, detection is still possible. A virus scanner can recognize the decryptor in most
cases.

4.2 Polymorphism

To overcome drawbacks of encryption, polymorphic virus mutates virus body along with
decryptor. Polymorphic virus has no part that stays constant on each infection. To detect
polymorphic viruses, antivirus software implements a code emulator which emulates the
decryption process and dynamically decrypts the encrypted virus body. Polymorphic
viruses after decryption have a constant virus body. Therefore decrypted virus body can
be easily detected.

4.3 Metamorphism

Unlike polymorphic viruses, metamorphic viruses do not employ encryption.
Metamorphic viruses change the appearance of the code while keeping the functionality
of virus intact. Metamorphic viruses use several code obfuscation techniques including
Instruction reordering, data reordering, subroutine inlining, subroutine outlining, register
renaming, code permutation, instruction substitution, and garbage code insertion. Figure 3
shows the distinct signatures of the metamorphic viruses.

4

Figure 3: Metamorphic virus generations

4.3.1 Anatomy of a Metamorphic Virus
Generally a metamorphic virus has the metamorphic engine embedded within itself.
During infection a metamorphic virus creates morphed copy of itself using the embedded
engine. A typical metamorphic engine consists of following functional units. Some of
these units are optional.

Locate own code
Decode
Analyze

Transform
Attach

Figure 4: Anatomy of a metamorphic engine [15]

A metamorphic engine reads in the virus executable and locates the code to be
transformed using locate own code module. Every engine has its own transformation
rules. The transformation rules define how a particular opcode or a sequence of opcodes
is to be transformed. Decode module extracts these rules by disassembling.
Analyze module analyzes current copy of the virus and determines the transformations to
be applied for generating next morphed copy. Transform module performs the actual
transformations. It replaces an instruction or block of instructions with the other
equivalent code. The last module attach attaches the transformed copy to a host.

5

4.3.2 The Metamorphic Virus According to a Virus Writer

Generally a virus writer considers how to infect a file and the behavior of the infected
file. In addition to these, a virus writer writing a metamorphic virus has to consider how
to generate morphed copies of the virus. To generate morphed copies, a metamorphic
engine is embedded within the virus body. A typical metamorphic engine may contain
[18]:

1. Internal disassembler
2. Opcode shrinker
3. Opcode expander
4. Opcode swapper
5. Relocator/recalculator
6. Garbager
7. Cleaner

Internal disassembler disassembles the binary / executable code, instruction by
instruction. Opcode shrinker performs optimization of instructions. Opcode shrinker
replaces two or more instructions with one equivalent instruction. Opcode expander is the
reverse operation of opcode shrinker. It replaces one instruction with several instructions.
Opcode swapper changes the order of the instructions. Generally it swaps two unrelated
instructions. Relocator relocates relative references like jump and call. Garbager inserts
do-nothing instructions. Cleaner undoes Garbager, i.e. it removes do-nothing instructions
inserted by Garbager.

Characteristics of an effective metamorphic engine [18]:

1. A metamorphic engine should be able to handle any opcode of an assembly
language. An engine should know all of the opcodes.

2. Opcode shrinker and swapper should process more than one instruction
concurrently.

3. Use Garbager in moderate amount.
4. Garbage should not affect actual instructions.
5. Opcode swapper should analyze each instruction and should not affect the

execution of next instruction.

We have implemented the metamorphic engine as an external tool. This tool reads in a
hand written assembly program or disassembled virus executable.

6

5. Code Obfuscation Techniques

Metamorphic engine uses code obfuscation techniques to produce morphed copies of an
original program. Generally the obfuscated code is more difficult to read and understand
[1]. Code obfuscation can be used to generate different looking copies of a single parent
file. This section explains the code obfuscation techniques for assembly programs.

Code obfuscation techniques for assembly programs operate on both the control flow and
data section of the program [19]. Control flow obfuscation involves reordering of
instructions through insertion of jumps. Data flow obfuscation can be done in many ways
such as equivalent code substitution, subroutine permutation, dead code insertion, register
renaming, and transposition. Table 1 summarizes some well known metamorphic viruses
and the code obfuscation techniques used by them.

Table 1: Metamorphic Viruses and Code Obfuscation Techniques [19]

5.1 Register Usage Exchange (Register Renaming)

Register renaming modifies register operands of an instruction without changing the
instruction itself. The instructions remain constant across all morphed copies only the
operands change. RegSwap was one of the early metamorphic viruses to use register
usage exchange. Figure 5 shows two pieces of code from two different generations of
RegSwap.

7

Figure 5: Two different generations of RegSwap [4]

Two generations of RegSwap (a) and (b) have the same sequence of instructions but the
registers are different. Here the registers edx, edi, esi, eax, and ebx have been replaced by
eax, ebx, edx, edi, and esi respectively.

5.2 Dead Code Insertion

Inserting dead code or do-nothing instruction does not affect the execution of the original
code. Dead code can be a single instruction or a block of instructions. Inserting dead code
changes the appearance of a program. Do-nothing instructions such as “move eax, eax”,
“shl eax, 0”, “add ax, 0”, and “inc eax” followed by “dec eax” make program look
different. Adding new block of dead code on each generation creates different looking
programs with the same functionality. The Evol virus had implemented dead code
insertion by adding a block of dead code between core instructions as shown in figure 6.

8

Figure 6: Dead code insertion in Evol virus [8]

These two blocks of instructions look different but have the same functionality. The
instructions commented garbage does not have any impact on the functionality of the
code.

5.3 Subroutine Permutation

This is a simple obfuscation technique in which the subroutines of a program are
reordered. A program with n different subroutines can generate (n-1)! different
subroutine permutations. Subroutine permutation does not affect the functionality of a
program as the order of subroutine is not important for its execution. Figure 3 shows an
example of subroutine permutation from [4].

Figure 7: Subroutine permutation [4]

9

5.4 Equivalent Code Substitution

Equivalent code substitution is the replacement of an instruction with an equivalent
instruction or an equivalent block of instructions. In assembly language, generally a task
can be achieved in different ways. e.g. “inc eax” is equivalent to “add eax, 1”, “move eax,
edx” is equivalent to “push edx” followed by “pop eax” and so on. This property of
assembly language where a single task can be implemented in multiple ways is used in
equivalent code substitution.

Table 2: Examples of instruction substitution used by W32/MetaPhor virus [19]

Table 2 shows some examples of equivalent code substitution used by Win32/MetaPhor.
“Xor Reg, Reg” is equivalent to moving 0 into the Reg because xor of a value with itself
is 0. An equivalent instruction block for “OP Reg, Reg2” uses the ability of a processor to
perform the same operation with memory.

5.5 Transposition

Transposition or instruction permutation modifies the instruction execution order in a
program. This can be done only if no dependency exists among instructions. Consider
two instructions Instruction-1 (op1 R1, R2) and Instruction-2 (op2 R3, R4). These two
instructions can be swapped if following conditions are satisfied.

1. R1 is not equal to R3
2. R1 is not equal to R4
3. R2 is not equal to R3

For example, instructions “mov eax, edx” and “add ecx, 5” can be swapped as they
satisfy the transpose criteria.

