Incorporating RBAC into the JXTA P2P Infrastructure
Amit Mathur
Computer Science Department
San Jose State University
San Jose, CA 95192
408-924-1000
amit@veritas.com
Table of Contents

11.
Abstract

22.
Introduction

22.1
RBAC Overview

42.2
P2P Overview

63.
JXTA Overview

83.1
Peers

93.2
Peer Groups

93.3
Network Transport (Endpoints, Peer Pipes and Messages)

103.4
Services

103.5
Advertisements

103.6
Communication challenges in a P2P setup

123.7
Protocols

123.7.1
Peer Discovery Protocol

153.7.2
Rendevous Protocol (RVP)

193.7.3
Peer Information Protocol (PIP)

233.7.4
Pipe Binding Protocol

264.
Example P2P Application

285.
Implementation of RBAC into JXTA

285.1
Authentication vs. Authorization

285.2
RBAC Resource

296.
Application Design

296.1
Technology decisions

29The choice of XML :

316.2
JXTA Sockets

316.3
Application Overview

326.4
Detailed Design

336.5
XML Engine

33Defining Roles :

36Define mapping between a Peer and a Role :

366.6
RBAC engine

386.7
Execution Engine

416.8
Class Diagram

426.9
Sequence diagrams

426.9.1
Local peer execution

436.9.2
Remote Execution: Client Sequence

436.9.3
Remote Execution: Server Sequence

456.9.4
RBAC security policy enforcement

466.10
Tests and Results

487.
Conclusion

488.
Future Work

509.
References

1. Abstract
Role Based Access Control (RBAC) is a technique that allows users access to resources based on their competencies and responsibilities within an organization. Typically, RBAC is provided as security mechanism for a single host at the operating system level. This allows the operating system to ensure that an authenticated user has access to resources (typically programs and files) based on their role. With the advent of distributed systems, the need to have the same level of flexibility at the application level (which spans multiple hosts) is increased.

Due to the inherent security issues of the peer to peer (P2P) distributed architecture based on the lack of centralized administration, it seems reasonable that an application developer would want to use RBAC to restrict access to a distributed P2P application in a way that reflects the responsibilities of each peer. I have developed an RBAC interface for the Juxtapose (JXTA) P2P framework, which is a popular open P2P technology specification lead by SUN Microsystems. This will allow a JXTA application developer to focus on the application that they are developing and leave the authorization to this framework.

Keywords
Peer, P2P, JXTA, RBAC
2. Introduction
In this paper, I discuss Role Based Access Control (RBAC) as a flexible authorization mechanism. I then go on to elaborate on concepts related to Peer to Peer (P2P) networks and SUN Microsystem’s specification of JXTA which enables P2P computing. Finally, I bring these concepts together and discuss an approach to incorporate RBAC into JXTA.

I have created a reference implementation of the approach that demonstrates the capabilities of this model. I have also produced a demonstration application that uses the reference implementation and illustrates the concepts. I discuss in detail the design of the reference implementation including both static and dynamic system interactions. I also discuss the test results of the demonstration application which exercises the reference implementation.
2.1 RBAC Overview
Role Based Access Control (RBAC) is an authorization mechanism that allows flexible administration while allowing users to have access to the resources that they need. In an RBAC framework, users are associated with roles, and roles are associated with operations. A key premise behind RBAC is the concept of least privilege. Users only have the minimum amount of privileges they need to accomplish their tasks.
An important capability of RBAC is the ability for an administrator to define a role and assign and remove users to and from that role as necessary. This is important due to the fact that although users come and go, the roles typically are static. This is in contrast to ‘standard’ UNIX permissions where a user is directly associated to a resource (file) via owner and group permissions. RBAC also provides for the concept of role hierarchies so that related roles can be expressed via inheritance relationships [3]. Instead of having to define roles one by one, an administrator can describe roles with respect to other roles.
RBAC also allows for the capability of separation of duties. Separation of duties means that in a certain scenario, the same person should not be allowed to be a part of multiple roles. For example, in a transaction that requires a person to initiate a payment and another person to authorize the payment, in may not be appropriate for the same person to be both roles as it could mean a breach of the security practices.

RBAC fits well with object oriented techniques as access to a resource equates to access to an object method. A role then equates to the concept of an interface. An interface is simply a set of methods that provide some capability. An interface abstracts away the implementation from the object that is implementing it. Similarly, in a distributed peer to peer environment, the interface may be implemented by any given peer.

