

STREAMING MEDIA SECURITY USING DIGITAL RIGHTS MANAGEMENT

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Deepali Holankar

December 2003

© 2003

Deepali Holankar

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

 Dr. Mark Stamp

 Dr. Chris Pollett

 Dr. Xiao Su

APPROVED FOR THE UNIVERSITY

ABSTRACT

STREAMING MEDIA SECURITY USING DIGITAL RIGHTS MANAGEMENT

By Deepali Holankar

Standards for streaming media technology are available in the

areas of security and privacy but integrity and replay

protection are still areas of ongoing research. This thesis

aims at studying the standards and providing a viable

solution for security in streaming media technology with

implementation.

Service providers do not want the end users to capture and

duplicate streaming media data. Once captured data can be

re-distributed to millions without any control from the

source. Licensing issues also dictate the number of times

end user may utilize the data. Encryption is not sufficient

as it leaves the system vulnerable to duplication and

recording after decryption.

We apply the concepts of digital rights management to

streaming media in order to solve integrity and replay

problems within reasonable limitations.

���

ACKNOWLEDGEMENTS

I would like to thank Professor Mark Stamp for his guidance,

patience and insights without which my thesis would not have

been possible.

��� �

INDEX OF CONTENTS

1 Introduction.. 1
1.1 Digital rights management 1
1.2 Problem definition 4
1.3 Possible attacks on a secure streaming media system 4
1.4 Comparison with digital pay TV 6

2 Background... 10
2.1 Streaming multimedia components 10
2.2 Audio or video conferencing 10
2.3 Available open source resources 13
2.4 Digital rights management for streaming media 14
2.5 Key management and licensing issues 16
2.5.1 Session key exchange 17

2.6 Key distribution environments 18
2.6.1 Point to point 18
2.6.2 Key distribution center 19
2.6.3 Key translation center 19

2.7 Encryption of streaming media 20
2.8 Encryption of control information 22
2.9 Decoding at receiver side 22

3 Design... 23
3.1 Generic model 24
3.2 Proposed secure model 26
3.3 Comparison with a typical DRM system 33

4 Implementation....................................... 35
4.1 Issues with different operating systems 35
4.2 Open source resources utilized 37
4.3 Distinct scrambling algorithms 37
4.4 Minimal Hardware Requirements 38
4.5 Implementation in Linux 39
4.5.1 Server components 39
4.5.2 License Manager 40
4.5.3 Receiver side components 41
4.5.4 Secure Device Driver 42
4.5.5 Streaming data 43
4.5.6 HTTPS and RTP clients 43
4.5.7 Create receiver component 44

5 Deployment... 44
5.1 Performance penalty issues due to added security . 44
5.2 Comparison of secure RTP, RTP and HTTPS 46
5.3 Testing of secure driver 46
5.4 Startup latency and throughput 47

6 Conclusion... 47

APPENDICES

Appendix A: Annotated Bibliography...................... i
Appendix B: Streaming server web page................... v

� �

Appendix C: Makefiles for compiling different modules.. vi
Appendix D: CGI-scripts............................... xii
Appendix E: Receiver and sender components............. xx
Appendix F: Secure driver............................. liv

 �

INDEX OF TABLES AND FIGURES

• Table 1 Comparison of digital pay TV and multimedia
conferencing.. 9

• Table 2 Comparison of SRTP and ESP................... 21
• Table 3 Flow of secure model......................... 32
• Table 4 Comparison of secure RTP, RTP and HTTPS...... 46

• Figure 1 Terminals................................... 11
• Figure 2 Gateway..................................... 11
• Figure 3 Gatekeeper.................................. 11
• Figure 4 Multipoint control units.................... 11
• Figure 5 Point to point.............................. 18
• Figure 6 Managed key distribution.................... 19
• Figure 7 Generic model............................... 25
• Figure 8 Secure streaming model...................... 31
• Figure 9 Performance graph........................... 45

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 1 San Jose State University

1 Introduction

Digital rights management for streaming media deals with

policy enforcement issues. An introduction and overview of

digital rights management is given followed by problems in

streaming media securely and an overview of a streaming

media system. The streaming media is compared to digital

pay TV system and similarities and differences in approach

to securing streaming media versus digital pay TV are

considered.

Background information for streaming multimedia and typical

audio/video conferencing scenarios are considered. Followed

by the design issues of a secure streaming media system,

implementation and deployment cases.

1.1 Digital rights management

Digital rights management (DRM) attempts to provide for the

secure delivery of digital content with restrictions on the

usage of the content after delivery. For example, the

provider of a piece of digital content might want to restrict

the end-user’s ability to duplicate the information. Such

restrictions are necessary if the provider is to maintain any

control on the distribution of the content. In contrast to

classic cryptography, which aims to protect against an

unintended recipient, the protection provided by a DRM system

is primarily aimed at the legitimate recipient. When seen in

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 2 San Jose State University

this light, it is clear that cryptography is only a very small

part of a DRM solution.

In addition, DRM protection must stay with the content even

after delivery. In the DRM literature, this required level of

protection, which goes beyond the protection that standard

cryptography can provide, is often referred to as “persistent

protection”. Background information on DRM, including an

outline of a complete DRM system is in Stamp M., (2003).

Consider a scenario in which company A wants to stream a live

baseball game to N clients. Company A does not want its

competitor, company B, to hack their media stream and add

noise or distortion to the signal. Moreover Company A does

not want any of its clients to record the game and

redistribute it. Company A only wants to allow paying

customers to have access to the media stream. Digital rights

management is designed to deals with such issues.

The proposed model for secure streaming media described in

this thesis employs some features commonly used by digital

rights management systems. In the streaming media scenario,

these features primarily provide replay protection, which is

lacking in current approaches to streaming media delivery.

Of course, any media streamed to a personal computer can be

recorded using an analog device. For example, the video

displayed on the monitor screen can be captured via screen

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 3 San Jose State University

shots. In the DRM world, this fundamental problem is known as

the “analog hole” as referred by Doctorow C., (2003) and is

considered beyond the boundary of protection provided by a DRM

system. The DRM philosophy is to make an attack on the system

as difficult as possible, while realizing that perfect

protection cannot be achieved in the current computing

environment.

The proposed secure model also does not deal with the storing

of streamed data on hard disk or other such media. The

security issues concerning storing of copyrighted material and

its reproducibility are separate issues that are not the

concern of this thesis.

In addition, this thesis does not contain a detailed

discussion of key management issues. Key management

techniques are well established; see, for example, Kaufman C.,

(2002) for further information.

What this thesis does provide is a proposed technique to

achieve a measure of replay protection and message integrity

for streamed media. Of course, it is possible to garble or

destroy the encrypted media stream, thus rendering it useless

to the legitimate recipient. This thesis does not discuss

specific protection against such malicious attacks.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 4 San Jose State University

1.2 Problem definition

The problem can be simply defined as follows: when the media

stream is in transition between two endpoints, it should not

be possible for a third party to play the same media stream by

simply capturing it. Once the data stream has reached its

desired endpoint, the audio and video device driver at the

endpoint should be able to play the media stream, so that the

media stream is audible and visible to the participating

people.

If the endpoint decides to record the media stream, they

should be able to do so provided that they have made payments

for its copyright license, but should not be able to change

the media stream in any manner. Any attempt to change the

media stream should make it useless for everyone, thus making

it obvious that the media data has been tampered with. Also,

if an attacker was able to hack into one session that should

not imply that he is now able to hack into any sessions held

by the same party.

1.3 Possible attacks on a secure streaming media system

In this section, different scenarios of possible attack on a

secure streaming media system are discussed.

Scenario 1:

During transition between two endpoints, an attacker might

spoof the stream of data passing by. If the attacker obtains

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 5 San Jose State University

the encrypted stream of data, he should not be able to decrypt

the stream and get the raw data.

Scenario 2:

A man in the middle attack should not be possible. An

attacker in the middle should not be able to be pretending to

be an endpoint.

Scenario 3:

Once the media stream reaches the endpoint, it should be

impossible for any person at the endpoint to decrypt the

stream media, except for the trusted media player software.

Scenario 4:

Flaws in operating system security should not affect the

security of the streaming media system.

Scenario 5:

Compromise of a single piece of software at one endpoint,

should not allow the attacker to hack into the entire system

and compromise all parties involved.

Scenario 6:

Unauthorized software should not be able to steal the data

stream between the point of decryption and the point where the

decrypted data is sent to video or audio codec.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 6 San Jose State University

Scenario 7:

Buffering mechanisms in the system should not allow decrypted

data to be copied intermittently, which could then be played

by unauthorized systems.

Scenario 8:

Once the end-user has played the media stream, he should not

be able to record it on any unauthorized media.

Scenario 9:

Once the end-user has played the media, he should be allowed

to play the media stream again with valid authorization.

Scenario 10:

Special care has to be taken to enable video control options

such as replay, forward, stop and pause. These options would

allow the user to go back in the encrypted stream.

Scenario 11:

Packet loss between two endpoints should not invalidate the

entire media stream.

1.4 Comparison with digital pay TV

Digital Pay TV has a subscriber management technique where it

maintains a list of subscribers and their access rights. A

subscriber may choose to upgrade or downgrade his viewable

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 7 San Jose State University

list of channels by paying more or less money every month or

upgrading. It is also possible that a subscriber will not pay

his monthly fee. In such a case, the digital pay TV system

will downgrade the subscriber’s viewable list. So, for a

given subscriber the list of viewable channels may not remain

constant across different sessions, but each session does not

necessarily dictate a change in the privilege rights.

In multimedia conferencing, the capabilities of each entity

are negotiated at the beginning of each session. A principle

entity that owns the session can decide whether a particular

entity should be allowed to participate in the session or not.

The Digital pay TV system assumes that a valid subscriber will

use a particular legitimate set-top box from the provider. In

multimedia conferencing, there is no such predefined set-top

box. Instead security is based on the assumption that the

audio and video device drivers used by different people

support the security features implemented for replay and

integrity protection.

Digital pay TV employs proprietary algorithms for scrambling

data, but the same is not true for multimedia conferencing.

The standards for multimedia conferencing are open, and they

are available to anyone, who may want to implement a

compatible system.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 8 San Jose State University

The following Table 1 compares Digital Pay TV and streaming

media systems.

Comparison

Features

Digital Pay TV Multimedia Conferencing

Management of

Privileges

Fixed and verified

from subscription

list

Changes with each

session. Each session

has flexibility and

different privileges.

Available Box Legitimate set-top

box needs to

distinguish between

valid and hackers

with illegal boxes

Uses audio and video

codecs with security

and encryption

features.

Algorithms May be proprietary Would have to be

compatible with

different multimedia

streaming standards

Transferring

Media

Method is usually

broadcast, accessible

to everyone

Sent by using network

layer protocols,

reaches individual IP

addresses. (Packets can

be sniffed between two

endpoints)

Authentication Validity of the set-

top box & receiver

Authenticate parties at

initiation.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 9 San Jose State University

Comparison

Features

Digital Pay TV Multimedia Conferencing

Facility to

change

software

Software of all the

set-top boxes can be

upgraded once an

attack or intrusion

has been detected.

In each session the

desired security level

must be determined and

appropriate encryption

algorithm chosen.

Packets Lost

in

transmission

Encryption and

decryption done

assuming no packet

loss between

transmitter and

receiver

Packet loss between two

endpoints must be

considered and the

security mechanism

should not fail if such

a loss occurs.

Speed Factor Encryption and

decryption does not

significantly affect

the performance since

implemented in

hardware

Encryption and

decryption may affect

performance, as actual

bandwidth and

throughput varies and

depends on network

congestion.

• Table 1 Comparison of digital pay TV and
multimedia conferencing

Digital pay TV does not care about the identity of the person

watching the setup box as long as the setup box is legitimate

whereas in multimedia conferencing the identity of each entity

has to be well established before the session can begin. One

person should not be able to impersonate as another person.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 10 San Jose State University

Anderson R., (2001) gives additional details of digital pay

TV.

2 Background

This background section gives detailed information on

streaming multimedia and security concerns. The information

given helps in understanding the proposed security.

2.1 Streaming multimedia components

The following topics are discussed in this section.

• Audio/video conferencing

• Streaming stored media

• Streaming live or interactive media

2.2 Audio or video conferencing

The basic goal of audio or video conferencing is transmission

of real-time audio, video and data communications over packet-

based networks in real-time. Following are the basic

components, protocols and procedures for providing multimedia

communication over packet-based networks.

The four basic components are as follows:

1. Terminals

2. Gateways

3. Gatekeepers

4. Multipoint control units (MCUs).

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 11 San Jose State University

 � Packet based network �

• Figure 1 Terminals

H.323 network� �Non H.323 network

For example,

PC Net meeting� �Public switched telephones

• Figure 2 Gateway

H.323 terminal 1 � �H.323 terminal 2

Within H.323 network, gatekeeper has the following

functionality: Addressing, authorization and authentication of

terminals and gateways, Bandwidth management, accounting,

billing and charging

• Figure 3 Gatekeeper

H.323 Terminal 1� � H.323 Terminal 2

• Figure 4 Multipoint control units

Gateway

Gatekeeper

Multipoint
Control
Units

Gateway

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 12 San Jose State University

The basic terminology given below is taken from H.323

Definitions (2003):

H.323 Zone is a collection of all terminals, gateways and

multi-control units managed by a single gatekeeper.

Audio Codec encodes the audio signal from the microphone for

transmission on the transmitting terminal and decodes the

received audio code that is then sent to the speaker on the

receiving terminal. Minimum service provided by H.323 is

audio and so all terminals must have at least one audio codec

support.

Video Codec encodes video from camera for transmission on the

transmitting terminal and decodes the received video code that

is then sent to the video display on the receiving terminal.

Registration, Admission, and Status (RAS) is used to perform

registration, admission control, bandwidth changes, and status

and to disengage procedures between endpoints and gatekeepers.

An RAS channel is used to exchange RAS messages. This

signaling channel is opened between an endpoint and a

gatekeeper prior to the establishment of any other channels.

Call Signaling is used to establish a connection between two

endpoints. This is achieved by exchanging protocol messages

on the call-signaling channel.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 13 San Jose State University

Control Signaling is used to exchange end-to-end control

messages governing the operation of the endpoint. Control

messages carry information related to capabilities exchange,

opening and closing of logical channels used to carry media

streams, flow-control messages, and general commands and

indications.

Real-Time Transport Protocol (RTP) provides end-to-end

delivery services of real-time audio and video. RTP provides

payload-type identification, sequence numbering, time

stamping, and delivery monitoring. On IP-based networks RTP

is used together with UDP.