10

…
mov eax, edx
add ecx, 5
…

…
add ecx, 5
mov eax, edx
…

5.6 Changing the Control Flow (Code Reordering through jumps)

Code reordering inserts conditional or unconditional branching instruction after every
instruction or a block of instructions. These blocks defined by the branching instructions
are permuted to change the control flow. The modified code is called Spaghetti Code.
The conditional branching instruction is always preceded by a test instruction which
always forces the execution of the branching instruction.

Figure 8: Example of control flow modification [19]

Figure 8 shows an example of spaghetti code. Here, consecutive instructions are
permutated and linked together by unconditional jumps. The reordering of instructions
does not modify the order in which they are executed.

5.7 Subroutine Inlining and Subroutine Outlining

Subroutine inlining is a technique in which a subroutine call is replaced with its code
[CVM]. Subroutine inlining is a code obfuscation technique similar to dead code
insertion, the only difference is former inserts subroutine code whereas later inserts
arbitrary dead code in a program.

11

Figure 9: Subroutine Inlining

Figure 9 shows an example of subroutine inlining where call to subroutines S1 and S2 is
replaced with its code.

Code outlining is reverse of code inlining. Code outlining converts a block of code into a
subroutine and replaces the block with a call to the subroutine. This technique essentially
does not preserve any logical code grouping [12].

Figure 10: Subroutine Outlining

Figure 10 shows an example of subroutine outlining where subroutine S12 is created with
randomly selected block of code.

12

…
Call S1
Call S2
…

S1: move eax, ebx
add eax, 12h
push eax
ret

S2: mul ecx
mov edx, eax
ret

…
move eax, ebx
add eax, 12h
push eax
mul ecx
mov edx, eax
…

…
move eax, ebx
add eax, 12h
push eax
mul ecx
mov edx, eax
…

…
move eax, ebx
call S12
mov edx, eax
…

S12: push eax
add eax, 12h
mul ecx
ret

6. Similarity Test

Metamorphic engine produces morphed copies of a single input program. Effective
metamorphic engine will generate highly dissimilar copies. Similarity test is used to
determine the diversity of the code generated by our metamorphic engine. We conducted
repetitive similarity test to improve metamorphism of our engine. The similarity test
compares two assembly programs and calculates the percentage of similarity between
them. To compute the similarity between two files, we followed the following steps [11].

1. Given two assembly files a.asm and b.asm, extract opcode sequences from each
file excluding comments, blank lines, labels, and other directives. Let’s call these
opcode sequences A and B for the files a.asm and b.asm respectively.

2. Consider m and n are the number of opcodes in A and B respectively.
3. Each opcode in A and B is assigned a number in ascending order i.e. first opcode

is assigned 0, second opcode is assigned 1, third opcode is assigned 2, and so on.
4. Opcode sequences of A and B are divided into subsequences of length 3.
5. Every subsequence in A is compared with all subsequences in B. It is considered

a match if the opcodes of any subsequence in A is same as the opcodes of any
subsequence in B. These opcodes can be in any order. For example A is
(mov,call,sub,add,test) and B is (mov,test,add,call,sub). The sequence
(call,sub,add) in A matches with (add,call,sub) of B.

6. All such matches of A are computed and added together to find total number of
match. This total number of matches is divided by m to get the similarity
percentage of A (X).

7. Similarly the similarity percentage of B (Y) is computed.
8. The average of X and Y will give the actual similarity percentage between files

a.asm and b.asm.

A graph is generated to visualize the similarity of the assembly files. Let’s look at how a
graph is generated:

1. Comparing two opcode sequences A and B, x axis represents opcode sequence A
and y axis represents opcode sequence B.

2. A co-ordinate (12, 25) is marked if the subsequence (12, 13, 14) of A matches
with the subsequence (25, 26, 27) of B.

3. A graph is generated by plotting all the matches for A and B (see figure 11-a).
4. But the graph in figure 11 is very populated. It is difficult to understand the

similarity.
5. To generate a clean graph, all the matches less than some threshold are dropped.

We assumed the threshold to be 5 and the graph in figure (11-a) is cleared in
figure (11-b).

13

(a) All matches (b) With threshold

Figure 11: Similarity Graph

7. Hidden Markov Model

Hidden Markov Model also known as HMM is a statistical pattern analysis tool. HMM
creates a model representing the input data. This input data is called training data. The
training data consists of a list of unique symbols and their positional information in input
sequence. HMM uses this model to determine if a given input sequence follows similar
pattern as the model.

HMM is widely used for speech recognition and protein modeling. Recently HM M has
been successfully used to detect metamorphic viruses [2, 9]. Metamorphic viruses are a
family of viruses that changes in appearance while preserving the same functionality.
Generally a family of viruses have similar pattern. Given a family of viruses HMM can
come up with the statistical model representing the family. Now any virus can be tested
against several such models to determine which family it belongs to.

Let’s look at a simple example to understand inner working of HMM [14]. Suppose we
want to determine annual temperatures of some distant location. The annual temperature
can be either hot (H) or cold (C). We know the probability of a hot year followed by
another hot year is 0.7 and a cold year followed by another cold year is 0.6. These
probabilities are represented in matrix below,

Figure 12: Temperature transition probability

14

We also know the correlation between tree sizes and temperature. Tree sizes are of three
types small (S), medium (M), and large (L). The probability of tree being small in hot
year is 0.1, medium is 0.4, and large is 0.5. Similarly the probability of tree being small
in cold year is 0.7, medium is 0.2, and large is 0.1. The probabilistic relation between tree
sizes and annual temperature is given by the matrix below,

Figure 13: Tree size probability

In this example, the annual temperatures are the states and the tree sizes are the
observable symbols. The probability of different tree sizes at each temperature represents
the probability of the observation symbols in each state. The states (H and C) are hidden
since we can not see the temperature of distant location. We can only see the observation
symbols (S, M, and L) which are statistically related to the states.

Suppose we have a sequence of observation symbols (S, M, S, L) of four consecutive
years. We want to find out the sequence of states i.e. the annual temperature from the
sequence of tree sizes.

The notations used in HMM:
T = Length of the observed sequence
N = Number of states in the model
M = number of distinct observation symbols
O = Observation sequence {O0, O1, …, OT-1}
A = State transition probability matrix
B = Observation probability distribution matrix
π = Initial state distribution matrix

In this example, state transition probability matrix A, is the matrix with temperature
transition probability (figure 12) with N = 2. The observation probability distribution
matrix B, is the matrix of tree size probability (figure 13) with M = 3. Thus we get A and
B as shown below,

The initial state distribution matrix, π represents the probability of being in a state
initially. Consider the initial state distribution matrix for this example is

The matrices A, B, and π forms the parameters of HMM model. Note that, the parameters
A, B, and π are row stochastic, i.e. the summation of each row should be 1.

15

and

Figure 14: HMM Model

So far we have HMM model representing tree sizes and temperatures. Consider an
observation sequence (S, M, S, L) of length T = 4. To determine the state transition for
this sequence, HMM follows these steps:

1. Determine all possible state transitions = NT.
2. Calculate the probability of given observation sequence for each state transition of

step 1. The formula used to calculate this probability is:

P(HHCC) = πH * bH(S) * aH,H * bH(M) * aH,C * bC(S) * aC,C * bC(L)
 = (0.6) * (0.1) * (0.7) * (0.4) * (0.3) * (0.7) * (0.6) * (0.1)
 = 0.000212

Table 3 shows list probabilities of observing (S, M, S, L) for all possible state
sequences.