RBAC differs from other access control mechanisms such as Discretionary access control (DAC). Whereas DAC allows the user to pass on permissions to other users at their discretion, RBAC does not provide this capability. RBAC is in fact a form of mandatory access control (MAC). It does not, however, focus on multilevel security requirements which require classifications of data. Instead, it focuses on operations that that role is capable of performing.

RBAC is relevant in a P2P environment since many of the applications that are being developed have clearly defined roles. These roles have defined operations that they can perform. In this situation, the peer takes the place as the user. An example of this would be a buyer/seller application. Peer A could be the buyer and Peer B could be the seller. In this situation, we would want to ensure that Peer A only has access to the appropriate methods on Peer B and visa versa.
2.2 P2P Overview
Figure: 1 P2P Architecture [2]
[image: image1.png]Clierts.

Glents

a. Client-server stacks with limited b. Web-based computing supports . Peer-to-peer computing enables

introperabilty and homogensous heterogeneous clients and servers direct communication between peers
client and server systems and new interaction styles

Often referred to simply as peer-to-peer, or P2P, a peer to peer architecture, as the name suggests is one where every computer on a specific networked system, is considered to be an ‘equal’ or a ‘peer’. In this topology, every workstation has equivalent capabilities and responsibilities. This is in direct contrast to client/server architectures. In client server architectures there are ‘n’ tiers. Each tier has machines and workstations meant for specific tasks. The client tier consists of PCs or desktop machines and is used by clients to run client programs. The ‘middle’ tier has more powerful workstations and houses the business logic and middleware. The ‘back end’ or the ‘end’ tier also tends to have powerful servers which house the database and data. In addition, client server architecture has dedicated servers to manage communication between all the other computers. A Peer-to-peer architecture, however, may be regarded as an architecture with no ‘tiers’. The distribution of functions is more ad-hoc and is not architected in tiers. All workstations in a peer to peer architecture are typically equally powerful and are capable of performing functions of equal caliber. P2P architectures tend to be simpler than client server networks in the sense a direct communication channel can be established between two parties without going through a ‘middle man’. However they tend to not perform very well under high loads. [7] This is because in the P2P architecture there is no concept of a ‘load-balancer’. High performing client-server architectures have load balancers which can determine the load of the different workstations and distribute the load so no one workstation gets overloaded and its resources over-utilized. In this manner the operation of the different computers is monitored and managed. In P2P however due to the lack of a coordinator or controller, this type of control does not exist. [7]
The lack of central administration brings about challenges with regards to how nodes might publish the resources they have and the services they provide. Traditionally there are three types of P2P architectures each of which have their mechanism of node discovery [7].

Atomistic P2P (A2P2P): This in many ways may be regarded as the true and traditional ‘P2P’ architecture due to the lack of centralized administration [7]. In this topology every node in truly independent and manages its resources and connectivity. If a new node would like to join an A2P2P network, it could either use a broadcast protocol to indicate it’s interest in joining the group and await a response. Also, it can attempt to connect to a suitable ‘known’ node and from there on listen to the network and discover the other nodes in the network [7].
User Centric P2P (UCP2P): User Centric P2P adds to A2P2P by providing a ‘bare-bones’ mediating service. Also known as Directory Centric P2P, in this form of P2P, there is a directory of active nodes. Typically these nodes are identified by means of a unique identification. New nodes may join an existing UCP2P network by using this directory to establish a connection with an existing node. The basis for discovery and connection to a specific node is its identity [7].
Data Centric P2P (DCP2P): Data Centric P2P is conceptually similar to UCP2P, except that the directory maps resources to nodes rather than names to nodes. This is also therefore called Resource Centric P2P, thus there is knowledge of services and resources that every node in the DCP2P network provides. Typically these nodes are identified by means of a unique identification. New nodes may join an existing UCP2P network by using this directory to establish a connection with an existing node. As part of the registration process, clients, need to provide a list of available resources on their node to the DCP2P server. The basis for discovery and connection to a specific node is the resources it has [7].
The lack of central administration also brings about challenges with regards to who should have access to what resource. Clearly, each application can develop a mechanism to restrict access to the resources that it provides, but this approach requires the developer to focus on access control instead of simply the development task at hand [6].
P2P technology has given rise to powerful and popular applications such as:

· File sharing

· Instant Messaging
· Web based meetings
· Interactive gaming
· Sharing CPU and storage resources
3. JXTA Overview
Figure: 2 JXTA Architecture [2] [image: image2.png]JXTA
Applications

JXTA
Services

JXTA
Core

Sun
JXTA Community Applications JIXTA
Applications
UXTA

Sun

JXTA Community Services IXTA

Services

Shell

Peer
Commands|

Peer Groups

Peer Pipes

Peer Monitoring

Security

Any Peer on the Expanded Web.