Real-Time Transport Control Protocol (RTCP) primarily provides

feedback on the quality of data distribution. Functions

include carrying a transport-level identifier for an RTP

source, called a canonical name, which is used by receivers to

synchronize audio and video.

2.3 Available open source resources

Following are the available open source resources:

The website http://www.openh323.org has the entire H.323

protocol stack available as open-source. With each passing

day additional audio and video codecs are included in the

project. For secure transmission of media stream between two

endpoints the IETF has proposed a standard for secure RTP that

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 14 San Jose State University

is still in draft format at http://www.ietf.org/. An

implementation of secure RTP in the open source world is

available from Cisco at the sourceforge website.

http://srtp.sourceforge.net.

Secure transmission of a media stream can also be done using

IPSec by changing the security policy at each endpoint. An

implementation of IPSec is available at www.freeswan.org.

Media encryption techniques are available and well established

by using sRTP or IPSec Layer.

Secure key exchange and management can be done using Deffie-

Hellman key exchange and RSA (which is available in patent-

free form). As media encryption techniques are well

established, it can be safely assumed that media stream is

sent from one endpoint to another in secure fashion.

2.4 Digital rights management for streaming media

A typical digital rights management system for streaming media

may be broken into the following basic components:

• Key Management / Licensing Issues

• Encryption of streaming media

• Encryption of control information

• Policy Enforcement

The port for secure communications should be different from

the port used by insecure communications (analogous to

insecure http on port 80 and HTTPS on 443). Control

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 15 San Jose State University

parameters may or may not be sent in an encrypted channel.

This decision is negotiated in the initial handshake.

Exchange of certificates occurs to establish the identity of

each entity. The negotiated handshake and exchange of

certificate occurs before any other exchange of messages.

A session may run in three different modes:

• authentication only

• encryption only

• authentication and encryption

Multipoint procedures will negotiate independently with each

channel the encryption algorithm. So for a given session it

is possible that different encrypted streams are going to

different channels.

Authentication may be done using Diffie-Hellman with optional

authentication or subscription-based authentication (for e.g.

symmetric encryption, hashing, certificate-based signatures).

It would be good to have media encryption procedures

accelerated in order to have minimal impact on the quality of

service due to the features.

There is a need to define a principal owner or entity for each

multimedia session or conference. This entity may keep a

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 16 San Jose State University

list of anticipated participants and the security level for

each participant.

The functionality of a smart card could be achieved by using a

tamper-resistant hardware or software module, which would

generate keys for each session.

There is also a need for an access-control guard module at

each entity or end point identifying the session and the

entity uniquely. This module would have the responsibility to

ensure that the media stream data is not recorded by insecure

means. This would also monitor all the network identification

cards on the system, to monitor any suspicious activity.

It is essential to generate unique session keys for each

session. To generate a rollover counter that exceeds the

length of 64 bytes, each entity will exchange rollover

counters before generating their session keys. This will

prevent the repetition of session keys until after 2^512

sessions.

2.5 Key management and licensing issues

Following is the proposed flow between two endpoints:

• Initial Messages

• Request Privacy System

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 17 San Jose State University

The sender of this message wishes to use an encryption system.

It will wait for the receiver of this message to send the same

message back.

• Cannot Encrypt

Sent in reply to the above message, saying the sender will not

use an encryption system.

• Failure to start an encryption system

The sender has failed to start its encryption system, which

may be due to key exchange failure. For security reasons, this

is sent without giving the cause of the failure.

2.5.1 Session key exchange

The session key consists of the following:

• 8-bit message identifier

• Initialization vector with error correction

• 4N-bit random value where the value of N depends on the

encryption algorithm used

Sender has four random values of N-bits T1,T2,T3 and T4.

Receiver also has four random values of N-bits R1,R2,R3 and

R4.

Sender Key 1: T1 xor R3

Sender Key 2: T2 xor R4

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 18 San Jose State University

Receiver Key 1: T3 xor R1

Receiver Key 2: T4 xor R2

Key1 is used for encryption of the control signals and frame

control and key2 can be used alternatively for encrypting

media stream.

2.6 Key distribution environments

Following are different types of key distribution

environments:

• Point to point

• Key distribution center

• Key translation center

2.6.1 Point to point

Point to point is a two-layer environment, where the two

terminals share a common key. Point to point is the simplest

of all key environments, moreover point to point does not

involve any additional hardware or software to manage keys.

• Figure 5 Point to point

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 19 San Jose State University

2.6.2 Key distribution center

The definition key distribution center as given in Key

definitions (2003) is “The Key Distribution Center generates

keys for its users. If an originator wants to send an

encrypted message to a recipient, the originator submits the

request to the Key Distribution Center. The Center generates

and returns two identical keys to the originator. The first

key is encrypted using the KKM shared between the Center and

the originator. The originator decrypts the key, and uses it

to encrypt the message. The second key is encrypted using the

KKM shared between the Center and the recipient. The

originator transfers this key electronically to the recipient.

The recipient decrypts the key, and uses it to decrypt the

originator's message.“

• Figure 6 Managed key distribution

2.6.3 Key translation center

The definition of a key translation center (KTC) as given in

Key definitions (2003) is “Key Translation Centers are used

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 20 San Jose State University

when two parties require the key management functions provided

by the center, but one or both of the parties want to generate

the KKs and DKs. In this scenario, the originator submits a

key and the recipient name to the Center. The Center encrypts

the key using the KKM shared between the Center and the

recipient, and returns the encrypted key to the originator.

The originator transfers the key electronically to the

recipient.”

Messages for authentication may be defined as follows:

• Authentication initiation

• Authentication response

• Authentication complete

• Authentication failed

Authentication can be done using the following well-known

methods:

• Diffie-Hellman key exchange

• RSA based operation

• Authentication using certificates and digital signatures

Following sections 2.7 to 2.8 are inspired by H.235 Security

Protocol suite (2003).

2.7 Encryption of streaming media

The encryption of streaming media is mainly implemented using

secure RTP. The following are its main features:

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 21 San Jose State University

• Preserves cRTP efficacy

• Minimal packet expansion

• Low computational cost

• RTP and RTCP security is provided by secure RTP.

• Basic Operation includes

• Confidentiality of RTP data

• Authentication of RTP header and data

• Protects against replay and denial of service (DoS)

attacks

• All the protections are applied to control channel RTCP

as well.

The following details as discussed in the white paper

describing secure RTP from http://srtp.sourceforge.net (2003).

 SRTP ESP

Authentication Only for the RTP

headers

At RTP, UDP and

ESP levels

Header Smaller than ESP Larger than SRTP

Performance issues Less encrypted

data is sent,

accelerated SRTP

is also available.

More performance

issues as more

encrypted data is

sent, slowing the

system

• Table 2 Comparison of SRTP and ESP

• Methods used by SRTP

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 22 San Jose State University

• Encryption uses AES-128 in Counter Mode

• Authentication uses TMMHv2 (authentication tag is

encrypted value of a universal hash)

2.8 Encryption of control information

Following are the typical control messages sent between two

endpoints.

• Open logical channel

• Open logical channel acknowledgement

Control messages are sent after the initial setup messages and

session keys are established.

Control messages can negotiate the encryption methods for the

media stream channel.

2.9 Decoding at receiver side

Decoding at the receiver side is vulnerable to a possible

attack, where the decoded stream may be captured. To avoid

such an attack a reasonable solution is to avoid decoding

until the very last moment. It should not be possible for an

attacker to get the decoded stream easily, after all the

effort spent in encrypting the media stream and transferring

it over the network.

There are security issues related to buffering of the decoded

data before giving it to the media codec.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 23 San Jose State University

Parameters exchanged between the sender and receiver can

utilize individuality built into each video codec. This could

be equated to Lamport’s hash algorithm, which generates a

unique password using salt and sequence number.

Sender scrambles the data according to the receiver

parameters. The sender should have the capability of sending

media stream in different scrambled streams depending on the

de-scrambling algorithms supported by different receivers.

The codec should take as input the scrambled stream and play

the de-scrambled stream directly to the end-user.

It should also be possible to use selective encryption on some

important piece of information. The start of encryption and

end of encryption need to be marked in the media stream. Each

packet has initialization vector needed to decrypt the

authentication header in each unit. This would avoid

rendering the data useless on a single packet loss.

3 Design

Digital rights management (DRM) is an evolving field. The

current DRM market includes many proprietary systems as well

as open source solutions such as Media-S (2003). However, the

majority of DRM systems focus on licensing management and

rights. Though license management constituents are an

important part of a DRM, it cannot yield a secure system by

itself. DRM can only be successful if there exists a complete

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 24 San Jose State University

security chain that begins with the data transmission and

persists beyond the point where the client accesses the

content. We have incorporated certain DRM features into our

proposed secure streaming media system. These features

include license management, and several additional security

features as discussed below.

This thesis is focused on enhancing the rights enforcement

ability for streaming media on the client. Of course, it is

crucial that the entire system be secure in order to avoid a

weak link in the process. Therefore, an overview of the

entire system is essential, but detailed emphasis is placed on

the client software, since that is the primary contribution of

this thesis.

3.1 Generic model

First, a generic model for a streaming media system is

described. The basic components of such a model would include

the following

• Streaming web server

• Authentication protocol on web server and client

• Client web browser to request media

• Client application to receive media data (e.g. Real

Player plug-in)

• Client library interface between kernel (device driver)

and user space (application)

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 25 San Jose State University

• Client device driver to utilize media data

The basic components of this generic model are shown in a

simplified block diagram form in Figure 7.

This generic system would function in the following manner:

• The web server offers streaming media services

• A client requests a media file from the web server

• The web server authenticates the user and the user

authenticates the web server (mutual authentication)

• On successful mutual authentication, the web server

employs RTP to stream the data from the server to the

client

• The client web browser opens the default media

application (e.g. Real Player or windows media player)

• The media application strips the RTP header and

sequences the packets

•

• Figure 7 Generic model

Request

Media
File

Server

Client

User
Authentication

Valid
User
Request

Allow
access

Web Server
(Provides
streaming
media
service)

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 26 San Jose State University

• The media application uses system calls or library

functions to write the data to the device that plays the

file

• The device driver stores the data in its internal

memory, using interrupts (or other procedures) to write

the data to the appropriate port.

The above system has several security vulnerabilities. For

example, the streamed data can be captured at any point

between the two endpoints and the resulting data is subject to

replay. Moreover, there is no protection to prevent the

client side from capturing and redistributing the data to

others.

3.2 Proposed secure model

The proposed security model includes the same basic components

as the generic streaming media system discussed in the

previous section, with a few additional security features.

For example, the web server includes a license manager to

manage access to requested data. The operation of this

feature will be described in more detail below.

Another security feature involves a scrambling algorithm,

which is employed by the server and a corresponding de-

scrambling algorithm which is employed by the client. A

scrambling algorithm should be unknown to a potential attacker

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 27 San Jose State University

and an attacker must be required to break the scrambling

algorithm in order to recover any of the data. In addition,

the server must have access to a significant number of

distinct scrambling algorithms.

Scrambling serves two purposes. First, the scrambling

algorithm creates a layer of obfuscation, making reverse

engineering of the client software more difficult. Second,

scrambling provides for a high degree of individualization (or

uniqueness) of the client software. Consequently, scrambling

algorithms that are unknown to a potential attacker are

preferred.

Perhaps the ideal scrambling algorithm is a cryptosystem,

since it could be applied to all of the data. However, no

cryptographic algorithm is considered secure until it has

undergone extensive peer review and withstood the test of

time. But the scrambling algorithm is not essential for

cryptographic strength, since standard strong encryption

algorithms are employed for cryptographic strength.

Therefore, homemade cryptographic algorithms that provide even

minimal cryptographic strength will serve well as scrambling

algorithms. For example, the tiny encryption algorithm (TEA),

Wheeler D., Needham R., (2003) can be modified in many

different ways to yield a large class of scrambling

algorithms. While none of these modifications could be

claimed to provide significant cryptographic strength, each

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 28 San Jose State University

could serve well as scrambling algorithms. The rationale

behind scrambling is further discussed within the context of

DRM in Stamp M., (2003).

Given such a set of scrambling algorithms, each client will be

equipped with a subset of the available scrambling algorithms.

The list of scrambling algorithms known to the client will be

encrypted with a key known only to the server, and stored on

the client. After authenticating the server, this encrypted

list will be passed from the client to the server. When the

server receives the list, the server decrypts it and randomly

chooses from among the client’s scrambling algorithms. The ID

number of the selected scrambling algorithm is then passed

from the server to the client. Note that this process

eliminates the need for a database containing the mappings

between clients and scrambling algorithms.

By having different scrambling algorithms embedded within

different clients, and by selecting at random from a client’s

algorithms, each client is unique, and each communication

between client and server depends not only on different keys,

but also on different algorithms embedded in the client

software. An attacker who is able to break one particular

piece of content, will likely still have a challenging task

when trying to break another piece of content destined for the

same client. And even if an attacker completely does reverse

engineering on one client, it is likely that he will still

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 29 San Jose State University

need to expend roughly the same effort to attack any other

client.

On the server side, the data is scrambled, and then encrypted.

On the client side, the data is decrypted and the resulting

scrambled data is passed to the media application. The media

application passes the scrambled data to the secure device

driver (discussed in more detail below), which de-scrambles

the data. In this way, the data is obfuscated until the last

possible point in the process.

Given these security features, the secure streaming media

process proceeds as follows:

• The secure web server offers streaming media services.

• A client requests a media file from the secure web

server

• The secure web server authenticates the user and the

user authenticates the web server

• Upon successful mutual authentication, the web server

gives the IP address of the client machine and client’s

username to its License manager. The client sends its

encrypted list of supported scrambling algorithms to the

server.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 30 San Jose State University

• The license manager verifies that the user on that

particular machine is allowed access to the requested

media file.

• If the user is allowed access, the License Manger

generates two random keys. The first key will be for

secure RTP packet encryption using AES and the second

key will be the scrambling key used on message blocks of

media data.

• The server generates a random number to select from

among the scrambling algorithms supported by the client.

It generates another random number to be used as the key

for the scrambling algorithm. Both of these are

encrypted (but not scrambled) and passed to the client.

The client must acknowledge receipt of this information.

• The server use cipher block chaining (CBC) to scramble

the data per packet, with a randomly selected

initialization vector (IV) included with each packet

(for cryptographic terminology and information, see

Schneier B., (1996)).

• The secure RTP algorithm with the Advanced Encryption

Algorithm (AES) with 128-bit key is applied to the

scrambled data in each packet. The packets are CBC

encrypted with a random IV included in each.