3. The state sequence with highest probability is selected. The state sequence
“CCCH” has the highest probability in this example.

16

Table 3: Probabilities of observing (S, M, S, L) for all possible state sequences

Therefore the most probable state sequence for given observation sequence is CCCH.

7.1 HMM as Virus Detection Tool

HMM as virus detection tool requires training data to produce a model. The training data
consists of observation sequence and unique symbols. The observation sequence and
unique symbols are derived from several viruses of a family. These viruses are programs
written in assembly language. The observation symbols are unique assembly opcodes
among all viruses. The opcodes of all viruses are concatenated to produce one long
observation sequence. HMM is trained on this observation sequence to produce the
model. An example of such observation sequence is shown in figure 15. The model is
shown in figure 16.

17

(a) Unique Symbols (b) Observation sequence
Figure 15: Training Data

Figure 16: HMM model

18

Given a virus to test against HMM model, HMM produces following result file:

Figure 17: The Result File

In the result file, IDAN0 to IDAN4 are the viruses from the same family. The score for
these viruses is greater than -4.38 which are defined as a threshold. A file with a score
less than the threshold is not considered as part of this family. The files IDAR0 to IDAR4
have scores less than the threshold and therefore not in the family.

8. Implementation
8.1 Introduction

In general metamorphic engine has to implement some or all code obfuscation
techniques. In addition to using these techniques, each implementation will have its own
heuristics. These heuristics may include processes that decide type of obfuscation
techniques to use, when to apply them, and how to apply them.

We started our implementation by following some of the existing metamorphic engines
like Evol. Evol is a metamorphic virus that used code obfuscation techniques such as
dead code insertion, register / operands usage exchange, and equivalent instruction
substitution. In addition to the techniques used by Evol, we added few more variations of
these techniques. This section gives detailed explanation of the code obfuscation
techniques we used.

19

8.2 Goals

Our implementation was geared toward achieving following goals:
• Generate morphed copies of a single input virus. These morphed copies

should have minimum similarity with the base virus and among themselves.
• The morphed copies should have same functionality as the base virus.
• Morphed copy should be close to normal program. Assumption here is the

normal programs are the cygwin utility files of the same size as the base virus.
The reason behind using cygwin utility files is they probably are doing same
low level operations as a virus.

• The metamorphic engine should work on any assembly program.
8.3 Code Obfuscation Techniques Used

8.3.1 Dead Code Insertion
Dead code insertion is adding NOP or do-noting instructions. We used dead code
insertion to introduce opcodes that are alien to the base virus. The alien opcodes were
determined by analyzing the base virus and normal programs.

We first generated statistics of the base virus to find out all the opcodes used. The graph
in figure 18 below lists the opcodes used in the base virus with their frequency.

Figure 18: Base virus opcodes and their frequency

Our base virus has 27 unique opcodes and six of them appear more than 10 times.
Opcodes mov, push, add, call, cmp, and jz are the most frequent appearing opcodes. We
designed our dead opcode set to include more of the infrequent used opcodes.

20

We then analyzed the normal program for its opcode frequency. The graph in figure 19
shows the statistics of a normal file.

Figure 19: Opcodes of normal file and their frequency

When the statistics of a normal file is compared with the base virus, we get the list of
opcodes that are unique to a normal file. The unique opcodes are AND, INT, FNSTCW,
OR, FLDCW, LEAVE, JNS, SETNZ, SETZ, JB, CLD, JNB, SHL, INC, FLD, FSTP, and
REPE.

This comparison shows that the above unique opcodes should be included in morphed
copies to make them look more like a normal file. Based on this conclusion the dead code
instructions are modeled to include most of the above unique opcodes. The table 4 shows
some examples of dead code instructions used. Refer to Appendix A for complete list of
dead code instruction.

Table 4: Arithmetic Dead Code Instructions
1. add R, 0
2. sub R, 0
3. adc bx, 0
4. sbb bx, 0
5. inc R followed by dec R

These dead code instructions are injected at randomly selected locations in the base virus.
For every selected location, we insert a single dead code instruction. The dead code

21

instruction to be inserted is randomly selected. These are categorized as simple single
NOP instruction substitution.

As the variation to simple single NOP instruction substitution, we introduced
unconditional jump NOP instruction substitution. The jump NOP works by introducing
unconditional jump to next immediate instruction. An example of this variation is shown
below.

mov edx, [esi+entryPoint] jmp pl010235
pl010235: mov edx, [esi+entryPoint]

8.3.1.1 NOP sequence insertion
Dead code insertion was used to insert a single NOP Instruction. In NOP sequence
insertion, a random sequence of NOP instructions are inserted at randomly selected
locations. The locations to insert NOP sequence were categorized in two viz. beginning
of the code section and rest of the code section. To insert or not to insert a NOP sequence
in the beginning of the code section is decided randomly. While for the rest of the code
section, the insertion location and a NOP sequence is selected randomly.

Figure 20: Algorithm to insert NOP sequence on entry point

Figure: Algorithm to insert NOP sequence

Figure 21: Algorithm to insert random NOP sequence

22

1. Determine entry point of a virus.
2. Generate random number between 0 to 3
3. If the random number is 0 then insert NOP sequence
4. To inset NOP sequence:

a. Randomly select length of a NOP sequence from 3, 5, and
7.

b. Generate random permutation of the above selected
length. For example if the length selected is 3 then 2^3
permutations are possible, randomly select any sequence
out of 8 permutations.

c. Insert this sequence into a virus.

1. Generate random number between 0 to 50
2. Add a constant number to get value X
3. For every X instruction in the base virus insert randomly selected

NOP sequence.

8.3.1.2 Transformations of Evol
Along with a single dead code insertion and a NOP sequence insertion, we introduced
some new dead code insertions. These insertions are inspired from Evol virus [6]. Evol
virus substitutes a single instruction by surrounding it with dead code. The Evol
transformations used here are listed in table 5.

Table 5: Evol transformations [6]

One disadvantage with these transformations is an instruction is substituted with a block
of instructions beginning with push followed by some instructions and ending with pop.
Therefore these transformations increase the number of push and pop opcodes. This also
creates a pattern of starting with push and ending in pop [20].

23

8.3.2 Equivalent instruction substitution
Some opcodes appear frequently in the base virus like mov, push, add, call, cmp, and jz.
To minimize the number of these opcodes, we used equivalent instruction substitution. In
an equivalent instruction substitution, an instruction is replaced with another instruction
or a block of instructions with the same functionality. For example substitutions for add
are listed in table 6.

Table 6: Substitutions for add

add R, imm 1. sub R, new_imm where new_imm = imm x (- 1)
2. lea R, [R + imm]

add R, 1 1. not R
neg R

Here, opcode add is replaced with opcodes like “sub”, “lea”, and “not” followed by
“neg”. Similarly opcodes like mov, cmp, test etc are replaced with equivalent
instructions. The complete list can be found in appendix B.

The substitution for each instruction is decided based on the type of operands like
REG (8), REG (8) REG (16), REG (16) REG (32), REG (32)
REG (8), MEM REG (16), MEM REG (32), MEM
REG (8), IMM REG (16), IMM REG (32), IMM
MEM, REG (8) MEM, REG (16) MEM, REG (32)
MEM, IMM

8.3.3 Transpose
After a morph copy is generated using dead code insertion and equivalent substitution,
we apply transpose to generate final output.