JXTA is an open standard developed by SUN for peer to peer communications. It consists of a set of generic protocols that allow communication and collaboration between devices on a network. The JXTA project has been maintained as an open source project. JXTA allows disparate devices to communicate and interoperate seamlessly. Portable Digital Assistants (PDAs) may communicate with servers and cell phones may communicate with PDAs using JXTA. All the participating elements in a JXTA framework are referred to as ‘peers’. Thus in an environment where a cell phone, server and PDA communicate, each is considered a peer. In this manner JXTA technology enables the creation of a virtual/logical layer above the physical layer. In doing so, a P2P architecture is built over the physical layer, taking the complexity out of the network and physical layer.
Seamless interoperability is a key phenomenon of JXTA. Peers in a JXTA framework can share resources and collaborate irrespective of their operating systems, their physical location (local, remote, or behind the firewall or in the DMZ) or the type of device they actually are. Before JXTA, P2P applications were comprised of chat applications where the two connected devices were ‘compatible’. However with JXTA, resources can be shared between systems even if the provider of the resource operates on a platform that is different from the consumer of that resource. This represents true collaboration and enables efficient resource utilization.
A classic example of the use of JXTA is by the National Association of Realtors. By using JXTA, various realtor databases can participate in the P2P framework enabling search over varied databases without importing all the data into a centralized database. In this manner the different databases are autonomous and owned and managed by individual organizations. However the information can be far reaching and can server a wide audience as a search can span across multiple databases.
Based on the fact that JXTA does not have a directory service to find peers, it is an example of an AP2P or ‘pure’ P2P model. Now that we have described JXTA the need for JXTA, let us take a closer look at basic JXTA terminology: Peers, Peer groups, Network transport, Services and Advertisements.
3.1 Peers

The fundamental building block of JXTA is a peer. In the traditional P2P domain a peer was defined as a single application instance running on a single machine. However in the JXTA world a ‘peer’ is much more than that. It could be a distributed application that resides on multiple machines. On the other hand, several peer instances might reside on a single physical machine. A peer might also be a hand held machine such as a PDA that is ‘plugged in’ through it’s cradle. Although a peer is typically a host, it really is just any “node” capable of speaking the JXTA protocols [1]. There are three types of peers:

Simple Peer: A simple peer typically is a node that exists behind a corporate firewall. It’s accessibility to the outside world is limited by restrictions imposed by the firewall. They are referred to as ‘simple’ peers because they have minimal responsibility in that they cannot directly communicate with other peers and they cannot act as the communication go-between peers.
Rendezvous Peer: As the name suggests a rendezvous peer maybe regarded as a ‘hub’ that peers query to discover one another. Typically a rendezvous peer resides outside the firewall. Peers query a rendezvous peer to discover other peers and network location of other peers. The rendezvous peer may utilize the help of other rendezvous peers to assist in peer discovery. The rendezvous peer may also cache peer information for use in the future.
Router Peer : A router peer is typically used to route requests between peers. Typically the router peer exists outside of the firewall in the ‘external’ internet environment. Peers behind corporate firewalls and NATs route requests back and forth between each other by using a Router peer.
3.2 Peer Groups

In the non-JXTA world, the network is divided based on the type of P2P application. Different P2P applications use different protocols. For example all peers involved in instance messaging would speak the ICQ protocol and that constitutes one network segment. Peers involved in file sharing speak the Gnutella protocol which constitutes a different network segment. However in the JXTA world all peers speak the same protocols, a set of generic, open JXTA protocols. Hence to divide the network a concept of peer groups is essential. Peer groups are comprised of a set of peers that contribute towards providing a common service and have a common goal.
For peers to communicate, they must first form a peer group. A peer group is detected via a peer group advertisement. The join functionality for a peer group is to allow access to anyone, but can be customized to suit other requirements. The default peer group is called the netPeerGroup. This peer group acts as a bootstrapping mechanism to allow a peer to access the capabilities of a peer group. The peer may then join other peer groups as necessary.
3.3 Network Transport (Endpoints, Peer Pipes and Messages)