• The scrambled and encrypted secure RTP packets are

transmitted over the network.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 31 San Jose State University

• The client web browser opens the secure media

application for the file.

• The media application requests the secure RTP decryption

key. The user must authenticate in order for the client

to obtain the decryption key. For example,

authentication could be smart card based. Of course,

any other user authentication method could be applied on

the client.

• Figure 8 Secure streaming model

• The media application strips the secure RTP header and

sequences the packets.

• The media application initializes its secure device

driver with the ID number that specifies the scrambling

algorithm used by the server, and the algorithm is

initialized with the scrambling key.

• The media application is oblivious to the scrambling.

It therefore writes the scrambled data to the device

that plays the file.

Media File
 Server

Secure Client
 to
Secure Device

User
Authentication

Valid
User
Request

Allow
access

Secure
Transmission

License
Manager
Check for
user
permissions
of media-file

Web Server
(Provides
streaming
media
service)

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 32 San Jose State University

• The secure device driver de-scrambles the data and

writes plaintext data to the appropriate device buffer

and port.

Server Client

 Request a media file

Request username &

password

 Give username & password

Validate username Reject invalid users

License manager

privilege check

 Reject if user has no

access rights on file

Transmit session

key encrypted in

clients private key

 Decrypt session key using

private key

 Send supported algorithms

in encrypted message

Select a random

algorithm from

those supported

 Receive selected random

scrambling algorithm

Transmit file by

breaking into

packets which are

scrambled and

encrypted

 Receive file packets,

Decrypt the packets

Send to device driver for

de-scrambling.

Play the music.

• Table 3 Flow of secure model

The secure streaming media system is summarized in Figure 8.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 33 San Jose State University

The following table gives a simplified view of the interaction

between the client and server in the secure model.

3.3 Comparison with a typical DRM system

Here follows a brief comparison of the security features in

our proposed secure streaming media system with the features

available in Windows Media Player (2003), a typical DRM

system. The following six points are listed on Microsoft’s

website Windows Media Player (2003), as the primary security

features of Windows Media Player. The implementation

details in Windows Media Player are proprietary and not

available to us. Our model differs from that of Windows

Media Player in that it is more secure and robust as it has

two layers of obfuscation making reverse engineering

difficult. Descriptions of how our proposed system

implements each of these features is given.

• Persistent Protection: The proposed model gives an

individual license key to a client on a per transaction

basis for each requested file. The protection is not

only over the insecure network between client and

server, but, due to the scrambling and the secure device

driver, it persists all the way to the clients media

device

• Strong Encryption: The proposed model uses secure RTP

with 128-bit AES encryption. The model also employs

scrambling, but it does not rely on scrambling for

cryptographic security.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 34 San Jose State University

• Individualization: The scrambling algorithm is selected

at random and the actual set of available scrambling

algorithms is individual to each client. Therefore, the

compromise of one client does not break the entire

system. Moreover, the broken client can easily be

replaced with an upgraded device driver that employs a

different set of scrambling algorithms. The secure

device driver could be made unique in other ways as

well. For example, the methods discussed in Mishra P.,

(2003) or methods similar to those employed by

metamorphic virus writers Balepin I., (2003) could be

implemented. Such protections would certainly make the

reverse engineering problem even more challenging for an

attacker. This higher level of uniqueness needed for

the same, has not been implemented, but it would clearly

be feasible to do so.

• Secure Media Path: Proposed secure model does not de-

scramble the media data until the last possible point in

the process. The data passes through the entire system

in scrambled form. Of course, over the insecure channel

is further protected by strong encryption.

• Revocation and Renewal ability: Maintaining a revocation

list with the License Manager would revoke compromised

players. Revoked clients will then fail to authenticate

with the License Manager. Moreover, if a particular

scrambling algorithms is compromised, the server could

simply avoid using the compromised algorithm.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 35 San Jose State University

Alternatively, all clients using the compromised

algorithm could be upgraded with new device drivers that

do not include that particular algorithm.

• Secure End-to-End Streaming and Downloads: Secure RTP is

used for end-to-end streaming and downloads. The AES

encryption algorithm (or other strong encryption

algorithm) is used in secure RTP. Secure end-to-end

transmission can also be accomplished using other well-

established methods such as IPSec Kaufman C., (2002).

As can be seen from the proposed model and the discussion

above, the License Manager is a significant part of the secure

streaming media system. But it should be clear that license

management is not the heart and soul of the system. The

secure device driver and the uniqueness achieved via

scrambling are the crucial security aspects of the system.

4 Implementation

The implementation section describes in detail the various

components of the secure streaming media system. For a

complete source code listing kindly see the appendices B to F.

4.1 Issues with different operating systems

The operating systems usually used in embedded multimedia

devices are Real Time-Linux, Linux and VxWorks(article at

http://www.linuxdevices.com/articles/AT3792919168.html by

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 36 San Jose State University

Victor Yodaiken ELEC talk, June 2000 compares the three

systems). The following passage attempts to compare

implementation issues with the proposed secure streaming media

model on these operating systems.

VxWorks does not have any memory protection between

application and system tasks. This makes the device driver

memory buffer in the proposed model available to any module

through simple function calls. Moreover decryption of

memory in the device driver adds overhead, making the

process not so lightweight. If the decrypted media data is

made available in the memory buffer only for periodic time

slices, it makes it difficult for other hacker processes to

contend for the decrypted data in the same time slice. The

hacker process would need to synchronize with the frequency

of available decrypted data. Moreover this process becomes

difficult in a single processor system. It would be

possible to break into the system in SMP system, but the

task becomes many times difficult.

RT-Linux requires the user to divide the application into

two distinct parts: the real-time part and the non-real-time

part. The real-time part will be serviced rapidly, allowing

it to meet deadlines, while the non-real-time part has full

range of Linux resources available for use, but cannot have

any real-time requirements. The division of multimedia data

into real-time and non-real-time part should be carefully

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 37 San Jose State University

done. The constraints increase if the multimedia streamed

is live and interactive. Decryption of media data on the

device driver level increases the timing constraints of live

and interactive data.

The implementation issues with Linux operating system are

simplified, as Linux provides memory protection between

kernel and user space. It also has non-swappable memory

area for key material protection.

4.2 Open source resources utilized

The following open source resources were utilized in the

implementation of the proposed security model

• http://www.openssl.org

• http:/www.acme.com/software/thttpd/thttpd_man.html

• http://srtp.sourceforge.net

• http://www.drfruitcake.com/linux/stest.html

• Linux device drivers tutorials

• Open source Intel audio driver i810_audio

• Open source crystal audio driver cs46xx

4.3 Distinct scrambling algorithms

Unique variations of the Tiny Encryption Algorithm Wheeler D.

(2003) were implemented to generate a wide range of different

scrambling algorithms. The current implementation supports

about sixteen scrambling algorithms on the server side. The

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 38 San Jose State University

scrambling and de-scrambling code is compiled as separate

object code, which can be easily linked with different sender

and receiver programs. In practice, it would be easy to

generate multiple receivers supporting different scrambling

algorithms. For demonstration purposes, we have created three

receivers wherein one is totally secure, one receiver is

partially broken and another one is totally broken. These

receivers demonstrate the functionality of the server

negotiation and response when scrambling algorithms are

hacked.

4.4 Minimal Hardware Requirements

To successfully implement and test the security model proposed

in this thesis, it is essential to have the following

• Two personal computers running Linux kernel 2.4.16 or

higher with sound cards and network adapters.

• Multimedia support should be enabled on the Linux

operating system and sound driver configuration should

be in modular mode.

• The sound card device driver should be available in open

source.

• Both the personal computers should be connected with a

network or crossover cable.

It should be noted that the performance results of the

security model varies with the available processing power as

well as the network card performance at both ends.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 39 San Jose State University

4.5 Implementation in Linux

This section describes the implementation details in Linux

using kernel 2.4.16

4.5.1 Server components

HTTPS web server (tiny httpd server from

http://www.stllinux.org/meeting_notes/2001/0719/tHTTPd/www.acm

e.com/software/thttpd/thttpd_man.html) was installed on the

server. Open source open SSL at http://www.openssl.org was

installed on the server side to support HTTPS. The makefile

to compile HTTPS and openssl can be found in the appendix c.

The server invokes cgi-scripts to start secure RTP streams.

The default web page for the web server is also given in the

appendix b. The function of the cgi-script is to get the

environment settings of http username, http client IP address

and requested file to invoke the sender program.

The sender program takes the following parameters

• Destination IP address

• Destination port

• Filename

• Username

• Sampling rate

The message sent by the server to the receiver has the

following parameters in order:

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 40 San Jose State University

• Session key

• Server IP address

• Server port

• Scrambling key

• Sampling rate of audio file

• Total number of packets

4.5.2 License Manager

The receiver sends a string of supported algorithms in

encrypted form. The server randomly selects one of the

supported algorithms, maps the client algorithm to its server

algorithm and sends the selected algorithm number to the

receiver. The server then starts sending the streaming data

in predefined packet size.

The license manager maintains a list of multimedia data files

and corresponding username and number of times the user is

permitted to invoke that file. On each invocation, the

license manager decrements by one the allowed number for that

particular user. If the user is allowed infinite number of

accesses, then the license manager will not decrement the

number of times allowed on each execution. Access is allowed

on a particular file only if the times allowed is greater than

zero. In practice this logic could be easily implemented

using a secure database system.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 41 San Jose State University

The license manager also maintains a list of broken scrambling

algorithms. If the license manager detects that all the

supported algorithms at the receiver end are broken, it will

ask the server to terminate its connection with the receiver

without giving any explanation to the receiver.

4.5.3 Receiver side components

The receiver side listens to a predefined secure RTP port.

The server program sends a session key encrypted using the

receiver’s shared symmetric key. When the receiver gets the

session key it sends the encrypted list of supported

scrambling algorithms to the sender. The sender program

chooses one of the scrambling algorithms and sends the

multimedia data packets. The receiver application works in

close communication with the receiver device driver. The

receiver initializes the secure device driver using the

selected scrambling algorithm and the scrambling key sent by

the server. When the receiver is compiled, a private key for

the receiver is built into the receiver executable file.

The receiver has an encrypted list of its supported scrambling

algorithms which the sender decrypts to determine the

scrambling algorithms supported by the device driver at the

receiver end. If all the supported scrambling algorithms of

the device driver are in the broken list maintained by the

server, the device driver at the receiver end is considered

hacked or broken. When the server receives a request of a

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 42 San Jose State University

hacked receiver, it immediately terminates the connection

without explanation.

4.5.4 Secure Device Driver

The receiver application talks directly to the secure device

driver. The secure device driver in turn talks directly to

the secure device. The Linux artsd daemon used to monitor

access to sound is killed to allow direct access to the sound

device. The secure device driver is compiled using the de-

scrambling algorithms and modifying the write function in the

driver to de-scramble data before writing to the Direct Memory

Access (DMA) buffer. The device reads the de-scrambled

original data from the DMA buffer directly.

All Linux device drivers follow a uniform structure invoking

read, write and setting the parameters (also known as ioctl

calls). This makes the implementation of a secure device

driver on different hardware platforms relatively simple under

Linux. The secure driver implements an ioctl call to

initialize the de-scrambling algorithm chosen with the de-

scrambling key.

If any user tries to implement his or her own insecure device

driver, the device driver will fail to understand the security

parameters initialized by the application. The receiving

application will immediately terminate, since the device

driver does not understand security parameter. This case is a

clear indication that something is wrong with the system.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 43 San Jose State University

4.5.5 Streaming data

The implementation on the receiver end uses two threads in

round-robin mode.

• The receiving thread listens on a secure port for

packets from the sender.

• The device driver thread begins writing to the sound

device driver after receiving an initial buffer of data.

The implementation of streaming uses simple methodology.

Sophisticated streaming with more control on startup latency

and throughput can also be implemented with the proposed

security techniques.

4.5.6 HTTPS and RTP clients

The HTTPS protocol is used in the secure model for username

and password authentication, as well as client-server mutual

authentication. The client request for a particular file is

transmitted to the server using HTTPS. After user

authentication, the server starts a secure RTP session for

handshaking and streaming data transmission.

In practice, multimedia transmission is usually done using

Real Time Transport Protocol (RTP) using UDP at the transport

layer. The proposed secure model uses secure RTP for

transmission between two endpoints.

A comparison between the three protocols secure RTP, RTP and

HTTPS with respect to startup latency and throughput on

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 44 San Jose State University

available bandwidth is of interest. This comparison helps in

understanding the performance penalty of the proposed secure

streaming media model.

Simple HTTPS and RTP clients were implemented for the sole

purpose of obtaining timing information.

4.5.7 Create receiver component

The create client program is used to automate the process of

generating a shared symmetric key for the receiver and

encrypted list of supported scrambling algorithms. The

openSSL library function crypt, which implements DES

illustrated Grabbe J., (2003) or MD5 Rivest R., (2003)

encryption is used to encrypt the supported algorithms string

in the receiver.

5 Deployment

This section describes in detail the test cases considered,

performance data and analysis of the proposed system.

5.1 Performance penalty issues due to added security

Performance of some timing tests on the secure transmission

and secure device driver are described below. The timing

results vary with different encryption algorithms. The

tests were performed on a 1Ghz Pentium 4 personal computer

by looping over many different calls of the encryption

algorithms and using C library function clock to make timing

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 45 San Jose State University

measurements. This method is portable, if not the most

refined.

Pe r fo r m a n c e r e p o r t

10 0

10 0 0 0

8 16 3 2 6 4 12 8 2 5 6 5 12 10 2 4

L e n g th o f m e d ia d a ta

M
eg

ab
it

s
p

er
 s

ec
o

n
d

T ra n s m is s io n ra te

S e c u re M o d e l

• Figure 9 Performance graph

The figure 9 shows two graphs, the transmission throughput

between two endpoints and the throughput using a secure device

driver. It is obvious that the proposed secure streaming

media model is slower than the generic model but it is so

within reasonable limits. The added cost is of scrambling and

de-scrambling of packets which is equivalent to solving

polynomial equations. The time taken is so constant for

scrambling and de-scrambling of data packets. The

transmission throughput saturates as we increase the number of

octets in the packet. The cryptographic mechanisms used by

the server and client will be the bottleneck for performance.

Crypto hardware accelerators may be used on both ends to

improve performance. An accelerator may also be used to

generate key stream for each transaction.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 46 San Jose State University

5.2 Comparison of secure RTP, RTP and HTTPS

HTTPS and RTP clients were also implemented for comparing with

the proposed secure RTP model. Table 4 contains the startup

latency and throughput times for streaming 4003604 bytes.