24

Figure 22: Algorithm for transpose

The basic transpose algorithm applies only to instructions with register operands. We
extended this algorithm to include instructions with memory operands. To achieve this
extension, we added a new condition check. While comparing the operands in both the
instructions, we had to make sure that none of the registers are used as memory pointers.
For example following two instructions can be swapped.

mov ax, cx
add [dx + 2], 5

The following two instructions can not be swapped.
mov ax, cx
add [ax + 2], 5

The high level algorithm of our metamorphic engine is shown in figure 23.

25

1. Read two instructions with 2 operands.
2. Generate a random number between 0 and 3.
3. If the random number is 0 then perform transpose.
4. To perform transpose:

a. Read third instruction.
b. If the third instruction is not any conditional jump

instruction then
i. If to-operands of both instructions are not equal

and
to-operand of first instruction is not equal to from-
operand of second instruction

and
from-operand of first instruction is not equal to to-
operand of second instruction

1. Swap two instructions.

Figure 23: High level algorithm of Metamorphic Engine

9. Experiments

We generated a large of number of metamorphic virus variants of the base virus with our
metamorphic engine. The metamorphic virus variants were generated by applying the
metamorphic engine iteratively over a single base virus. Applying metamorphic engine
once on an input is 1st generation metamorphism. Applying the metamorphic engine
twice on an input is 2nd generation metamorphism and so on.

The metamorphic engine can take any assembly program as input. The output is a
morphed copy of the input. These assembly sources are then complied into executables
using FASM [21]. These executables are then disassembled using IDA Pro with default
settings (686 instruction set) [22]. These assembly programs were used to perform all
tests. To keep the tests more realistic IDA-pro generated assembly files were used rather
than the original assembly source from the engine.

26

1. Determine the start of code section.
2. RAND_NUM = random number between 0 and 3.
3. If RAND_NUM = 0 then perform NOP sequence insertion at entry

point.
4. RAND_NUM = random number between 50 and 100
5. For every RADN_NUM instruction, perform random NOP sequence

insertion.
6. RAND_NUM_SUB = random number between 0 and 3
7. If RAND_NUM_SUB = 0 then select the instruction for Substitution //

substitution is done for about 1 in 4 instructions.
8. Substitution:

a. RAND_DEAD_EQUI = random number between 0 and 3.
b. If (RAND_DEAD_EQUI < 2)

//equivalent code substitution is done 66%
i. Perform equivalent code substitution

c. Else
i. Perform dead code insertion

//randomly select among Single NOP instruction insertion, //
jump NOP, and Evol transformations.

9. Repeat steps 5 to 8 till end of the file.
10. Perform transpose on the generated morphed code.

Any assembly program

Apply Metamorphic
Engine on input program

Metamorphic engine
generates Morphed

copies

Assemble output
programs using

assembler

Disassemble executables
using IDA-Pro

Model HMM on assembly programs and
conduct Similarity Test on morphed

assemblies

Figure 24: Over all Process

All our tests were performed using two different tools. These include Commercial virus
scanner, Similarity Test, and statistical pattern analysis tool such as Hidden Markov
Model.

9.1 Commercial virus scanner

In our testing, the base virus was successfully detected and quarantined by the
commercial virus scanner installed on our machine. But the same virus scanner failed to
detect morphed copies of the base virus.

9.2 Similarity Test

Similarity test compares and reports the percentage of similarity of two assembly
programs. The purpose of the similarity test is to measure the code diversity of the
morphed copies.

We compared the base virus with 1st to 9th generations of metamorphic copies. These
comparisons were performed using the default settings of similarity test i.e. 10 opcodes in
a sequence is considered a match. The result of this test is shown below in figure 25. The
similarity between the base virus and 1st generation virus is about 70%. The similarity

27

decreases with higher generations. 9th generation virus is about 10% similar to the base
virus.

Figure 25: Similarity results of the base virus v/s 9 different generations

After applying the metamorphic engine to the base virus, the number of opcodes in
morphed copies increases. The dissimilar length of the compared files may affect
similarity test. So we compared a pair of viruses from the same generation. The viruses
from the same generation are of similar length. 1st generation viruses are about 50%
similar whereas 9th generation viruses are about 2.5% similar as shown in figure 26. Note
that, the viruses generated by Next Generation Virus Creation Kit (NGVCK) were found
to be about 10% similar with default settings [2]. Based on these similarity tests, we
decided to model HMM on highly dissimilar generation which is 9th generation.

28

Figure 26: Graph of Similarity of two N generations

9.3 HMM

Similarity test shows that 9th generation viruses are highly metamorphic. To further test
morphed copies, the statistical pattern analysis tool such as HMM was used. This test
consists of four test cases:

1. N generation viruses against the base virus model
2. The base virus against the morphed virus model
3. Normal files against 9th generation virus model
4. Morphed viruses against normal file model

The idea of this test is to compare statistics of morphed copies with the base virus and
normal files.

9.3.1 N generation viruses against the base virus model
We trained HMM on 60 copies of the base virus with N = 2 and compared 9 different
generations of viruses against this model. The base virus model is listed in appendix D.
The 1st generation virus scored about -69 and next generations are showing low scores.
The statistical pattern of N different generations is different than the base virus.

Table 7: HMM of base virus tested with 9 generations

Virus Score
1st Generation -68.722928938174
2nd Generation -131.862876167904

29

3rd Generation -198.857278862957
4th Generation -234.377340367938
5th Generation -261.32928056904
6th Generation -297.823863014344
7th Generation -319.359839713903
8th Generation -338.517130927289
9th Generation -343.070315142923

Figure 27: N (1-9) generation viruses tested against base virus model

9.3.2 The Base virus against the morphed virus model
We then modeled HMM for odd generations of viruses. The base virus was tested against
these modes and scores are listed in table 8. Results shows the statistical pattern of the
base virus can still be detected by different generation of viruses.

Table 8: The base virus tested against N Generation Model

Model Score
1st Generation Model -2.26519095918038
3rd Generation Model -2.5616088296304
5th Generation Model -2.7804691006756
7th Generation Model -6.53547571903687
9th Generation Model -9.36420192759975

30

Figure 28: Base virus tested against N generation models

9.3.3 Normal files against 9th generation virus model
We collected 120 viruses from 9th generation and generated HMM model of that family.
We used 4 fold cross validation i.e. HMM was modeled on 90 viruses and 30 viruses
tested against this model. The model was generated with 2 states. The threshold for the
family is -4.2650. Any file scoring higher than the threshold is considered to be family
virus and a file having score less than threshold is considered a non-family file. Normal
files were tested against this model. Out of 30 normal files, the maximum score -11.7943
is less than the threshold. So all normal files are identified correctly and declared non-
family files. This gives 0% false positives and 0% false negatives.