Network transport is the communication layer that is employed by peers to communicate with each other. There are three aspects to the Network transport:
Endpoints: This represents the source or destination point of the network that a piece of data gets transmitted from or transmitted to.
Pipes: The communication mechanism between peers is a peer pipe. A peer pipe is similar to a UNIX pipe in that is allows unidirectional communication from a peer to another peer. Peers are discovered via peer advertisements. To communicate using pipes a peer has to first identify a source end point and a destination end point. A pipe is then bound to these two end points. The pipe is not used for actual data transmission. It merely represents ‘virtually’ that data is being transmitted between the two bound end points. The end points themselves interface with the network to transmit data. When bound by means of a pipe the source end point is called the output pipe and the destination end point is called the input pipe. To send data from one end point to another, data is ‘wrapped’ in a message and pushes it by means of the output pipe. The peer at the other end then receives the message from the input pipe and extracts it. Pipes serve as unidirectional communication channels. To implement bi-directional communication, two pipes are used.
Messages: This refers to the ‘wrapper’ in which data is transmitted using pipes from one end point to another.

3.4 Services

Services refer to functionality provided by peers. For example, file sharing. There are different types of services. Peer Services refers to services provided by a single peer to other peers on a network. Peer Group Sevices refers to services provided by a peer group to its members. If one peer is connected to the network and provides a service, it is available to all peers in the group. Multiple peers in a peer group may provide the same service.
3.5 Advertisements

Advertisements are the way by which peers and peer groups make known the services they provide and services that are available to other peers in a P2P network. In the JXTA world, peers, peer groups, pipes, end points and services may all be defined using advertisements.
3.6 Communication challenges in a P2P setup

Firewalls and NAT impose challenges on communication between peers. Typically firewalls are used by corporations to secure their networks. Firewall implementations restrict access to the internal network by use of Access Control Lists (ACLs), specific IP addresses, specific protocols and specific ports. Typically firewalls allow HTTP for peers inside the network to communicate with the outside. Thus a peer would have to restrict itself to the use of HTTP. Further if the incoming request does not come in via the specified port or IP address then the response might get blocked.

NAT implementations on the other hand allow communication back to a machine that originated a request. Thus there is practically no way for a peer outside of a NAT setup to talk to a peer and the peer inside the NAT setup would have to first initiate a connection. These limitations are overcome to some extent by using a proxy or otherwise called a router peer. In a single firewall or NAT traversal, peer A, a peer behind the firewall sends a message bound for peer B, outside the firewall to a router peer which is also outside the firewall. Router peer forwards the message to peer B. Peer B then sends a message back that is bound for peer A to the router peer. Peer A periodically polls the router peer for messages. The router peer then pushes the response to peer A.

In a double firewall or NAT situation typically the publisher sits inside one firewall and the subscriber sits inside a different firewall, thus two firewalls have to be traversed. In this situation peer A behind firewall A sends a message bound for peer B to a router peer that’s in ‘external’ environment. Peer B which is behind firewall B routinely polls the router peer for messages. The router peer then pushes the message to peer B.

By using the technique described above, JXTA helps overcome these challenges by specifying a set of protocols that enable these peers to ‘free’ themselves out of their actually physical location and communicate freely with one another. As long as the peers speak the JXTA protocols they can publish their services and resources and consume each others services and resources without having to use intermediary ‘routing’ peers as described in the above scenario. Let us now take a closer look at the JXTA protocols.

3.7 Protocols

3.7.1 Peer Discovery Protocol

As covered in the ‘Advertisement’ section, advertisements may be regarded as the fundamental unit of exchange. Having said that, the problem of discovering peers and their resources becomes one of discovering advertisements corresponding to those resources. The Peer Discovery Protocol defines a protocol that is used by peers to request advertisements corresponding to resources they are seeking from other peers and respond to advertisement requests from other peers.

The Peer Discovery Protocol defines two message formats :

1. An advertisement Request Format which is used to discover resources. This format is called the Discovery Query Message
2. An advertisement Response Format which is used by peers to respond to an advertisement discovery request. This format is called the Discovery Response Message
These two message formats contain all the information needed for two peers to discover one another. Let us take a more detailed look at these two message formats.
The Discovery Query Message format :
Following is the format of a Discover Query message.
<?xml version=”1.0” encoding=”UTF-8”?>

 <jxta:DiscoveryQuery>

 <Type> . . . </Type>

 <Threshold> . . . </Threshold>

 <PeerAdv> . . .</PeerAdv>

 <Attr> . . . </Attr>

 <Value> . . .</Value>

 </jxta:DiscoveryQuery>
The above format is in XML and the root element indicates that it is a JXTA Discovery Query Message. The individual elements specify the various discovery parameters used by the Discovery Query Message.