From the results in table 4, it can be seen that the

difference in startup latency for the three protocols is

negligible. HTTPS transmission has an advantage over the

other two protocols for transmission of longer files. HTTPS

uses TCP as the transport layer protocol whereas secure RTP

and RTP use UDP as the transport layer protocol. Secure RTP

allows the usage of either UDP or TCP as the transport layer

protocol.

(Milliseconds) Secure RTP RTP HTTPS

Startup time 2423.07 1616.61 2046.29

End receiving 15313.86 23305.93 5353.86

• Table 4 Comparison of secure RTP, RTP and
HTTPS

The performance penalty issued by secure RTP appears to be

within reasonable limits.

5.3 Testing of secure driver

The implementation has been successfully tested using two

sound device drivers.

• Intel 810 audio driver

• Crystal Sound Fusion audio driver

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 47 San Jose State University

For both the device drivers the implementation was

straightforward and involved compiling the de-scrambling

algorithms file and modifying the write functions. The device

driver maintains the initialized de-scrambling key and chosen

algorithm in the current state structure.

5.4 Startup latency and throughput

The implementation uses a very simple streaming mode with

predefined initial buffer size. As soon as the initial buffer

is filled, the receiver starts writing to the audio device

driver. Depending on the available processing power and

network cards, the size of the initial buffer can be increased

or decreased. This implementation assumes that the network

card is available to be used at its maximum throughput. The

initial buffer size is predetermined by trial and error method

and iteration of the program with different parameters.

In practice, several streaming servers and receiver plug-ins

are available which have variable settings for startup

latency. This fine tuning can be easily established for a

required platform.

From the test cases done, it can be concluded that the

proposed security model achieves security without a severe

performance penalty.

6 Conclusion

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis 48 San Jose State University

In this thesis, a model for increasing the security of

streaming media was presented. The approach, which is based

on concepts from digital rights management, adds a measure of

integrity protection, but is primarily intended to aid in

replay preventions.

With any conceivable personal computer based security model, a

dedicated hacker can, with sufficient effort, successfully

attack a particular piece of content. This is unavoidable if

the media is to be rendered on a system with an open

architecture (such as a personal computer) where the attacker

controls the system. Under the proposed secure streaming

media system, the amount of work required for such an attack

would be significant. However, the real strength of this

approach is that the overall system will survive even when

individual pieces of content are successfully hacked.

Future work can implement audio compression techniques to

streaming audio. The thesis work can be extended to video

streaming using a streaming server. Moreover sophisticated

streaming techniques can be utilized to monitor flow of

packets between the two ends.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis i San Jose State University

Appendix A: Annotated Bibliography

 Stamp, M., (2003). Digital rights management: the
technology behind the hype. Journal of Electronic Commerce
Research, 4, (3).

Explained in detail the outline of a complete
digital rights management system. Also provided
background information for a secure system.

 Doctorow, C., (2003 May). EFF Consensus at
Lawyerpoint, Hollywood wants to plug the 'analog hole'.
Retrieved August 2003, from
http://bpdg.blogs.eff.org/archives/000113.html

Given an overview of expectations from a secure
multimedia system to protect multimedia content.
Explained the meaning and connotations of the
words analog hole.

 Kaufman, C., Perlman, R., Speciner, M. (2002). Network
Security: Private Communications in a public world. Prentice
Hall.

Explains in detail different security protocols
and handshake messages for key exchange in a
networked world. Also provides an overview of
issues to be taken into consideration when
designing a secure system.

 Anderson, R., (2001). Security Engineering: A Guide to
Build Dependable Distributed Systems, (20). John Wiley and
Sons.

Explained digital pay TV system, security concerns
related to the same. Process of evolution of a
secure digital pays TV system and different
attacks issued on them.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis ii San Jose State University

Appendix A: Annotated Bibliography (Cont’d)

 H323 Definitions (2003). Retrieved August 2003, from
http://www.switch.ch/vconf/ws2003/h323_basics_handout.pdf

Explained the terminology used in audio and video
conferencing using H.323 protocol stack.

 Key definitions (2003). Retrieved August 2003, from
http://csrc.nist.gov/publications/nistpubs/8007/node209.html

Explained different scenarios and environment for
key distribution and management. Given graphic
images of different scenarios help understand the
concept of key distribution and management well.

 H.235 Security support for multimedia protocol suite
(2003). Retrieved August 2003, from http://www.itu.int/ITU-
T/

Recommendation for implementation of security in
H.323 protocol stack is given. Given detailed
description of procedures to be followed at
different stages of message exchange.

 Secure RTP (2003). Retrieved August 2003, from
http://srtp.sourceforge.net

Explained in detail the open source library
implementation for secure RTP. Also provided
implementation examples of the open source
library.

 Media-S (2003). Retrieved August 2003, from
http://www.sidespace.com/products/medias/

Open source solution of digital rights management
system is given. Focused on license management,
user privileges and revocation.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis iii San Jose State University

APPENDIX A: Annotated Bibliography (Cont’d)

 Wheeler, D., Needham, R., (1994). TEA, a tiny
encryption algorithm. Retrieved August 2003, from
http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-
tea.html

Explained in detail the design and implementation
of tiny encryption algorithm. Simplified code in
C language for tiny encryption algorithm can be
easily ported.

Schneier, B., (1996). Applied Cryptography, II, John

Wiley and Sons.

Provided good textbook material to learn and
understand cryptography terms and conditions. For
those interested in the mathematics of
cryptography, also provided the derivation of
equations and solutions to several problems.

 Windows Media Digital Rights Management Offering
(2003). Retrieved August 2003, from
http://www.microsoft.com/windows/windowsmedia/wm7/drm/offeri
ng.aspx

Explained the features of the product and digital
rights management features offered in the same
system. Understand the current market offerings
by one of the leading players in the market today.

 Mishra, P., Stamp, M., (2003). Software uniqueness:
how and why. Proceedings of ICCSA.

Explained different techniques to generate unique
software. Provided an overview of a system
essential to establish uniqueness.

 Balepin, I., (2003). Retrieved August 2003, from
http://wwwcsif.cs.ucdavis.edu/~balepin/new_pubs/worms-
cryptovirology.pdf

Explained different techniques to generate
cryptographic worms. Provided an overview of a
system essential to establish uniqueness.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis iv San Jose State University

APPENDIX A: Annotated Bibliography (Cont’d)

 Rivest, R., (1992). MD5, Retrieved August 2003, from
http://userpages.umbc.edu/~mabzug1/cs/md5/md5.html

Explained MD5 encryption algorithm used in the
open SSL library. Definition of the functionality
of the algorithm is also given.

 Grabbe, J., (2003) DES algorithm illustrated.
Retrieved August 2003, from
http://www.aci.net/kalliste/des.htm

Explained how DES algorithm works. Brief summary
of the history behind DES is also given.

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis v San Jose State University

Appendix B: Streaming server web page

Audio Streaming Server

Secure Streaming

Crosby
��� ���

Drums
��� ���

Still & Nash
��� ���

Banjo
��� ���

HTTPS Streaming

Crosby File

RTP Streaming

Crosby File
��� ���

MP3 Streaming

Bed rock crowd
invasion

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis vi San Jose State University

Appendix C: Makefiles for compiling different modules

This Makefile has been simplified as much as possible, by
putting all
generic material, independent of this specific directory,
into
../Rules.make. Read that file for details

TOPDIR := $(shell cd . ;pwd)
include $(TOPDIR)/Rules.make

CFLAGS += -I.. -O

OBJS = cs46xx_secure.o cs46xx_partial.o cs46xx_broken.o
i810_audio_secure.o i810_audio_partial.o i810_audio_broken.o

CFLAGSRTP = -Wall -O4 -fexpensive-optimizations -funroll-
loops
CDEFSRTP = -DHAVE_CONFIG_H
INCDIR = -I./include/
LIBSRTP = -lsrtp
LIBDIRRTP = -L.
LIBDES = -lcrypt
LIBPTHREAD = -lpthread

all: $(OBJS) sender sender_rtp secure_receiver
partial_receiver broken_receiver https_receiver rtp_receiver
createclient

cs46xx_secure.o: cs46xx_audio_secure.o secure_tea.o
 $(LD) -r $^ -o $@

cs46xx_partial.o: cs46xx_audio_secure.o partial_tea.o
 $(LD) -r $^ -o $@

cs46xx_broken.o: cs46xx_audio_secure.o broken_tea.o
 $(LD) -r $^ -o $@

i810_audio_secure.o: i810_secure.o secure_tea.o
 $(LD) -r $^ -o $@

i810_audio_partial.o: i810_secure.o partial_tea.o
 $(LD) -r $^ -o $@

i810_audio_broken.o: i810_secure.o broken_tea.o
 $(LD) -r $^ -o $@

message.o: message.c
 $(CC) $(CDEFSRTP) -c $(CFLAGSRTP) $(INCDIR) $< -o $@

sender_tea.o: sender_tea.c
 $(CC) $(CDEFSRTP) -c $(CFLAGSRTP) $(INCDIR) $< -o $@

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis vii San Jose State University

Appendix C: Makefiles (Cont’d)

secure_tea.o: secure_tea.c
 $(CC) $(CDEFSRTP) -c $(CFLAGSRTP) $(INCDIR) $< -o $@

partial_tea.o: partial_tea.c
 $(CC) $(CDEFSRTP) -c $(CFLAGSRTP) $(INCDIR) $< -o $@

broken_tea.o: broken_tea.c
 $(CC) $(CDEFSRTP) -c $(CFLAGSRTP) $(INCDIR) $< -o $@

parseutils.o: parseutils.c
 $(CC) $(CDEFSRTP) -c $(CFLAGSRTP) $(INCDIR) $< -o $@

fileutils.o: fileutils.c
 $(CC) $(CDEFSRTP) -c $(CFLAGSRTP) $(INCDIR) $< -o $@

stest_secure.o: stest_secure.c
 $(CC) $(CDEFSRTP) -c $(CFLAGSRTP) $(INCDIR) $< -o $@

stest_insecure.o: stest_insecure.c
 $(CC) $(CDEFSRTP) -c $(CFLAGSRTP) $(INCDIR) $< -o $@

srtp.o: srtp.c
 $(CC) $(CDEFSRTP) -c $(CFLAGSRTP) $(INCDIR) $< -o $@

rtp.o: rtp.c
 $(CC) $(CDEFSRTP) -c $(CFLAGSRTP) $(INCDIR) $< -o $@

sender: sender.c sender_tea.o libsrtp.a
 $(CC) $(CDEFSRTP) $(CFLAGSRTP) $(INCDIR) sender_tea.o
$< -o $@ $(LIBDIRRTP) $(LIBSRTP) $(LIBDES)

sender_rtp: sender_rtp.c libsrtp.a
 $(CC) $(CDEFSRTP) $(CFLAGSRTP) $(INCDIR) $< -o $@
$(LIBDIRRTP) $(LIBSRTP) $(LIBDES)

secure_receiver: secure_receiver.c stest_secure.o libsrtp.a
 $(CC) $(CDEFSRTP) $(CFLAGSRTP) $(INCDIR) stest_secure.o
$< -o $@ $(LIBDIRRTP) $(LIBSRTP) $(LIBPTHREAD)
 chmod 4711 $@

partial_receiver: partial_receiver.c stest_secure.o
libsrtp.a
 $(CC) $(CDEFSRTP) $(CFLAGSRTP) $(INCDIR) stest_secure.o
$< -o $@ $(LIBDIRRTP) $(LIBSRTP) $(LIBPTHREAD)
 chmod 4711 $@

broken_receiver: broken_receiver.c stest_secure.o libsrtp.a
 $(CC) $(CDEFSRTP) $(CFLAGSRTP) $(INCDIR) stest_secure.o
$< -o $@ $(LIBDIRRTP) $(LIBSRTP) $(LIBPTHREAD)
 chmod 4711 $@

https_receiver: https_receiver.c stest_insecure.o libsrtp.a

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis viii San Jose State University

 $(CC) $(CDEFSRTP) $(CFLAGSRTP) $(INCDIR)
stest_insecure.o $< -o $@ $(LIBDIRRTP) $(LIBSRTP)
$(LIBPTHREAD)
 chmod 4711 $@

rtp_receiver: rtp_receiver.c stest_insecure.o libsrtp.a
 $(CC) $(CDEFSRTP) $(CFLAGSRTP) $(INCDIR)
stest_insecure.o $< -o $@ $(LIBDIRRTP) $(LIBSRTP)
$(LIBPTHREAD)
 chmod 4711 $@

createclient: createclient.c
 $(CC) $< -o $@ $(LIBDES)

parserobj = fileutils.o parseutils.o message.o

srtpobj = srtp.o rtp.o

ciphers = crypto/cipher/cipher.o crypto/cipher/null-cipher.o
\
 crypto/cipher/rijndael-tables.o
\
 crypto/cipher/rijndael.o crypto/cipher/rijndael-
icm.o \
 crypto/cipher/seal.o

hashes = crypto/hash/null-auth.o crypto/hash/tmmhv2.o
crypto/hash/sha1.o \
 crypto/hash/auth.o

replay = crypto/replay/rdb.o crypto/replay/rdbx.o
\
 crypto/replay/ut-sim.o

math = crypto/math/datatypes.o crypto/math/gf2_8.o
\
 crypto/math/stat.o

ust = crypto/ust/ust.o

cryptobj = $(ciphers) $(hashes) $(replay) $(math) $(ust)

gdoi =

libsrtp.a: $(parserobj) $(srtpobj) $(cryptobj) $(gdoi)
 ar cr libsrtp.a $(parserobj) $(srtpobj) $(cryptobj)
$(gdoi)
 ranlib libsrtp.a

install:
 install -d $(INSTALLDIR)

install -c $(OBJS) $(INSTALLDIR)

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis ix San Jose State University

web:
 mkdir -p /home/web/audio
 cd httpd; \
 make;

clean:
 rm -f *.o *~ core
 rm -f secure_receiver partial_receiver broken_receiver
sender createclient

RT=
BUILDDIR=/root/thesis/my/httpd/src
PSTRIP=strip
GZDIR=/root/thesis/my/httpd
TREE=/root/thesis/my/httpd/tree

all: ssl thttpd mycgi

ssl rules

For arm build we cannot simply use config since it has
no arm settings. Therefore we manipulate the Makefile
directly.