31

Table 9: Results of 9th generation viruses tested against 9th generation model

9th Generation Model with N =2
Family Viruses Normal Files

G9_0 -3.1677
G9_1 -3.1684
G9_2 -3.1269
G9_3 -3.1419
G9_4 -3.1596
G9_5 -3.1692
G9_6 -3.1419
G9_7 -3.1782
G9_8 -3.1115
G9_9 -3.1305
G9_10 -3.1404
G9_11 -3.1262
G9_12 -3.1299
G9_13 -3.1424
G9_14 -3.1300

G9_15 -4.2650
G9_16 -3.1277
G9_17 -3.1266
G9_18 -3.1248
G9_19 -3.1138
G9_20 -3.1250
G9_21 -3.1486
G9_22 -3.1517
G9_23 -3.1661
G9_24 -3.1420
G9_25 -3.1743
G9_26 -3.1522
G9_27 -3.1638
G9_28 -3.2038
G9_29 -3.1714

N0 -14.4239
N1 -42.9527
N2 -444.9695
N3 -532.4239
N4 -20.8160
N5 -18.7624
N6 -20.8160
N7 -17.2520
N8 -27.8287
N9 -19.0357
N10 -406.5270
N11 -37.8043
N12 -25.4653
N13 -23.9582
N14 -25.2204

N15 -356.9657
N16 -34.4798
N17 -11.7943
N18 -406.5270
N19 -406.5270
N20 -507.2849
N21 -15.2849
N22 -507.2849
N23 -473.7664
N24 -356.7943
N25 -36.2016
N26 -32.1237
N27 -507.2849
N28 -35.0315
N29 -356.9657

Min Score = -4.2650 Max Score = -11.7943

Figure 29: Family viruses and normal files tested against 9th generation model

32

9.3.4 Morphed viruses against normal file model
We collected 40 cygwin files as a set of normal files. We generated HMM model on a set
of normal files. Then 9th generation viruses are tested against this model. The threshold
for normal files is -180.5254.All 9th generation viruses scored higher than the threshold.
The maximum score of 9th generation viruses is -37.2978. So the 9th generation viruses
are considered as normal files. This is 100% false positives.

Table 10: Results of 9th generation viruses tested against normal model

Normal model with N = 2
Normal Files 9th Generation Viruses

N0 -21.9658
N1 -5.20571
N2 -180.5254
N3 -4.53708
N4 -1.7961
N5 -1.7246
N6 -1.7961
N7 -2.0771
N8 -2.0542
N9 -1.7599

G9_0 -173.3586
G9_1 -160.9587
G9_2 -154.1496
G9_3 -159.1445
G9_4 -168.9089
G9_5 -169.4739
G9_6 -164.7176
G9_7 -37.2978
G9_8 -169.2335
G9_9 -158.5317

Min Score = -180.5254 Max Score = -37.2978

Figure 30: Family viruses and 9th generation viruses tested against normal model

33

HMM model of normal files has very low threshold. The reason behind this low
threshold is less similarity within a set of normal files. With less similarity, generating
most probable model is difficult. And this is causing false positives.

10.Conclusion

We developed the metamorphic engine producing morphed copies of the base virus that
are highly dissimilar and includes some opcodes of the normal program. These were the
two main criteria described in [2] which are required in metamorphic virus to defeat
HMM. In our engine, we employed code obfuscation techniques such as equivalent
instruction substitution, dead code insertion, and transpose. We introduced floating point
opcodes in morphed copies which are commonly found in normal programs.

The similarity showed that the morphed copies are highly metamorphic with 2.5%
similarity index. Even with such a high metamorphism, HMM was able to classify the
morphed copies of the base virus as the family virus. The base virus was compared with
model of morphed copies, HMM was still able to classify the base virus as the same
family. This fact proves that even with high metamorphism, HMM is able to identify a
common statistical pattern across all morphed copies and the base virus. HMM has
proved very difficult to defeat.

11.Future Work

We implemented code obfuscation techniques such as equivalent instruction substitution,
dead code insertion, and transposition. The next step would be to include more code
obfuscation techniques into a metamorphic engine. Also, applying different subset of
code obfuscation techniques can generate more diverse morphed copies.

The size of the base virus is 1.5KB. Applying our metamorphic engine iteratively
changes the original file size. 1st generation morphed files are about 2 KB which 35 %
more than the original size. The graph in figure 31 reflects the increase in file size over
generations. A technique can be devised to implement a metamorphic engine such that
file sizes of the morphed copies do not change.

34

Figure 31: Change in file sizes over 9 generations.

One of the techniques to make viruses look like normal programs is to compare the
HMM model parameters of a virus and normal files. The matrix B shows the probabilities
of observation symbols in all states. This matrix can be converted to a state transition
table. The state transition tables of virus and normal programs can be compared to change
the statistics of a virus. This may make virus look alike normal program.

35

REFERENCES

[1] M. Stamp, “Information Security: Principles and Practice,” August 2005.

[2] W. Wong, “Analysis and Detection of Metamorphic Computer Viruses,” Master’s
thesis, San Jose State University, 2006.
http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

[3] S. Attaluri, “Profile hidden Markov models for metamorphic virus analysis,” Master’s
thesis, San Jose State University, 2007.
http://www.cs.sjsu.edu/faculty/stamp/students/Srilatha_cs298Report.pdf

[4] P. Szor, “The Art of Computer Virus Defense and Research,” Symantec Press 2005.

[5] VX Heavens, http://vx.netlux.org/

[6] Orr, “The viral Darwinism of W32.Evol: An in-depth analysis of a metamorphic
engine,” 2006. http://www.antilife.org/files/Evol.pdf

[7] Orr, “The molecular virology of Lexotan32: Metamorphism illustrated,” 2007. http://
www.antilife.org/files/Lexo32.pdf

[8] E. Konstantinou, “Metamorphic Virus: Analysis and Detection,” January 2008.

[9] A. Venkatesan, “Code Obfuscation and Metamoprhic Virus Detection,” Master’s
thesis, San Jose State University, 2008.
http://www.cs.sjsu.edu/faculty/stamp/students/ashwini_venkatesan_cs298report.doc

[10]The Mental Driller, “Metamorphism in practice or How I made MetaPHOR and what
I've learnt,” February 2002. http://vx.netlux.org/lib/vmd01.html

[11]P. Mishra, “A taxonomy of software uniqueness transformations,” December 2003.
http://www.cs.sjsu.edu/faculty/stamp/students/FinalReport.doc

[12]J. Aycock, “Computer Viruses and malware,” Springer Science+Business Media,
2006.

[13]E. Daoud and I. Jebril, “Computer Virus Strategies and Detection Methods,” Int. J.
Open Problems Compt. Math., Vol. 1, No. 2, September 2008.
http://www.emis.de/journals/IJOPCM/files/IJOPCM(vol.1.2.3.S.08).pdf

[14]M. Stamp, “A Revealing Introduction to Hidden Markov Models”, January 2004.
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

36

[15]Walenstein, R. Mathur, M. Chouchane R. Chouchane, and A. Lakhotia, “The design
space of metamorphic malware,” In Proceedings of the 2nd International Conference
on Information Warfare, March 2007.

[16]R. Grimes. Malicious Mobile Code: Virus Protection for Windows. O'Reilly &
Associates, Inc., Sebastopol, CA, USA, 2001.

[17]F. Cohen, “Computer viruses: theory and experiments,” Computer Security,
6(1):22-35, 1987.

[18] “Benny/29A", Theme: metamorphism,
http://www.vx.netlux.org/lib/static/vdat/epmetam2.htm

[19] J. Borello and L. Me, “Code Obfuscation Techniques for Metamorphic Viruses”,
Feb 2008, http://www.springerlink.com/content/233883w3r2652537

[20] A. Lakhotia, “Are metamorphic viruses really invincible?” Virus Bulletin,
December 2005.