Type: Type is a mandatory element. It is not optional and the value of type needs to be an integer value.

‘0’ indicates that this query is seeking to discover Peer Advertisements

‘1’ indicates that this query is seeking to discover Peer Group Advertisements

‘2’ indicates that this query is seeking to discovery all other types of advertisements.

Threshold: This element is not required. If used it indicates the maximum number of advertisements that should be sent by a peer that is responding to the discovery query.

PeerAdv: This element is also optional. If specified it indicates contains the Peer Advertisement for the peer that is requesting the discovery query. In other words it contains the identification of the requesting peer. This will enable other peers on the network to identify the requesting peer and respond to it with the results of its query

Attribute and Value: These elements are specified in pairs and are optional as well. They detail the criteria that an advertisement must meet in order to be sent back as a response to the query. ‘Attr’ specifies the criteria name and ‘Value’ specifies the criteria value.
There are a few exceptions to element values:
1. If Type and Threshold are set to 0, this means that the requesting peer is seeking to discover maximum Peer Advertisements. As a result all peers that receive the query should respond with their Peer Advertisement.

2. If the values for Attr and value remain blank in the request query, then each peer responds with random advertisements of the type specified in Type up to a number that does not exceed what is specified in Threshold if it threshold is specified.
The Discover Response Message format
<?xml version=”1.0” encoding=”UTF-8”?>

 <jxta:DiscoveryResponse>

 <Type> . . . </Type>

 <Count> . . . </Count>

 <PeerAdv> . . . </PeerAdv>

 <Attr> . . . </Attr>

 <Value> . . . </Value>

 <Response Expiration=”expiration time”>

 . . .

 </Response>

 </jxta:DiscoveryResponse>

The discover response message is also in XML format. The root element indicates that it is a JXTA Discovery Response Message. The individual elements specify the various discovery parameters used by the Discovery Response Message.

Type: Similar to the discovery message, Type is a mandatory element. It is not optional and the value of type needs to be an integer value.

‘0’ indicates that this query is seeking to discover Peer Advertisements

‘1’ indicates that this query is seeking to discover Peer Group Advertisements

Count: This is an optional element and contains an integer value. If specified it contains the count of the total number of response elements in the message.

PeerAdv: This element is similar to the element in the discovery message. This is also optional. If specified it indicates contains the Peer Advertisement for the peer that is responding to the discovery query.
Attribute and Value: These elements are specified in pairs and are optional as well. They have the same values as what is specified in the discovery request.
Response: This element is also optional. If specified it contains the advertisement that matched the criteria specified in the Discovery Query Message. A response message can consist of multiple response elements, each representing an advertisement. The total number of response elements is equal to the value specified in Count. The Expiration attribute in the response element specifies the time for which the advertisement is authentic and valid.

The Peer Discover Protocol provides a Discovery service which uses the above two message formats to publish advertisements locally or remotely and retrieve advertisements locally and remotely. The Java reference implementation provides an interface called the DiscoveryService interface which aids in the discovery task.
3.7.2 Rendevous Protocol (RVP)
As discussed in the section under ‘Peers’, a rendezvous peer is one which facilitates communication between two otherwise unreachable peers. Simple peers that reside in a private network connect to a rendezvous peer by employing the Rendezvous protocol in order to ‘pass on’ messages to other simple peers that are present in a different private network.
Rendezvous Advertisement: Peers use a rendezvous advertisement to indicate their interest in being a rendezvous peer. The format of the Rendezvous advertisement is as follows :

<?xml version=”1.0”?>

 <jxta:RdvAdvertisement xmlns:jxta=”http://jxta.org”>

 <RdvGroupId> . . . </RdvGroupId>

 <RdvPeerId> . . . </RdvPeerId>

 <Name> . . . </Name>

 </jxta:RdvAdvertisement>

As can be seen this message format is in XML.

RdvGroupId: The rendezvous peer provides services to a peer group. This is a mandatory element and represents the ID of that peer group to which this peer provides rendezvous services.

RdvPeerId: This is again a mandatory element and contains the ID of the peer that provides the rendezvous services to the above listed peer group.

Name: This element is not mandatory. If specified it represents the name of the rendezvous peer which may be employed by other peers to find it.
Peers may discover a rendezvous peer by sending out a Discovery Query Message for rendezvous advertisements.