This make will add header files to /include/openssl
and it will add libraries to /usr/lib

SSLSRC=$(BUILDDIR)/ssl-src
SSLROOTDIR=$(RT)/usr/local/
SSLSHAREDLIBDIR=$(RT)/lib

ssl: $(SSLSRC)

 cd $(SSLSRC); \
 ./config --prefix=$(SSLROOTDIR) --
openssldir=$(SSLROOTDIR) -shared ;

 cd $(SSLSRC); \
 make ; \
 make linux-shared; \
 make install ;
 cd $(SSLROOTDIR)/bin ; \
 $(PSTRIP) openssl;
 mkdir -p /include/openssl;
 cd $(SSLROOTDIR)/include; \
 cp -f openssl/* /include/openssl;
 cd $(SSLROOTDIR); \
 rm -Rf man;

 mkdir -p /usr/lib;

if you want archive libraries
mv $(SSLROOTDIR)/lib/libcrypto.a /usr/lib;

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis x San Jose State University

mv $(SSLROOTDIR)/lib/libssl.a /usr/lib;
 # we don't want archive libraries so we rm them
 rm -f $(SSLROOTDIR)/lib/libcrypto.a;
 rm -f $(SSLROOTDIR)/lib/libssl.a

 $(PSTRIP) -g $(SSLSRC)/libcrypto.so* ; \
 $(PSTRIP) -g $(SSLSRC)/libssl.so*
 cp -a $(SSLSRC)/libcrypto.so* /usr/lib/. ; \
 cp -a $(SSLSRC)/libssl.so* /usr/lib/. ;
 # if we are using the shared libraries of SSL then
 # load them into the result-root directory
 cd /usr/lib/; \
 cp -a libcrypto.so* $(SSLSHAREDLIBDIR); \
 cp -a libssl.so* $(SSLSHAREDLIBDIR);

$(SSLSRC):
 tar -xvzf $(GZDIR)/openssl*tar.gz -C $(BUILDDIR) ;
 ln -sf $(BUILDDIR)/openssl* $(SSLSRC) ;

ssl-clean:
 rm -rf $(BUILDDIR)/openssl*
 rm -f $(SSLSRC)
 rm -f $(SSLROOTDIR)/openssl.cnf
 rm -f $(SSLROOTDIR)/bin/openssl
 rm -rf /usr/include/openssl

#thttpd

THTTPDSRC=$(BUILDDIR)/thttpd-src

thttpd: $(RT)/usr/sbin/thttpd

$(RT)/usr/sbin/thttpd: $(THTTPDSRC)

 cd $(THTTPDSRC); \
 ln -sf /include/openssl openssl; \
 CC=$(PCC) ./configure --host=i686 --with-ssl;
 cd $(THTTPDSRC) ; \
 patch -N -p1 < $(GZDIR)/thttpd-2.19.patch ; \
 cd $(THTTPDSRC); make thttpd; $(PSTRIP) thttpd ; \
 mkdir -p $(RT)/usr/sbin; cp thttpd $(RT)/usr/sbin ;
 cd $(THTTPDSRC)/extras; make; $(PSTRIP) htpasswd ; \
 mkdir -p $(RT)/usr/sbin; cp htpasswd $(RT)/usr/sbin ;
 cp -Rf $(TREE)/etc $(RT)/etc;
 mkdir -p $(RT)/home/web/audio;
 cp -Rf $(TREE)/home/web $(RT)/home/web;

$(THTTPDSRC):
 tar -xvzf $(GZDIR)/thttpd-*gz -C $(BUILDDIR)
 ln -sf $(BUILDDIR)/thttpd* $(THTTPDSRC)
thttpd-clean:
 rm -rf $(BUILDDIR)/thttpd*

rm -f $(RT)/usr/sbin/thttpd
mycgi:

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xi San Jose State University

 cd cgi; \
 make;

mycgi-clean:
 cd cgi; \
 make clean;
clean: ssl-clean thttpd-clean mycgi-clean

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xii San Jose State University

Appendix D: CGI-scripts

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/io.h>
#include <sys/stat.h>
#include <errno.h>
#include <sys/file.h>
#include <fcntl.h>
#include <string.h>

/* script to get user name and ip address of remote
workstation */
int main(int argc, char **argv)
{
 FILE *fp = NULL;
 char str[200],newstr[200],*tmp;
 char *user = getenv("REMOTE_USER");
 printf("content-type:text/html\n\n");
 fp = fopen("/home/web/index.html","r");
 if(fp == NULL) {
 printf("<html><body>Index file not
found</body></html>\n");
 return 0;
 }
 while(fgets(str,199,fp) != NULL)
 {
 if((tmp = strstr(str,"XXXUSER")) == NULL)
 printf("%s\n",str);
 else {
 *tmp = '\0';
 snprintf(newstr,199,"%s%s\">",str,user);
 printf("%s\n",newstr);
 }
 } //end of reading input file
 return 0;
}

/* A simple param file to process parameters passed by get
or post methods for cgi
 written by Deepali Holankar April , 2002
*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include "param.h"

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xiii San Jose State University

/* Function Definitions */
/* Parse all http post parameters and store them in hash
table */
CParam::CParam(void)
{
 symTab=NULL;
 glInitialized =0;
 ptrSymTab = NULL;
 int ret =
ParseAllCGIInput(GetAllCGIInput(GetContent_Length()));
}

/* Get first value of given http post parameter*/
char * CParam::GetFirstValue(char *key)
{
 ptrSymTab = symTab;
 return (Search(key));
}
/* Get next value of given http post parameter */
char * CParam::GetNextValue(char *key)
{
 if (!ptrSymTab) return NULL;
 ptrSymTab = ptrSymTab->next;

 return (Search(key));
}

char * CParam::Search(char *key)
/* search for the next match in symbol table */
{
 while (ptrSymTab) {
 if (strcasecmp(key, ptrSymTab->key) == 0)
 return ptrSymTab->value;
 ptrSymTab = ptrSymTab->next;
 }
 return NULL;
}

CParam::~CParam()
{
 SymtabEntry *p, *old;

 p = symTab;
 while (p) {
 free(p->key);
 free(p->value);
 old = p;
 p = p->next;
 free(old);
 }
 glInitialized = 0;
}

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xiv San Jose State University

int CParam::GetContent_Length(void)
{
 char *value;
 int length;

 value = getenv("CONTENT_LENGTH");
 if (!value) return -1;
 if (sscanf(value, "%d", &length) != 1) return -1;

 return length;
}

char * CParam::GetAllCGIInput(int length)
{
 char *input, *query_string;

 if (length < 0) {
 /* get input from environment variable "QUERY_STRING" */
 query_string = getenv("QUERY_STRING");
 if (!query_string) return NULL;
 input = (char *) malloc(sizeof(char) *
(strlen(query_string) + 1));
 if (input != NULL)
 strcpy(input, query_string);
 }
 else {
 /* get input from stdin */
 input = (char *) malloc (sizeof(char) * (length + 1));
 if (input != NULL) {
 fgets(input, length+1, stdin);
 input[length] = '\0';
 }
 }
 if (!input)
 fprintf(stderr, "Out of memory.\n");
 return input;
}

int CParam::ParseAllCGIInput(char *input)
{
 char *startKey, *startVal, *s;
 int index, keyLen, valLen, done = 0;
 SymtabEntry *symTabTail, *newSym;

 if (!input) return 0;
 symTabTail = symTab;

 s = input;
 while (!done) {
 startKey = s; keyLen = 0;

 /* look for '=' */
 while ((*s) != '=' && (*s) !='\0') {

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xv San Jose State University

 s++; keyLen++;
 }
 if ((*s) == '\0') {
 /* incomplete input string at the end */
 done = 1;
 break;
 }
 (*(s++)) = '\0';

 startVal = s; valLen = 0;

 /* look for '&' */
 while ((*s) != '&' && (*s) !='\0') {
 s++; valLen++;
 }
 if ((*s) == '\0')
 done = 1; /* this is the last entry */
 (*(s++)) = '\0';

 /* allocate space for the new symbol */
 newSym = (SymtabEntry *) malloc (sizeof(SymtabEntry));
 if (!newSym) {
 fprintf(stderr, "Out of memory.\n");
 break;
 }
 newSym->next = NULL;
 newSym->key = (char *) malloc (sizeof(char) * (keyLen +
1));
 if(valLen > 0)
 newSym->value = (char *) malloc (sizeof(char) *
(valLen + 1));
 else
 newSym->value = NULL;
 if (!(newSym->key) || (valLen > 0 && !(newSym->value)))
{
 fprintf(stderr, "Out of memory.\n");
 break;
 }
 CopyCGIString(newSym->key, startKey);
 CopyCGIString(newSym->value, startVal);

 /* append the new entry to symTab */
 if (!symTabTail)
 symTab = newSym;
 else
 symTabTail->next = newSym;
 symTabTail = newSym;
 }
 free(input);
 glInitialized = 1;
 return 1;

}

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xvi San Jose State University

void CParam::CopyCGIString(char *dest, char *src)
{
 if(src == NULL)
 {
 dest = NULL;
 return;
 }
 if(strlen(src) <= 0)
 {
 dest = NULL;
 return;
 }
 char *d, *s, a, b, c;
 d = dest; s = src;
 char *tmpstr = (char
)malloc(sizeof(char)(strlen(src)+1));
 d=tmpstr;
 while (*s) {
 c = *s;
 if (c == '+') /* plus is a space */
 c = ' ';
 else if (c == '%') { /* convert characters */
 a = *(++s);
 if (a=='\0') break; /* this shouldn't happen */
 b = *(++s);
 if (b=='\0') break; /* this shouldn't happen */
 a = a - ((a >= '0' && a <= '9') ? ('0') : ('A' - 10));
 b = b - ((b >= '0' && b <= '9') ? ('0') : ('A' - 10));
 c = a * 16 + b;
 }

 (*(d++)) = c;
 s++;
 }
 (*d) = '\0';

 for(d=tmpstr;*d == ' '|| *d == '\r' || *d == '\n' || *d ==
'\t' || *d == '"';d++);
 strcpy(dest,d);
 for(d=dest+strlen(dest)-1; d >= dest ;d--)
 {
 if(*d == ' '||*d == '\r' || *d == '\n' || *d == '\t' ||
*d == '"')
 *d = '\0';
 else
 break;
 }
 free(tmpstr);
}

#ifndef _CFGPARSER_PARAM_H_
#define _CFGPARSER_PARAM_H_

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xvii San Jose State University

typedef struct _SymtabEntry {
 char *key; //htmlname
 char *value; //current htmlvalue
 struct _SymtabEntry *next;
} SymtabEntry;

class CParam
{
 protected:
 char *Search(char *key);
 int GetContent_Length(void);
 char *GetAllCGIInput(int length);
 int ParseAllCGIInput(char *input);
 void CopyCGIString(char *dest,char *src);

 public:
 CParam(void);
 virtual ~CParam();
 SymtabEntry *symTab;
 int glInitialized;
 SymtabEntry *ptrSymTab;
 char *GetFirstValue(char *key);
 char *GetNextValue(char *key);

};

#endif

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/io.h>
#include <sys/stat.h>
#include <errno.h>
#include <sys/file.h>
#include <fcntl.h>
#include <string.h>
#include "param.h"

#define SECURERECEIVERPORT 13000
#define INSECURERECEIVERPORT 14000

#define MAXPARAMLEN 5000

int becomeroot() {
 int rc = 0;

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xviii San Jose State University

 rc = setuid (0);
 if (0 != rc) {
 printf ("<html><body>setuid
%s\n</body></html>",strerror(errno));
 exit (0);
 }
 rc = seteuid (0);
 if (0 != rc) {
 printf ("<html><body>seteuid
%s\n</body></html>",strerror(errno));
 exit(0);
 }
 return rc;
}

int fork_n_execute (const char * cmd0)
{
 pid_t child,granc;
 int rc=0;

 if (NULL == cmd0)
 {
 return -1;
 }
 char m_cmd[MAXPARAMLEN+1];
 sprintf(m_cmd,"echo `date` %s >> /var/log/ssm\0",cmd0);
 system(m_cmd);

 child = fork();
 if (child < 0)
 {
 system(cmd0);
 return 0;
 }
 else if (0 == child)
 {
 // child
 granc = fork();
 if(granc < 0)
 {
 execl("/bin/bash", "bash", "-c",cmd0, (char *) 0);
 _exit(0); // execl error
 }
 else if (granc == 0)
 {
 execl("/bin/bash", "bash", "-c",cmd0, (char *) 0);
 _exit(0); //
 }
 _exit(0);
 }
 return (rc);
}
int main(int argc, char **argv)
{

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xix San Jose State University

 char newstr[MAXPARAMLEN+1];
 char *tmpstr,*audiofile,*user,*raddr;
 CParam m_par;
 int sampling;
 int secure = 0;

 raddr = getenv("REMOTE_ADDR");

 printf("content-type:text/html\n\n");
 printf("<html><head></head><body>");
 printf("<table>\n");
 tmpstr = raddr;
 while(tmpstr != NULL && *tmpstr != '\0')
 {
 if(*tmpstr == ':')
 raddr = tmpstr;
 tmpstr++;
 }
 if(*raddr == ':')
 raddr++;
 secure = atoi(m_par.GetFirstValue("secure"));
 user = m_par.GetFirstValue("user");
 audiofile = m_par.GetFirstValue("file");
 sampling = atoi(m_par.GetFirstValue("rate"));
 printf("<tr><td>Streaming audio for %s
%s</td></tr>",user,raddr);
 if(secure)
 snprintf(newstr,MAXPARAMLEN,"/root/thesis/my/sender %s
%d /home/web/audio/%s %s
%d",raddr,SECURERECEIVERPORT,audiofile,user,sampling);
 else
 snprintf(newstr,MAXPARAMLEN,"/root/thesis/my/sender_rtp
%s %d /home/web/audio/%s %s
%d",raddr,INSECURERECEIVERPORT,audiofile,user,sampling);
 printf("<tr><td>invoking %s</td></tr>",newstr);
 printf("</table></body></html>\n");
 becomeroot();
 fork_n_execute(newstr);
 return 0;
}

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xx San Jose State University

Appendix E: Receiver and sender components

/*
 * secure_receiver
 *
 *
 */

#include <stdio.h> /* for printf, fprintf */
#include <stdlib.h> /* for atoi() */
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h> /* openbsd wants this */
#include <arpa/inet.h>
#include <errno.h>
#include <unistd.h> /* for close() */
#include <string.h> /* for strncpy() */
#include <time.h> /* for usleep() */
#include <pthread.h>

#include "srtp.h"
#include "rtp.h"

#include "fileutils.h"
#include "parseutils.h"
#include "defaultvalues.h"
#include "message.h"
#include "secure_driver.h"