[21] FASM, http://flatassembler.net/

[22] IDA Pro, http://www.hex-rays.com/idapro/

37

Appendix A: Dead code instructions

Transfer Dead Code
1. mov R, R
2. push R followed by pop R

Arithmetic Dead Code
1. add R, 0
2. sub R, 0
3. adc bx, 0
4. sbb bx, 0
5. inc R followed by dec R

Logical Dead Code
1. shl R, 0
2. shr R, 0
3. and R, 1
4. test R, 1
5. or R ,0
6. xor R, 0

Floating Point Dead Code

1. fadd st2, st0
2. fmul st2, st0
3. fld st2
4. fsub st2, st0
5. fdiv st2, st0
6. fst st3

Miscellaneous Dead Code
1. nop
2. neg R, not R, dec R

38

Appendix B: Equivalent instruction substitution

Notations:
R – Register (eax, ax, ah, al)
RR – Random register
mem, [mem] – Memory address ([esi])
imm – Immediate value (12h)
op1 – To-operand with length more than 1 including R and mem
op2 – From-operand with length more than 1 including R, mem, and imm
loc – any location or label

add R, imm 3. sub R, new_imm where new_imm = imm x (- 1)
4. lea R, [R + imm]

add R, 1 3. not R
neg R

mov R, imm 1. mov R, random_imm
add R, new_imm where new_imm = imm – random_imm

2. mov R, random_imm
sub R, new_imm where new_imm = (random_imm - imm)
mov R, random_imm
xor R, new_imm

mov R1, R2
(no 8 bit R)

1. push R2
pop R1

mov R, mem
(no 8 bit R)

1. push mem
pop R

mov R, imm
(no 8 bit R)

1. push imm
pop R

2. lea R, [imm]
mov mem, R
(no 8 bit R)

1. push R
pop mem

mov mem, imm 1. push imm
pop mem

cmp R, 0 1. or R, R
2. and R, R
3. test R, R

cmp R1, R2 1. sub R1, R2
cmp R, mem 1. sub R, mem
cmp R, imm 1. sub R, imm
cmp mem, R 1. sub mem, R
cmp mem, imm 1. sub mem, imm
and R1, R2 1. push RR

mov R, R1

39

or R, R2
xor R1, R2
xor R1, R
pop RR

2. not R1
not R2
or R1, R2
not R1

dec R 1. neg R
not R

dec mem 1. neg mem
not mem

inc R 1. add R, 1
2. not R

neg R
inc mem 1. add mem, 1

2. not mem
neg mem

invoke op1, op2 1. stdcall [op1], op2
jmp loc 1. cmp RR, RR

jz loc
jmp R 1. push R

ret
lea R, [R1 + R2] 1. mov R, R1

add R, R2
lea R, [R + R1 + imm] 1. add R, imm

add R, R1
lea R, [R1 + R2 + imm] 1. lea R, [R1 + imm]

add R, R2
lodsb 1. mov al, [esi]

add esi, 1
lodsd 1. mov eax, [esi]

add esi, 4
movsb 1. push eax

mov al, [esi]
add esi, 1
mov [edi], al
add edi, 1
pop eax

movsd 1. push eax
mov [eax], esi
add esi, 4
mov [edi], eax

40

add edi, 4
pop eax

neg R 1. not R
add R, 1

neg mem 1. not mem
add mem, 1

not R 1. neg R
sub R, 1

2. neg R
dec R

3. neg R
add R, -1

4. xor R, -1
not mem 1. neg mem

sub mem, 1
2. neg mem

dec mem
3. neg mem

add mem, -1
or R1, R2 1. push RR

mov RR, R1
xor RR, R2
and R1, R2
xor R1, RR
pop RR

or R1, mem 1. push RR
mov RR, R1
xor RR, mem
and R1, mem
xor R1, RR
pop RR

or R1, imm 1. push RR
mov RR, R1
xor RR, imm
and R1, imm
xor R1, RR
pop RR

or mem, R 1. push RR
mov RR, mem
xor RR, R
and mem, R
xor mem, RR
pop RR

41

or mem, imm 1. push RR
mov RR, mem
xor RR, imm
and mem, imm
xor mem, RR
pop RR

popad 1. pop edi
pop esi
pop ebp
add esp, 4
pop ebx
pop edx
pop ecx
pop eax

stdcall op1, op2 1. invoke [op1], op2
stosb 1. mov edi, [al]

add edi, 1
stosd 1. mov edi, [eax]

add edi, 4
sub R, imm 1. add R, new_imm where new_imm = imm x (-1)
sub mem, imm 1. add mem, new_imm where new_imm = imm x (-1)
sub R, 1 1. neg R

not R
sub mem, 1 1. neg mem

not mem
test R1, R2 1. or R1, R2
xchg R1, R2 1. xor R1, R2

xor R2, R1
xor R1, R2

xor R, R 1. sub R, R
2. mov R, 0
3. and R, 0

42

Appendix C: Similarity Tests
Table C-1: Comparison results of the base virus with N generations

Base virus and 1st generation virus Base virus and 2nd generation virus

Base virus and 3rd generation virus
Base virus and 4th generation virus

43

Base virus and 5th generation virus Base virus and 6th generation virus

Base virus and 7th generation virus Base virus and 8th generation virus

Base virus and 9th generation virus

44

Table C-2: Comparison of N generations

1st Generation 2nd Generation

3rd Generation 4th Generation

5th Generation 6th Generation

45

7th Generation 8th Generation

9th Generation

46

Appendix D: Hidden Markov Model of the Base Virus

Table D-1: HMM parameters (A, B, π) of the base virus with N = 2

N = 2, M = 27, T = 13620
π:

0.00000000000000 1.00000000000000
A:

0.00000000000454 0.99999999999544
0.78098025609290 0.21901974390710

B:
start 0.00000000000000 0.01569168387372
call 0.16075993445552 0.00000000000000
pop 0.01818103103059 0.04856961642305
sub 0.03658902222441 0.01850358587934
xor 0.01367743341443 0.00501131319206
mov 0.22927558802501 0.22110228244243
lodsd 0.02009499180694 0.00000000000000
add 0.12595237659940 0.18409720285682
inc 0.00000000000000 0.03138336774743
cmp 0.00000000000000 0.10199594517915
jnz 0.08037996722776 0.00000000000000
dec 0.00000000000000 0.02353752581057
lea 0.03647826819294 0.01859007097306
push 0.09843010755634 0.22128034835740
stosd 0.00000000000000 0.00784584193686
lodsb 0.01004749590347 0.00000000000000
loop 0.00000000000000 0.00784584193686
test 0.00000000000000 0.03138336774743
jz 0.10047495903470 0.00000000000000
movzx 0.00000000000000 0.02353752581057
imul 0.01004749590347 0.00000000000000
pusha 0.00000000000000 0.00784584193686
popa 0.00000000000000 0.00784584193686
rep 0.00000000000000 0.01569168387371
retn 0.00937384910765 0.00824111208583
jmp 0.04018998361388 0.00000000000000
jle 0.01004749590347 0.00000000000000

47

Table D-2: HMM parameters (A, B, π) of the base virus with N = 3

N = 3, M = 27, T = 13620
π:

1.00000000000000 0.00000000000000 0.00000000000000
A:

0.10040502462601 0.08365175778876 0.81594321758522
0.12520909122804 0.87479090877196 0.00000000000000
0.00000000000000 0.12467619840110 0.87532380159890

B:
start 0.00108025173100 0.00000000000000 0.01966848475016
call 0.00000000000000 0.00000000000000 0.15867012907693
pop 0.00000000000000 0.03556280523263 0.04028836621593
sub 0.00000000000000 0.05419236906398 0.00000000000000
xor 0.00000000000000 0.01806412302133 0.00000000000000
mov 0.00000000000000 0.41203378876197 0.05336255596307
lodsd 0.00000000000000 0.01806412302133 0.00000000000000
add 0.00000000000000 0.32515421438388 0.00000000000000
inc 0.00000000000000 0.01806412302133 0.01983376613462
cmp 0.49078744655348 0.00000000000000 0.05382769681044
jnz 0.00000000000000 0.00000000000000 0.07933506453846
dec 0.00000000000000 0.00000000000000 0.02975064920192
lea 0.31368699013508 0.01047971535740 0.00000000000000
push 0.00000000000000 0.02709618453199 0.34709090735578
stosd 0.00000000000000 0.00000000000000 0.00991688306731
lodsb 0.00000000000000 0.00000000000000 0.00991688306731
loop 0.00000000000000 0.00000000000000 0.00991688306731
test 0.00000000000000 0.00000000000000 0.03966753226923
jz 0.00000000000000 0.00000000000000 0.09916883067308
movzx 0.00000000000000 0.02709618453199 0.00000000000000
imul 0.00000000000000 0.00903206151066 0.00000000000000
pusha 0.06481510386015 0.00000000000000 0.00000000000000
popa 0.00000000000000 0.00000000000821 0.00991688305829
rep 0.12963020772030 0.00000000000000 0.00000000000000
retn 0.00000000000000 0.00000000000000 0.01966848475016
jmp 0.00000000000000 0.03612824604265 0.00000000000000
jle 0.00000000000000 0.00903206151066 0.00000000000000

48

Appendix E: Hidden Markov Models of Normal Files

Table E-1: HMM parameters (A, B, π) for Normal Files with N = 2

N = 2, M = 56, T = 7351
π:

1.00000000000000 0.00000000000000
A:

0.86450620287537 0.13549379712462
0.04500882863247 0.95499117136753

B:
start 0.02837277526002 0.00000000000000
push 0.23166166493378 0.00243304736880
mov 0.18848829422565 0.55363549869642
sub 0.00575803807657 0.05663085598714
and 0.01273100451890 0.01842715311818
test 0.00000000000000 0.02537492730648
jz 0.00000000000000 0.03208115809462
int 0.00000000000000 0.00471248649977
fnstcw 0.00000000000000 0.00489373598054
movzx 0.00047405096064 0.01416123698577
or 0.00000000000000 0.01558745534541
fldcw 0.00000000000000 0.00507498546130
call 0.00000000000000 0.10584969676417
leave 0.03382907819464 0.00000000000000
retn 0.12604059778972 0.00000000000000
cmp 0.00000000000000 0.03171865913310
jle 0.00000000000000 0.00181249480761
xor 0.01057672968058 0.02331150612693
lea 0.00000000000000 0.02555617678724
pop 0.15932404569090 0.00000000000000
jmp 0.12567211288436 0.01860985171079
add 0.00000000000000 0.02048119132594
jb 0.00572386768789 0.00734234806584
jnz 0.00000000000000 0.00634373182662
jnb 0.01225924226040 0.00100266520921
insw 0.01200386645616 0.00000000000000
insb 0.01200386645616 0.00000000000000
imul 0.01855142997771 0.00000000000000

dec 0.00000000000000 0.00090624740380
arpl 0.00436504234770 0.00000000000000
cld 0.00000000000000 0.00181249480761
repe 0.00000000000000 0.00253749273065
movsx 0.00000000000000 0.00054374844228
jg 0.00000000000000 0.00090624740380
inc 0.00000000000000 0.00471248649977
setnz 0.00000000000000 0.00036249896152
popa 0.00054563029346 0.00000000000000
outsb 0.00109126058692 0.00000000000000
setz 0.00000000000000 0.00090624740380
jge 0.00000000000000 0.00181249480761
jbe 0.00000000000000 0.00144999584608
shl 0.00000000000000 0.00072499792304
shr 0.00000000000000 0.00036249896152
neg 0.00000000000000 0.00018124948076
sar 0.00000000000000 0.00036249896152
jl 0.00000000000000 0.00163124532685
jns 0.00000000000000 0.00072499792304
cdq 0.00000000000000 0.00018124948076
xchg 0.00109126058692 0.00000000000000
ror 0.00054563029346 0.00000000000000
js 0.00889051083744 0.00121545541851
ja 0.00000000000000 0.00163124532685
fstp 0.00000000000000 0.00090624740380
fld 0.00000000000000 0.00072499792304
fsub 0.00000000000000 0.00018124948076
fistp 0.00000000000000 0.00018124948076

49

Table E-2: HMM parameters (A, B, π) for Normal Files with N = 3

N = 3, M = 56, T = 7351
π:

0.00000 0.0000 1.00000
A:

0.11796 0.23553 0.64649
1.00000 0.00000 0.00000
0.00000 0.10631 0.89368

B:
start 0.00916 0.00000 0.00775
push 0.00139 0.00000 0.07778
mov 0.05227 0.00000 0.59701
sub 0.00000 0.07713 0.04634
and 0.02354 0.00000 0.01839
test 0.00000 0.17199 0.00000
jz 0.18844 0.00000 0.00058
int 0.02820 0.00000 0.00000
fnstcw 0.00000 0.03317 0.00000
movzx 0.04580 0.03909 0.00088
or 0.09083 0.00000 0.00040
fldcw 0.00000 0.00000 0.00498
call 0.00000 0.00000 0.10401
leave 0.00000 0.07616 0.00000
retn 0.25062 0.00000 0.00000
cmp 0.00000 0.21499 0.00000
jle 0.01084 0.00000 0.00000
xor 0.00116 0.00000 0.02616
lea 0.00000 0.00000 0.02511
pop 0.07111 0.27820 0.00000
jmp 0.00000 0.00000 0.05931
add 0.00000 0.00000 0.02012
jb 0.05533 0.00000 0.00000
jnz 0.03045 0.00000 0.00123
jnb 0.00556 0.02810 0.00000
insw 0.02386 0.00000 0.00000
insb 0.00000 0.02702 0.00000
imul 0.02859 0.00856 0.00011

dec 0.00000 0.00367 0.00035
arpl 0.00000 0.00982 0.00000
cld 0.00000 0.00000 0.00178
repe 0.00000 0.01719 0.00000
movsx 0.00108 0.00000 0.00035
jg 0.00426 0.00000 0.00018
inc 0.00000 0.00512 0.00388
setnz 0.00216 0.00000 0.00000
popa 0.00108 0.00000 0.00000
outsb 0.00000 0.00245 0.00000
setz 0.00541 0.00000 0.00000
jge 0.01084 0.00000 0.00000
jbe 0.00867 0.00000 0.00000
shl 0.00000 0.00249 0.00035
shr 0.00000 0.00000 0.00035
neg 0.00000 0.00000 0.00017
sar 0.00000 0.00000 0.00035
jl 0.00976 0.00000 0.00000
jns 0.00254 0.00203 0.00000
cdq 0.00000 0.00000 0.00017
xchg 0.00000 0.00149 0.00013
ror 0.00108 0.00000 0.00000
fstp 0.00108 0.00000 0.00071
fld 0.00000 0.00000 0.00071
fsub 0.00000 0.00122 0.00000
fistp 0.00000 0.00000 0.00017
js 0.02495 0.00000 0.00000
ja 0.00976 0.00000 0.00000