/* algorithms supported are 5 6 7 9 10 */
#define SECRETDATA
"1e0ceb53c$EY7.VRngdVer4bTicm74V1\n$1$e0ceb53c$rmzxJTJXLaa
AJHOS2BCaM/\n1e0ceb53c$pCJotupJvvNVVPvmj1keU0\n$1$e0ceb53c
$kTAvySIymtpvZGB4kLBHW1\n$1$e0ceb53c$/Us4XCnNuYhM.RP9/spnj0\
n"

#define MYKEY
"a2ee93717da76195bb878578790af71c4ee9f859e197a414a78d5abc745
1"

#define TIMEOUT_SECONDS 30
#define ADDR_IS_MULTICAST(a) IN_MULTICAST(htonl(a))

struct security_info secureinfo;
/*
 * usage prints an error message describing how this program
should be
 * called, then calls exit()
 */

void
usage(char *prog_name);

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxi San Jose State University

/*
 * leave_group(...) de-registers from a multicast group
 */

void
leave_group(int sock, struct ip_mreq mreq, char *name);

/*
 * program_type distinguishes the [s]rtp sender and receiver
cases
 */

typedef enum { sender, receiver, unknown } program_type;

/* read the personal key from MYKEY_FILE */
int
get_my_key(unsigned char **mykey);

int
receiverthread(void);

message_t *receivedmsgs = NULL;
int samplingrate=11000;
int packets = 0;
extern int audio_fd;
int wrote_ptr=0,ctr =0,wctr=0;
struct timeval timeout;
fd_set fdread;
rtp_receiver_t rcvr;
int sock,audio_wfifo,audio_rfifo;
extern int chunk;
extern unsigned char *filbuf;
extern int in_ptr ;
extern int out_ptr;
extern int run_out;
int filesize = 0;
int memindex = 0;
int givesignal = 0;

pthread_mutex_t condition_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t condition_cond = PTHREAD_COND_INITIALIZER;

mytime_t mytime;

int
main (int argc, char *argv[]) {
 //struct stat buf;
 double timeElapsed;

 unsigned char word[2*PACKET_SIZE];
 int ret;

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxii San Jose State University

 struct in_addr rcvr_addr;
 struct sockaddr_in name,sendername;
 program_type prog_type = unknown;
 sec_serv_t sec_servs = sec_serv_none;
 struct ip_mreq mreq;
 unsigned char *input_key = NULL;
 //unsigned char *address = NULL;
 unsigned short port = 0;
 rtp_sender_t snd;
 message_t msg;
 int len;
 int sresult,startdevice = 0;
 int sessionflag = 0;
 pthread_t rd,wd;
 pthread_attr_t rattr,wattr;
 //struct sched_param sp;
#if BEW
 struct sockaddr_in local;
#endif
/*BEW */

 pthread_attr_init(&rattr);
 pthread_attr_setschedpolicy(&rattr,SCHED_RR);
 //memset(&sp, 0, sizeof(struct sched_param));
 //sp.sched_priority = sched_get_priority_max(SCHED_RR);
 //pthread_attr_setschedparam(&rattr, &sp);

 pthread_attr_init(&wattr);
 pthread_attr_setschedpolicy(&wattr,SCHED_RR);
 //memset(&sp, 0, sizeof(struct sched_param));
 //sp.sched_priority = sched_get_priority_min(SCHED_RR);
 //pthread_attr_setschedparam(&wattr, &sp);

 sec_servs |= sec_serv_conf;
 sec_servs |= sec_serv_auth;

 prog_type = receiver;

 get_my_key(&input_key);

 if ((sec_servs && !input_key) || (!sec_servs &&
input_key)) {
 /*
 * a key must be provided if and only if security
services have
 * been requested
 */
 printf("input_key not available\n");
 usage(argv[0]);
 }

 printf("security services: ");
 if (sec_servs & sec_serv_conf)

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxiii San Jose State University

 printf("confidentiality ");
 if (sec_servs & sec_serv_auth)
 printf("message authentication");
 if (sec_servs == sec_serv_none)
 printf("none");
 printf("\n");

 if (argc < 2 || argc > 3) {
 /* wrong number of arguments */
 usage(argv[0]);
 }

 /* set port from arg */
 port = atoi(argv[1]);

 /* open socket */
 sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
 if (sock < 0) {
 fprintf(stderr, "%s: couldn't open socket\n", argv[0]);
 exit(1);
 }

 name.sin_addr.s_addr = htonl(INADDR_ANY);
 name.sin_family = AF_INET;
 name.sin_port = htons(port);

 if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {

 mreq.imr_multiaddr.s_addr = rcvr_addr.s_addr;
 mreq.imr_interface.s_addr = htonl(INADDR_ANY);
 ret = setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&mreq, sizeof(mreq));
 if (ret < 0) {
 fprintf(stderr, "%s: Failed to join multicast group",
argv[0]);
 perror("");
 exit(1);
 }
 }

 if (bind(sock, (struct sockaddr *)&name, sizeof(name)) <
0) {
 close(sock);
 fprintf(stderr, "%s: socket bind error\n", argv[0]);
 perror(NULL);
 if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {
 leave_group(sock, mreq, argv[0]);
 }
 exit(1);

 }

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxiv San Jose State University

 chunk = 1 << FRAG_SIZE ;

 printf("chunk %d\n",chunk);

 rtp_receiver_init(&rcvr, sock, name);
 srtp_receiver_init(&rcvr, name, sec_servs, input_key);
 sessionflag = 0;
 packets = 0;
 ctr = 0;
 wctr = 0;
 memindex = 0;
 while (sessionflag == 0 || ctr < packets)
 {
 timeout.tv_sec = TIMEOUT_SECONDS;
 timeout.tv_usec = 0;
 FD_ZERO(&fdread);
 FD_SET(sock, &fdread);
 len = 2*PACKET_SIZE;
 message_init(&msg,0,0);

 if ((sresult = select(sock + 1, &fdread, NULL, NULL,
&timeout)) < 0)
 {
 printf("Error: select() failed,
errno <%d>\n", errno);
 close(sock);
 exit(2);
 }
 if (sresult != 0) // got data
 {
 if(FD_ISSET(sock,&fdread)) {
 if (rtp_recvfrom(&rcvr,word,&len)
> -1) {
 memcpy((void *)&msg,(void
*)word,sizeof(message_t));
 if(sessionflag == 0) {
 printf("\n\tgot session
key %d\n",msg.msg_hdr.seq_num);
 packets =
msg.msg_hdr.seq_num; /* no of packets */
 filesize =
msg.msg_hdr.length;
 /* send the supported
algorithms info */
 bzero(&sendername,
sizeof(sendername));
 sendername.sin_family =
AF_INET;
 my_awkstr(msg.data,"
",5,word,PACKET_SIZE);

 samplingrate =
atoi(word);

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxv San Jose State University

 my_awkstr(msg.data,"
",4,word,PACKET_SIZE);
 memcpy((void
*)secureinfo.teakey,(void *)word,16);
 my_awkstr(msg.data,"
",3,word,PACKET_SIZE);
 sendername.sin_port =
htons(atoi(word));
 my_awkstr(msg.data,"
",2,word,PACKET_SIZE);

sendername.sin_addr.s_addr = inet_addr(word);
 printf("\n\tsender ip %s
%d\n",inet_ntoa(sendername.sin_addr),ntohs(sendername.sin_po
rt));
 my_awkstr(msg.data,"
",1,word,PACKET_SIZE);
 rtp_sender_init(&snd,
sock, sendername);
 srtp_sender_init(&snd,
sendername, sec_servs,word);
 srtp_receiver_init(&rcvr,
name, sec_servs, word);

strncpy(word,SECRETDATA,PACKET_SIZE);
 sresult = strlen(word);

message_init(&msg,MSG_TYPE_ALGO,sresult);
 memcpy((void
*)msg.data,(void *)word,sresult);
 printf("Sending algo
supported\n");

rtp_sendto(&snd,&msg,sizeof(message_t));
 sessionflag = 1;
 receivedmsgs = (message_t
*)malloc(sizeof(message_t) * packets);

bzero(receivedmsgs,sizeof(message_t)*packets);
 filbuf = (char *)
malloc(sizeof(char) * filesize);

bzero(filbuf,sizeof(char)*filesize);
 startdevice = STARTDEVICE
;
 /* if(samplingrate >
43000)
 startdevice =
(FILE_FRAGS *chunk * 16);

 else if(samplingrate >
21000)

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxvi San Jose State University

 startdevice =
(FILE_FRAGS *chunk * 7);
 else
 startdevice =
(FILE_FRAGS *chunk) + chunk;
 */
 } else {
 if(msg.msg_hdr.msg_type
== MSG_TYPE_ALGO){
 secureinfo.algo =
msg.msg_hdr.seq_num;
 printf("Scrambling
algo %d\n",secureinfo.algo);
 } else {
 printf("Received packet
%d seqnum %d\n",ctr,msg.msg_hdr.seq_num);
 if(msg.msg_hdr.seq_num
< 0 || msg.msg_hdr.seq_num >= packets) {
 printf("Got
corrupt packet\n");
 close(sock);
 return 0;
 }
 if(ctr == 0) {

gettimeofday(&(mytime.startTime), NULL);
 }
 ctr++;
 memcpy((void
*)&(receivedmsgs[msg.msg_hdr.seq_num]),(void
*)&msg,sizeof(message_t));
 while(wctr <
msg.msg_hdr.seq_num+1) {

if(receivedmsgs[wctr].msg_hdr.length <= 0)
 break;

memcpy(&filbuf[memindex],receivedmsgs[wctr].data,receivedmsg
s[wctr].msg_hdr.length);
 memindex = memindex
+ receivedmsgs[wctr].msg_hdr.length;
 in_ptr = memindex /
chunk;
 wctr++;
 }
 }
 if(memindex >=
startdevice) {

gettimeofday(&(mytime.audioTime), NULL);

 printf("Done
prefill\n");

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxvii San Jose State University

 printf("create reader
thread\n");
 sresult =
pthread_create(&rd,&rattr, (void *)receiverthread, NULL);
 if(sresult != 0) {
 perror(" Can't
create reader thread... ") ;
 close(sock);
 }
 printf("create writer
thread\n");
 sresult =
pthread_create(&wd, &wattr, (void *)stest_main, NULL);
 if(sresult != 0) {
 perror(" Can't
create writer thread... ") ;
 close(sock);
 }
 sessionflag = 2;
 break;
 }
 }
 }
 else {
 printf("\terror while
receiving bytes received %d\n",len);
 close(sock);
 return 0;
 }
 }
 }
 else //timedout
 {
 if(sessionflag != 0) {
 printf("Receiver timedout\n");
 close(sock);
 return 0;
 }
 }
 } /* end of while */
if(sessionflag == 2) {
 pthread_join(rd,NULL);
 pthread_join(wd,NULL);
} else
 stest_main();

 /*
 printf("writing to sound\n");
 stest_main();
 printf("writing from receivedmsgs\n");

 for(sresult = 0; sresult < packets ; sresult++) {

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxviii San Jose State University

write(audio_fd,receivedmsgs[sresult].data,receivedmsgs[sresu
lt].msg_hdr.length);
 }
 {
 FILE *fp = NULL;
 fp = fopen("soundfile-msgs","w");
 for(ctr = 0; ctr < packets; ctr++)

fwrite(receivedmsgs[ctr].data,1,receivedmsgs[ctr].msg_hdr.le
ngth,fp);
 fclose(fp);
 fp = fopen("soundfile-buf","w");
 fwrite(filbuf,1,filesize,fp);
 fclose(fp);
 }
 */
 free(receivedmsgs);
 if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {
 leave_group(sock, mreq, argv[0]);
 }
 close(sock);

 timeElapsed = mytime.audioTime.tv_sec * 1000000 +
mytime.audioTime.tv_usec -
 mytime.startTime.tv_sec * 1000000 +
mytime.startTime.tv_usec;
 printf("Startup Time: <%.2f> ms\n", timeElapsed/1000);
 timeElapsed = mytime.endTime.tv_sec * 1000000 +
mytime.endTime.tv_usec -
 mytime.startTime.tv_sec * 1000000 +
mytime.startTime.tv_usec;
 printf("End receiving: <%.2f> ms\n", timeElapsed/1000);
 return 0;
}

int receiverthread(void) {
 FILE *fp = NULL;
 unsigned char word[2*PACKET_SIZE];
 message_t msg;
 int len,sresult;

 message_init(&msg,0,0);
 while(ctr < packets) {
 timeout.tv_sec = TIMEOUT_SECONDS;
 timeout.tv_usec = 0;
 FD_ZERO(&fdread);
 FD_SET(sock, &fdread);
 len = 2*PACKET_SIZE;

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxix San Jose State University

 if ((sresult = select(sock + 1, &fdread, NULL, NULL,
&timeout)) < 0)
 {
 printf("Error: select() failed,
errno <%d>\n", errno);
 exit(2);
 }
 if (sresult != 0) // got data
 {
 if(FD_ISSET(sock,&fdread)) {
 if (rtp_recvfrom(&rcvr,word,&len)
> -1) {
 memcpy((void
*)&msg,(void *)word,sizeof(message_t));

 if(msg.msg_hdr.seq_num
< 0 || msg.msg_hdr.seq_num >= packets) {
 printf("Got
corrupt packet\n");
 return 0;
 }
 memcpy((void
*)&(receivedmsgs[msg.msg_hdr.seq_num]),(void
*)&msg,sizeof(message_t));
 ctr++;
 /* loop to verify we
dont get packet 10 before packet 8 or 9 */
 while(wctr <
msg.msg_hdr.seq_num+1) {

if(receivedmsgs[wctr].msg_hdr.length <= 0)
 break;

memcpy(&filbuf[memindex],receivedmsgs[wctr].data,receivedmsg
s[wctr].msg_hdr.length);
 memindex = memindex
+ receivedmsgs[wctr].msg_hdr.length;
 wctr++;
 }
 if(givesignal == 1 &&
 ((out_ptr +
(FILE_FRAGS * chunk)+chunk) < memindex || memindex ==
filesize)) {
 printf("giving
signal %d\n",memindex);

pthread_mutex_lock(&condition_mutex);

pthread_cond_signal(&condition_cond);
 givesignal = 0;

pthread_mutex_unlock(&condition_mutex);

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxx San Jose State University