50

Appendix F: Hidden Markov Model of 9th Generation Viruses

Table F-1: HMM parameters (A, B, π) for 9th Generation viruses with N= 2

N = 2, M = 47, T = 87227
π:

1.00000000000000 0.00000000000000
A:

0.83217007332176 0.16782992667822
0.08209140361062 0.91790859638939

B:
start 0.00224949833917 0.00197266362902
fmul 0.13115095949748 0.01746554640060
and 0.17276039691696 0.01174130398615
shl 0.13727941735826 0.02718683702829
sub 0.11372459106253 0.03937598271045
fdiv 0.13170570484462 0.01825268605848
test 0.02444614244857 0.01960868462539
shr 0.03304940152925 0.00000000000000
push 0.00713112355913 0.14030039356432
mov 0.03714484588762 0.10603456753864
pop 0.02277679405086 0.09742469565353
fadd 0.00633423017186 0.02556683045773
fsub 0.00735821962914 0.02573173079309
inc 0.01092985748609 0.01724059842838
dec 0.01260818677659 0.01775123603675
lea 0.00498067906121 0.01948515838277
neg 0.00000000000000 0.01949739541988
add 0.02522026658893 0.07540022875981
not 0.00000000000000 0.02011202434730
lodsd 0.00000000000000 0.00276583017340
or 0.02324562742933 0.02031550185330
fld 0.00751349266042 0.02435821944460
xor 0.02553306865696 0.02290130532883
cmp 0.00007327119005 0.01795912402610

loop 0.00000000000000 0.00153657231855
jz 0.00052823655886 0.01510730365676
movzx 0.00094894665121 0.00414548110843
imul 0.00000000000000 0.00153657231855
pusha 0.00002523370760 0.00152422769242
rep 0.00000000000000 0.00307314463711
retn 0.00051071682025 0.00284036899599
jle 0.00000000000000 0.00153657231855
popa 0.00000000000000 0.00017073025762
cli 0.00000000000030 0.00013658420595
rcr 0.00000000000000 0.00001707302576
retf 0.00000000000000 0.00010243815457
rol 0.00002939919037 0.00003683664806
fild 0.00000000000000 0.00003414605152
jmp 0.02679258523014 0.03806061083191
fstp 0.00679951925229 0.02609041870823
adc 0.01029664573503 0.02427714520424
sbb 0.01075435812487 0.02238007040261
call 0.00000000000000 0.02555831956528
fst 0.00579144863872 0.02817137008812
jnz 0.00030713494533 0.01214232452585
stosd 0.00000000000000 0.00153657231855
lodsb 0.00000000000000 0.00153657231855

51

Table F-2: HMM parameters (A, B, π) for 9th Generation viruses with N= 3

N = 3, M = 47, T = 87227
π:

0.00000 0.00000 1.00000
A:

0.90141 0.00000 0.09858
0.37895 0.08330 0.53774
0.00001 0.62948 0.37051

B:
start 0.00257 0.00000 0.00212
fmul 0.02255 0.06837 0.13061
and 0.01882 0.08862 0.16907
shl 0.03193 0.10137 0.12015
sub 0.04047 0.10276 0.09859
fdiv 0.02233 0.20430 0.04094
test 0.02157 0.01948 0.02138
shr 0.00000 0.01738 0.03502
push 0.15554 0.01043 0.00000
mov 0.11757 0.03208 0.02844
pop 0.10929 0.00000 0.02691
fadd 0.02761 0.00463 0.00720
fsub 0.02737 0.01762 0.00085
inc 0.00000 0.00000 0.06561
dec 0.00000 0.10118 0.00000
lea 0.02084 0.00000 0.00865
jmp 0.04327 0.01806 0.02202
fstp 0.02793 0.00427 0.00879
adc 0.02622 0.01564 0.00520
sbb 0.02370 0.01739 0.00579
call 0.02813 0.00000 0.00000
fst 0.02974 0.01103 0.00397
neg 0.00000 0.00646 0.05219
add 0.06624 0.01300 0.07111

rcr 0.00001 0.00000 0.00000
retf 0.00011 0.00000 0.00000
rol 0.00005 0.00000 0.00000
fild 0.00003 0.00000 0.00000
not 0.00000 0.06270 0.01536
lodsd 0.00263 0.00158 0.00000
or 0.02292 0.01813 0.01908
fld 0.02541 0.01759 0.00228
xor 0.02201 0.03781 0.01874
cmp 0.01941 0.00150 0.00000
jnz 0.01219 0.00000 0.00353
stosd 0.00000 0.00000 0.00446
lodsb 0.00000 0.00649 0.00000
loop 0.00169 0.00000 0.00000
jz 0.01268 0.00000 0.01115
movzx 0.00484 0.00000 0.00060
imul 0.00167 0.00000 0.00004
pusha 0.00168 0.00000 0.00002
rep 0.00338 0.00000 0.00000
retn 0.00340 0.00000 0.00000
jle 0.00169 0.00000 0.00000
popa 0.00018 0.00000 0.00000
cli 0.00015 0.00000 0.00000

52

	1.Introduction
	2.Computer Virus
	3.Antivirus Defense Techniques
	3.1Signature Detection
	3.2Heuristic Analysis

	4.Advanced Code Evolution Techniques
	4.1Encryption
	4.2Polymorphism
	4.3Metamorphism
	4.3.1Anatomy of a Metamorphic Virus
	4.3.2The Metamorphic Virus According to a Virus Writer

	5.Code Obfuscation Techniques
	5.1Register Usage Exchange (Register Renaming)
	5.2Dead Code Insertion
	5.3Subroutine Permutation
	5.4Equivalent Code Substitution	
	5.5Transposition
	5.6Changing the Control Flow (Code Reordering through jumps)
	5.7Subroutine Inlining and Subroutine Outlining

	6.Similarity Test
	7.Hidden Markov Model
	7.1HMM as Virus Detection Tool

	8.Implementation
	8.1Introduction
	8.2Goals
	8.3Code Obfuscation Techniques Used
	8.3.1Dead Code Insertion
	8.3.1.1NOP sequence insertion
	8.3.1.2Transformations of Evol

	8.3.2Equivalent instruction substitution
	8.3.3Transpose

	9.Experiments
	9.1Commercial virus scanner
	9.2Similarity Test
	9.3HMM
	9.3.1N generation viruses against the base virus model
	9.3.2The Base virus against the morphed virus model
	9.3.3Normal files against 9th generation virus model
	9.3.4Morphed viruses against normal file model

	10.Conclusion
	11.Future Work
	REFERENCES
	Appendix B: Equivalent instruction substitution
	Appendix C: Similarity Tests
	Appendix D: Hidden Markov Model of the Base Virus
	Appendix E: Hidden Markov Models of Normal Files
	Appendix F: Hidden Markov Model of 9th Generation Viruses