 }
 }
 }
 }
 else //timedout
 {
 printf("Receiver timedout\n");
 break;
 }

 }
 gettimeofday(&(mytime.endTime), NULL);
 run_out = 1;
 pthread_mutex_lock(&condition_mutex);
 pthread_cond_signal(&condition_cond);
 pthread_mutex_unlock(&condition_mutex);
 fp = fopen("soundfile","w");
 for(ctr = 0; ctr < packets; ctr++)

fwrite(receivedmsgs[ctr].data,1,receivedmsgs[ctr].msg_hdr.le
ngth,fp);
 fclose(fp);
 return 0;
}

void
usage(char *string) {

 printf("usage: %s receivingport [startdevice]\n",
 string);
 exit(1);

}

void
leave_group(int sock, struct ip_mreq mreq, char *name) {
 int ret;

 ret = setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP,
&mreq, sizeof(mreq));
 if (ret < 0) {
 fprintf(stderr, "%s: Failed to leave multicast group",
name);
 perror("");
 }
}

/* read the personal key from MYKEY_FILE */
int get_my_key(unsigned char **mykey){

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxxi San Jose State University

 *mykey = NULL;
 *mykey = (unsigned char *)strdup(MYKEY);
 return 0;
}

 /*
 char *keysfile = MYKEY_FILE;
 FILE *fp = NULL;
 if(initscanner(keysfile,&fp) != 0)
 return -1; // cannot open keys file

 while(getscannerdata(&fp,data,MAXFILESTR) == 0) {
 right_left_trim(data);
 *mykey = (unsigned char *)strdup(data);
 break;
 }
 deinitscanner(&fp);
 printf("Decoding packets with teakey %s\n",tea_key);
 for(ctr = 0; ctr < packets; ctr++) {
 int i =0;
 memcpy((void *)&msg,(void
*)&receivedmsgs[ctr],sizeof(message_t));
 printf("received data %d of length %d\n",ctr,i);
 receiver_print_hex(msg.data,i);
 for(i = 0; i < PACKET_SIZE/(2 *sizeof(long));i++) {
 receiver_decode(algo,(long
*)&(msg.data[2*i*sizeof(long)]),(long *)tea_key,(long
*)&(receivedmsgs[ctr].data[2*i*sizeof(long)]));
 }
 i = receivedmsgs[ctr].msg_hdr.length;
 receivedmsgs[ctr].data[i]= '\0';
 printf("\noriginal\n");
 receiver_print_hex(receivedmsgs[ctr].data,i);
 printf("\n");
 }
 end of decoding */

/*
 * sender.c
 *
 * srtp packets sender
 * Usage: sender destip destport filename username
 */

#include <stdio.h> /* for printf, fprintf */
#include <stdlib.h> /* for atoi() */
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h> /* openbsd wants this */
#include <arpa/inet.h>
#include <errno.h>

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxxii San Jose State University

#include <unistd.h> /* for close() */
#include <string.h> /* for strncpy() */
#include <time.h> /* for usleep() */

#include "srtp.h"
#include "rtp.h"

#include "message.h"
#include "fileutils.h"
#include "parseutils.h"
#include "defaultvalues.h"
#include <openssl/des.h>

#define _XOPEN_SOURCE
#define MAX_SUPPORTEDALGOS 16
#define SERVERKEY "1e0ceb53c"
#define KEYS_FILE "/home/keys.txt"
#define PERMISSIONS_FILE "/home/permissions.txt"
#define BROKEN_FILE "/home/broken.txt"
#define TIMEOUT_SECONDS 10
#define USEC_RATE (1)
#define ADDR_IS_MULTICAST(a) IN_MULTICAST(htonl(a))

#define SENDER_DEBUG 1
#define BEW 1
/*
 * usage prints an error message describing how this program
should be
 * called, then calls exit()
 */

void
usage(char *prog_name);

/*
 * leave_group(...) de-registers from a multicast group
 */

void
leave_group(int sock, struct ip_mreq mreq, char *name);

/*
 * program_type distinguishes the [s]rtp sender and receiver
cases
 */

typedef enum { sender, receiver, unknown } program_type;

/* do_permissions will check from the simple permissions.txt
file in the running dir

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxxiii San Jose State University

 if a given user has permissions to request the file or
not
*/

int
do_permissions(const char *username,const char *filename);

/* read the key from KEYS_FILE */
int
get_client_key(const char *username,unsigned char
**clientkey);

/* generate session key */
int
get_session_key(unsigned char **mykey,unsigned char
*teakey);

/* select scrambling algorithm */
int
select_scrambling_algo(int *clientalgo,int *serveralgo,const
char *supportedalgos,unsigned char *sessionkey);

int
main (int argc, char *argv[]) {
 char *dictfile = NULL;
 FILE *dict;
 message_t msg;
 int sock, ret;
 struct in_addr rcvr_addr;
 struct sockaddr_in name;
 program_type prog_type = unknown;
 sec_serv_t sec_servs = sec_serv_none;
 unsigned char ttl = 5;
 struct ip_mreq mreq;
 int len,ctr,sresult;
 unsigned char word[PACKET_SIZE+1];
 unsigned char myip[20];
 unsigned char *input_key = NULL;
 unsigned char tea_key[17];
 unsigned char *address = NULL;
 unsigned short port = 0,srvport = 0;
 rtp_sender_t snd;
 rtp_receiver_t rcvr;
 struct timeval timeout;
 fd_set fdread;
 char *username = NULL;
 struct stat buf;
 int clientalgo,serveralgo;
 int samplingrate = 44100;
 struct timespec ts;
#if BEW
 struct sockaddr_in local;

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxxiv San Jose State University

#endif
/*BEW */

 /* check args */
 if (6 != argc) {
 /* wrong number of arguments */
 usage(argv[0]);
 }
 prog_type = sender;

 sec_servs |= sec_serv_conf;
 sec_servs |= sec_serv_auth;

 username = argv[4];

 if(username == NULL || strlen(username) <= 0) {
 usage(argv[0]);
 }
 get_client_key((const char *)username,&input_key);

 if ((sec_servs && !input_key) || (!sec_servs &&
input_key)) {
 /*
 * a key must be provided if and only if security
services have
 * been requested
 */
 usage(argv[0]);
 }

 samplingrate = atoi(argv[5]);
 printf("security services: ");
 if (sec_servs & sec_serv_conf)
 printf("confidentiality ");
 if (sec_servs & sec_serv_auth)
 printf("message authentication");
 if (sec_servs == sec_serv_none)
 printf("none");
 printf("\n");

 /* set address from arg */
 address = argv[1];

 /* set port from arg */
 port = atoi(argv[2]);

 /* set requested filename */
 dictfile = (char *) argv[3];

 if(do_permissions(username,dictfile) == 0) {

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxxv San Jose State University

 printf("receiver user %s does not have permissions on
file %s\n",username,dictfile);
 exit(1);
 }

#if HAVE_INET_ATON
 if (0 == inet_aton(address, &rcvr_addr)) {
 fprintf(stderr, "%s: cannot parse IP v4 address %s\n",
argv[0], address);
 exit(1);
 }
 if (rcvr_addr.s_addr == INADDR_NONE) {
 fprintf(stderr, "%s: address error", argv[0]);
 exit(1);
 }
#else
 rcvr_addr.s_addr = inet_addr(address);
 if (0xffffffff == rcvr_addr.s_addr) {
 fprintf(stderr, "%s: cannot parse IP v4 address %s\n",
argv[0], address);
 exit(1);
 }
#endif

 /* open socket */
 sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
 if (sock < 0) {
 fprintf(stderr, "%s: couldn't open socket\n", argv[0]);
 exit(1);
 }

 name.sin_addr = rcvr_addr;
 name.sin_family = AF_INET;
 name.sin_port = htons(port);

 if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {
 ret = setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL,
&ttl,
 sizeof(ttl));
 if (ret < 0) {
 fprintf(stderr, "%s: Failed to set TTL for multicast
group", argv[0]);
 perror("");
 exit(1);
 }

 mreq.imr_multiaddr.s_addr = rcvr_addr.s_addr;
 mreq.imr_interface.s_addr = htonl(INADDR_ANY);
 ret = setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&mreq, sizeof(mreq));
 if (ret < 0) {

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxxvi San Jose State University

 fprintf(stderr, "%s: Failed to join multicast group",
argv[0]);
 perror("");
 exit(1);
 }
 }

#if BEW
 /* bind to local socket (to match crypto policy, if need
be) */
 memset(&local, 0, sizeof(struct sockaddr_in));
 local.sin_addr.s_addr = htonl(INADDR_ANY);
 local.sin_port = htons(0); //ephemeral port
 ret = bind(sock, (struct sockaddr *) &local,
sizeof(struct sockaddr_in));
 if (ret < 0) {
 fprintf(stderr, "%s: bind failed\n", argv[0]);
 perror("");
 exit(1);
 }
 srvport = sizeof(struct sockaddr_in);
 getsockname(sock,(struct sockaddr *) &local,(socklen_t
*) &srvport); //srvport pointing just as extra length
variable
 srvport = ntohs(local.sin_port);
 local.sin_addr.s_addr = htonl(INADDR_ANY);
 local.sin_family = AF_INET;
#endif
/*BEW */

 rtp_sender_init(&snd, sock, name);
 srtp_sender_init(&snd, name, sec_servs, input_key);

 /* check the file to be sent */

 if(stat(dictfile,&buf) != 0 || buf.st_size <= 0) {
 fprintf(stderr, "%s: file %s does not exist, or is of
size 0 length\n", argv[0], dictfile);
 if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {
 leave_group(sock, mreq, argv[0]);
 }
 exit(1);
 }

 /* open file to be sent */
 dict = fopen (dictfile, "r");
 if (dict == NULL) {
 fprintf(stderr, "%s: couldn't open file %s\n",
argv[0], dictfile);
 if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {
 leave_group(sock, mreq, argv[0]);

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxxvii San Jose State University

 }
 exit(1);
 }

 /* send the session key */
 fprintf(stderr,"generating session keys\n");
 get_session_key(&input_key,tea_key);
 if(!input_key) {
 fprintf(stderr,"could not generate session key\n");
 if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {
 leave_group(sock, mreq, argv[0]);
 }
 exit(1);
 }
 fprintf(stderr,"doing message init\n");
 message_init(&msg,MSG_TYPE_INIT,buf.st_size);
 fprintf(stderr,"doing memcpy\n");
 memcpy((void *)msg.data,(void
*)input_key,strlen(input_key)+1);
 fprintf(stderr,"calc total packets \n");
 msg.msg_hdr.seq_num = ((buf.st_size % PACKET_SIZE) ==
0 ? (buf.st_size /PACKET_SIZE) : (buf.st_size/PACKET_SIZE)+1
);
 fprintf(stderr,"total packets=
%d\n",msg.msg_hdr.seq_num);

 fprintf(stderr,"get ip info\n");
 create_tmp_file(word,PACKET_SIZE);
 my_cmd("/home/get_ipinfo.sh eth0 %s",word);
 my_awk(word," ",1,myip,19);
 snprintf(msg.data,MAXFILESTR,"%s %s %d %s
%d",input_key,myip,srvport,tea_key,samplingrate);
 fprintf(stderr,"secretmsg %s\n",msg.data);
 rtp_sendto(&snd,(void *)&msg,sizeof(message_t));

 if(SENDER_DEBUG)
 fprintf(stderr,"sent bytes
%d\n",sizeof(message_t));
 /* change from client key to session key */
 srtp_sender_init(&snd,name,sec_servs,input_key);

 /* receive the algorithms supported */
 {
 printf("Waiting to receive supported algorithms\n");
 rtp_receiver_init(&rcvr, sock, local);
 srtp_receiver_init(&rcvr,local, sec_servs,
input_key);
 timeout.tv_sec = 5*TIMEOUT_SECONDS;
 timeout.tv_usec = 0;
 FD_ZERO(&fdread);
 FD_SET(sock, &fdread);

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxxviii San Jose State University

 if ((sresult = select(sock + 1, &fdread, NULL, NULL,
NULL)) < 0)
 {
 printf("Error: select() failed,
errno <%d>\n", errno);
 close(sock);
 exit(2);
 }
 if (sresult != 0) // got data
 {
 if(FD_ISSET(sock,&fdread)) {
 sresult = 2*PACKET_SIZE;
 if (rtp_recvfrom(&rcvr,(void
*)&msg,&sresult) > -1) {
 printf("\talgorithms:
%s\n",msg.data);

select_scrambling_algo(&clientalgo,&serveralgo,msg.data,inpu
t_key);

message_init(&msg,MSG_TYPE_ALGO,0);
 msg.msg_hdr.seq_num =
clientalgo;
 rtp_sendto(&snd,(void
*)&msg,sizeof(message_t));
 printf("sending client algo:
%d server algo: %d\n",clientalgo,serveralgo);
 }
 }
 } else {
 /* timedout, so send using default algorithm */
 printf("\ttimed out\n");
 exit(0);
 }
 //send selected algorithm info
 }

 /* read words from dictionary, then send them off */
 ctr = 0;
 ts.tv_sec = 0;
 ts.tv_nsec = USEC_RATE;
 while ((len = fread(word,1,PACKET_SIZE,dict)) > 0) {
 int i = 0;
 //scramble the word data here
 message_init(&msg,MSG_TYPE_DATA,len);
 memcpy((void *)msg.data,(void *)word,len);
 for(i = 0; i < PACKET_SIZE/(2*sizeof(long)); i++) {
 server_code(serveralgo,(long
*)&(word[i*2*sizeof(long)]),(long *)tea_key,(long
*)&(msg.data[i*2*sizeof(long)]));
 }
 msg.data[len] = '\0';

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xxxix San Jose State University

 msg.msg_hdr.seq_num = ctr;
 printf("\nsending scrambled packet %d of length
%d\n",ctr,len);
 if(ctr < 10) {
 server_print_hex(msg.data,len);
 printf("\noriginal\n");
 server_print_hex(word,len);
 printf("\n");
 }
 rtp_sendto(&snd,(void *)&msg,sizeof(message_t));
 ctr++;
 if(len < PACKET_SIZE)
 break;
 if(ctr % 50 == 0)
 nanosleep(&ts,NULL);
 }

 if (ADDR_IS_MULTICAST(rcvr_addr.s_addr)) {
 leave_group(sock, mreq, argv[0]);
 }
 close(sock);
 return 0;
}

int
do_permissions(const char *username, const char *filename) {

 char *permissionsfile = PERMISSIONS_FILE;
 FILE *fp = NULL;
 fpos_t curpos;
 char data[MAXFILESTR+1];
 char givenuser[MAXFILESTR+1];
 char givenfile[MAXFILESTR+1];
 char givenpermissions[MAXFILESTR+1];
 int counter = -1;

 if(initscanner(permissionsfile,&fp) != 0)
 return 1; /* permissions file does not exist, so allow
everyone */
 deinitscanner(&fp);

 if(initwriter(permissionsfile,&fp) != 0)
 return 1; /* permissions file does not exist, so allow
everyone */

 while(getwriterdata(&fp,&curpos,data,MAXFILESTR) == 0) {
 my_awkstr(data," ",1,givenfile,MAXFILESTR);
 if(strlen(givenfile) == strlen(filename) &&
strcmp(givenfile,filename) == 0) {
 my_awkstr(data," ",2,givenuser,MAXFILESTR);
 if(strlen(givenuser) == strlen(username) &&
strcmp(givenuser,username) == 0) {

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xl San Jose State University

 /* found a match for username and filename */
 my_awkstr(data," ",3,givenpermissions,MAXFILESTR);
 if(strstr(givenpermissions,"inf") != NULL) {
 deinitwriter(&fp);
 return 1;
 }
 counter = atoi(givenpermissions);
 if(counter > 0) {
 snprintf(data,MAXFILESTR,"%s %s
%d",givenfile,givenuser,counter-1);
 replace_in_file(fp,&curpos,data);
 deinitwriter(&fp);
 return 1;
 }
 deinitwriter(&fp);
 return 0;

 } /* end of found match */

 }

 }
 deinitwriter(&fp);
 return 0;
}

void
usage(char *string) {

 printf("usage: %s dest_ip dest_port filename username
samplingrate\n",
 string);
 exit(1);

}

void
leave_group(int sock, struct ip_mreq mreq, char *name) {
 int ret;

 ret = setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP,
&mreq, sizeof(mreq));
 if (ret < 0) {
 fprintf(stderr, "%s: Failed to leave multicast group",
name);
 perror("");
 }
}

/* read the key from KEYS_FILE */
int

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xli San Jose State University

get_client_key(const char *username,unsigned char
**clientkey){

 char *keysfile = KEYS_FILE;
 FILE *fp = NULL;
 char data[MAXFILESTR+1];
 char givenuser[MAXFILESTR+1];
 char key[MAXFILESTR+1];

 *clientkey = NULL;
 if(initscanner(keysfile,&fp) != 0)
 return -1; /* cannot open keys file */

 while(getscannerdata(&fp,data,MAXFILESTR) == 0) {
 my_awkstr(data," ",1,givenuser,MAXFILESTR);
 if(strlen(givenuser) == strlen(username) &&
strcmp(givenuser,username) == 0) {
 /* found a match for username*/
 my_awkstr(data," ",2,key,MAXFILESTR);
 right_left_trim(key);
 *clientkey = (unsigned char *) strdup(key);
 break;
 }
 }
 deinitscanner(&fp);
 return 0;
}

/* generate session key */
int
get_session_key(unsigned char **sessionkey,unsigned char
*teakey){

 char tmpfile[TMP_FILENAME_LEN+1];
 FILE *fp = NULL;
 char data[MAXFILESTR+1];
 char sdata[MAXFILESTR+1];

 //create_tmp_file(tmpfile,TMP_FILENAME_LEN);
 snprintf(tmpfile,TMP_FILENAME_LEN,"/var/sessionkey");
 erase_file(tmpfile);
 my_cmd("(cat /dev/random | od --read-bytes=32 --width=32 -
x | awk '{ print $3$4$5$6$7$8$9$10$11$12$13$14$15$16$17\"
\"$5$9$13$15 }') 2> /dev/null > %s ",tmpfile);

 if(*sessionkey != NULL) {
 free(*sessionkey);
 *sessionkey = NULL;
 }
 if(initscanner(tmpfile,&fp) != 0)
 return -1; /* cannot open keys file */

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xlii San Jose State University

 while(getscannerdata(&fp,data,MAXFILESTR) == 0) {
 right_left_trim(data);
 my_awkstr(data," ",1,sdata,MAXFILESTR);
 *sessionkey = (unsigned char *)strdup(sdata);
 my_awkstr(data," ",2,sdata,MAXFILESTR);
 memcpy((void *)teakey,(void *)sdata,16);
 teakey[16]='\0';
 break;
 }
 deinitscanner(&fp);
 //remove_file(tmpfile);
 return 0;
}

int
select_scrambling_algo(int *clientalgo,int *serveralgo,const
char *supportedalgos,unsigned char *sessionkey){
 FILE *fp = NULL;
 int totalsupported = 0,totalunbroken=0;
 char *tmp = NULL;
 char *tmp1 = (char *)supportedalgos;
 char buffer[65];
 char output[65];
 char broken[MAXFILESTR+1];
 int i;
 unsigned int seed;
 char salgos[MAXFILESTR+1];

 snprintf(salgos,MAXFILESTR,"%s",supportedalgos);
 fp = fopen(BROKEN_FILE,"r");
 while(fgets(broken,MAXFILESTR,fp) != NULL) {
 if(strlen(broken) > 0)
 break;
 }
 fclose(fp);

 while((tmp = strstr(tmp1,"\n")) != NULL) {
 totalsupported++;
 tmp1 = tmp+1;
 }
 if(tmp1 != NULL && *tmp1 != '\0')
 totalsupported++;
 totalunbroken = totalsupported;
 sscanf(sessionkey,"%x",&seed);
 srand(seed);
 printf("Total algorithms supported by client
%d\n",totalsupported);
 *clientalgo=1+(int)
(totalsupported*rand()/(RAND_MAX+1.0));

 printf("Random client algorithm %d\n",*clientalgo);

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xliii San Jose State University

 tmp1 = (char *)salgos;
 tmp = NULL;
 for(i =0; i < *clientalgo && tmp1 != NULL ; i++) {
 if(tmp != NULL)
 tmp1 = tmp+1;
 tmp = strstr(tmp1,"\n");
 }
 *serveralgo = 0;
 if(tmp != NULL)
 *tmp = '\0';
 printf("Selected secret %s\n",tmp1);
 for(i = 0; i < MAX_SUPPORTEDALGOS;i++) {
 snprintf(buffer,64," %d ",i+1);
 snprintf(output,64,"%s",crypt(buffer,SERVERKEY));
 printf("secret %d %s\n",i+1,output);
 if(strcmp(output,tmp1) == 0) {
 *serveralgo = i+1;
 if(strstr(broken,buffer) != NULL) {
 printf("Algorithm %s is broken\n",buffer);
 totalunbroken--;
 if(totalunbroken == 0) {
 printf("Client algorithms are hacked\n");
 printf("Aborting this transmission\n");
 exit(0);
 }
 *clientalgo = (*clientalgo + 1 <
totalsupported ? *clientalgo+1 : *clientalgo - 1);
 if(*clientalgo < 1) {
 //this should not be happening
 printf("Client algorithms are hacked\n");
 printf("Aborting this transmission\n");
 exit(0);
 }

snprintf(salgos,MAXFILESTR,"%s",supportedalgos);
 tmp1 = (char *)salgos;
 tmp = NULL;
 for(i =0; i < *clientalgo && tmp1 != NULL ;
i++) {
 if(tmp != NULL)
 tmp1 = tmp+1;
 tmp = strstr(tmp1,"\n");
 }
 *serveralgo = 0;
 if(tmp != NULL)
 *tmp = '\0';
 continue;
 }
 break;
 }
 }
 if(*serveralgo == 0) {

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xliv San Jose State University

 printf("Matching algorithm not found\n");
 printf("Aborting this transmission\n");
 exit(0);
 }
 return 0;
}

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>

/***
********************/
/**********Tea Routine -
Original**/

/**********Decode
Routine***
**/

void server_decode(int type,long* in,long* k,long *out) {
 unsigned long n=32, sum, y=in[0], z=in[1], delta=0x9e3779b9
;

 switch (type) {

 case 0:
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;

 case 1:
 delta=0xae3778b9 ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 2:
 delta=0xae3778b9 ;
 sum=delta<<5 ;

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xlv San Jose State University

 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ^
(0xabcd0123) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ^
(0xabcd0123) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 3:
 y=in[1];
 z=in[0];
 delta=0x9e3779b9 ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]);
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]);
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 4:
 y=(in[1]) ^ (0x8abc);
 z=(in[0]) ^ (0x7def);
 delta=0x9e3779b9 ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]);
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]);
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 5:
 y=(in[1])^(0x8abc);
 z=(in[0])^(0x7def);
 delta=0x9e377dab ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]);
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]);
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 6:
 y=(in[1])^(0x8abc);
 z=(in[0])^(0x7def);

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xlvi San Jose State University

 delta=0x9e377aab ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]);
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]);
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 7:
 delta=0xdab778b9 ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 8:
 delta=0xaab778b9 ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 9:
 delta=0xaabdabb9 ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 10:
 delta=0xdabaabb9 ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xlvii San Jose State University

 out[0]=y ; out[1]=z ;
 break;
 case 11:
 delta=0xdabaabab ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 12:
 delta=0xdabaabdb ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 13:
 delta=0xefbaabdb ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 14:
 delta=0xabcdefab ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 15:
 delta=0xfedcabfe ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xlviii San Jose State University

 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 16:
 delta=0x1a2b3c4d ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 default:
 break;
 }

}

/*******************Encode
Routine***/
/*Routine, written in the C language, for encoding with key
k[0] - k[3].
Data in v[0] and v[1]. */

void server_code(int type,long* in, long* k,long *out) {
unsigned long y=in[0],z=in[1], sum=0, /* set up */
 delta=0x9e3779b9, n=32 ; /* a key schedule
constant */

switch(type) {

case 0:
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;
case 1:
 delta=0xae3778b9; /* a key schedule
constant */

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis xlix San Jose State University

 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;
case 2:
 delta=0xae3778b9; /* a key schedule
constant */
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ^
(0xabcd0123) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ^
(0xabcd0123) ; /* end cycle */
 }
 out[0]=y ; out[1]=z ;
 break;
case 3:
 delta=0x9e3779b9; /* a key schedule constant
*/
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=z ; out[1]=y ;
 break;
case 4:
 delta=0x9e3779b9; /* a key schedule constant
*/
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=z^0x7def ; out[1]=y^0x8abc ;
 break;
case 5:
 delta=0x9e377dab; /* a key schedule constant
*/
 while (n-->0) { /* basic cycle
start */

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis l San Jose State University

 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=z^0x7def ; out[1]=y^0x8abc ;
 break;
case 6:
 delta=0x9e377aab; /* a key schedule constant
*/
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=z^0x7def ; out[1]=y^0x8abc ;
 break;
case 7:
 delta=0xdab778b9; /* a key schedule
constant */
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;

case 8:
 delta=0xaab778b9; /* a key schedule
constant */
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;

case 9:
 delta=0xaabdabb9; /* a key schedule
constant */
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis li San Jose State University

 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;

case 10:
 delta=0xdabaabb9; /* a key schedule
constant */
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;

case 11:
 delta=0xdabaabab; /* a key schedule
constant */
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;

case 12:
 delta=0xdabaabdb; /* a key schedule
constant */
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;

case 13:
 delta=0xefbaabdb; /* a key schedule
constant */
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis lii San Jose State University

 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;

case 14:
 delta=0xabcdefab; /* a key schedule
constant */
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;

case 15:
 delta=0xfedcabfe; /* a key schedule
constant */
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;

case 16:
 delta=0x1a2b3c4d; /* a key schedule
constant */
 while (n-->0) { /* basic cycle
start */
 sum += delta ;
 y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; /* end
cycle */
 }
 out[0]=y ; out[1]=z ;
 break;

default:
 break;
}

}

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis liii San Jose State University

void server_print_hex(const unsigned char *str,int len) {
 int i =0;
 for(i=0 ; i < len ; i++,str++)
 printf("%.2x",*str);

}

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis liv San Jose State University

Appendix F: Secure driver

/*
 Modified by Deepali Holankar to implement de-scrambling
parameters intialization and de-scrambling algorithms
 * Intel i810 */

#include "secure_driver.h"

/* "software" or virtual channel, an instance of opened
/dev/dsp */
struct i810_state {
 struct security_info m_secure;
};

/* in this loop, dmabuf.count signifies the amount of data
that is waiting to be dma to
 the soundcard. it is drained by the dma machine and
filled by this loop. */
static ssize_t i810_write(struct file *file, const char
*buffer, size_t count, loff_t *ppos)
{
 struct dmabuf *dmabuf = &state->dmabuf;

 /*decode here before copying to dma buffer */
 if (copy_from_user(secure->data,buffer,count)) {
 if (!ret) ret = -EFAULT;
 return ret;

 }
 for(x = 0; x < count ; x = x + PACKET_SIZE) {
 for(cnt= 0; cnt < PACKET_SIZE/(2
*sizeof(long));cnt++) {
 receiver_decode(secure->algo,(long
*)&(secure->data[x+(2*cnt*sizeof(long))]),(long *)secure-
>teakey,

(long *)&(secure->data[x+(2*cnt*sizeof(long))]));
 }
 }
 buffer = (const char *)secure->data;

 memcpy(dmabuf->rawbuf+swptr,buffer,cnt);

static int i810_ioctl(struct inode *inode, struct file
*file, unsigned int cmd, unsigned long arg)
{
 struct security_info *secure = &state->m_secure;

case SNDCTL_DSP_SECURITY:

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis lv San Jose State University

#ifdef DEBUG
 printk("SNDCTL_DSP_SECURITY\n");
#endif
 memcpy((void *)secure, (void
*)arg,sizeof(security_info));
 return 0;
}

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>

/* server 5 -> client 1 , server 6 -> client 2,

 server 7-> client 3, server 9 -> client 4 server 10 ->
client 5 */
/***
********************/
/**********Tea Routine -
Original**/

/**********Decode
Routine***
**/

void receiver_decode(int type,long* in,long* k,long *out) {
 unsigned long n=32, sum, y=in[0], z=in[1], delta=0x9e3779b9
;

 switch (type) {

 case 1:
 y=in[1]^0x8abc;
 z=in[0]^0x7def;
 delta=0x9e377dab ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]);
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]);
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 2:
 y=(in[1])^(0x8abc);
 z=(in[0])^(0x7def);
 delta=0x9e377aab ;
 sum=delta<<5 ;
 /* start cycle */

Streaming Media Security using Digital Rights Management Deepali Holankar

CS299 Thesis lvi San Jose State University

 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]);
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]);
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 3:
 delta=0xdab778b9 ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }

 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 4:
 delta=0xaabdabb9 ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 case 5:
 delta=0xdabaabb9 ;
 sum=delta<<5 ;
 /* start cycle */
 while (n-->0) {
 z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ;
 y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ;
 sum-=delta ; }
 /* end cycle */
 out[0]=y ; out[1]=z ;
 break;
 default:
 break;
 }

}