When using the rendezvous protocol, a peer may not start using the services of the rendezvous peer soon after discovering one. The peer has to request a lease of the rendezvous peer. This lease may be either granted or denied by the rendezvous peer. If the lease is granted then there is a time period in which this lease is valid. Once that time expires, so does the lease and the peer may no longer avail of the rendezvous peer’s rendezvous services.
Let us look at the lease mechanism is greater detail. There are three types of lease messages, Lease Request Message, Lease Granted Message and Lease Cancel Message.
Lease Request Message : Upon discovering a rendezvous peer that a simple peer would like to use, the simple peer must send it a request for connection in the form of a lease request message. When sending this request the simple peer must also send the rendezvous peer it’s own peer advertisement. This is done by means of a jxta:Connect message element. Following is the XML format of the same,

<jxta:Connect>

 <jxta:PA xmlns:jxta=”http://jxta.org”>

 . . .

 </jxta:PA>

</jxta:Connect>
The end point service renders this message on a format suitable to be transmitted on the network transport. Hence this message may get compressed into a binary format, nevertheless above is the message element specification used by peers.
Lease Granted Message : If the rendezvous peer approves the request for connection from a simple peer, it generates a lease granted message which contains the ID of the rendezvous peer as well as a time limit on the granted lease. The lease granted message has the following message elements :
jxta:ConnectedPeer: This element is not optional and contains the rendezvous peer’s peer ID.

jxta:ConnectedLease: This element is mandatory and contains the time for which the lease is valid. This contains the lease time in miiliseconds as a string. When the lease time limit for a simple peer connection has lapsed, the rendezvous peer simply eliminates that peer from it’s list of connected peers
jxta:RdvAdvReply: This element is optional and if specified contains the rendezvous peer’s Peer Advertisement.
Lease Cancel Message: If a simple peer would like to discontinue it’s connection with a rendezvous peer, it issues a lease cancel message. It does so by issuing a disconnect message. The JXTA element is called,
jxta:Disconnect: This element contains the Peer Advertisement of the peer requesting removal from a rendezvous peer that it is connected to.
Containing Loop Backs : As can be concurred, if message transmission is not contained, a message could infinitely be transmitted between a peer and it’s rendezvous peer that are connected in a closed loop. To avoid this, the RVP allows a message format called Rendezvous Propagate Message. The XML format for this message is as seen below,
<?xml version=”1.0” encoding=”UTF-8”?>

 <jxta:RendezVousPropagateMessage>

 <MessageId> . . . </MessageId>

 <DestSName> . . . </DestSName>

 <DestSParam> . . . </DestSParam>

 <TTL> . . . </TTL>

 <Path> . . . </Path>

 </jxta:RendezVousPropagateMessage>

The element of interest here in the TTL element. This is a mandatory element. The TTL or Time To Live value gets decremented by one anytime the message is exchanged between peers. When the TTL value reaches 0, the message is discarded by the rendezvous peer eliminating infinite duplicate propagations of a message.

The Rendezvous Propagate Message specified details about the service to which this message is being propogated. MessageId as the name suggests contain the ID of the message. The DestSName and DestSParam elements contain the name of the destination services as well as parameters for this destination service. All of these three elements are mandatory as well.

The Rendezvous Service : The Rendezvous Service is the implementation of the RVP. This service is utilized to create and run a rendezvous peer and propagate messages using this rendezvous peer.

If a peer is configured as a rendezvous peer, it may use its rendezvous service to send messages to other rendezvous peers as well as simple peers in the peer group.

If a peer is not configured as a rendezvous peer it may still use its rendezvous service to send messages to other peers in the peer group by using rendezvous peers that it is connected to.
3.7.3 Peer Information Protocol (PIP)
Once remote peers in a P2P network discover one another they may want to monitor one another and receive status information on each other so that they can make an informed decision based on this status information that they receive. For instance if a client peer would like to use a remote destination peer and based on the network traffic on that destination peer finds that the load on the destination peer is high, the client peer may want to move away from that destination peer to a different destination peer with lighter load for enhanced response times. This approach is not only beneficial to the client peer but for the remote destination peer and the P2P network as a whole.
The PIP protocol allows a peer to monitor a remote peer and obtain status information on that remote peer. As with other JXTA protocols seen this far, this calls for messages and message formats. PIP supports two types of messages, Peer Info Query Message and Peer Info Response Message.
Peer Info Query Message: The Peer Info Query Message format is used by peers to query the status of a remote peer. The XML format of the message is as shown below :
<?xml version=”1.0” encoding=”UTF-8”?>

 <jxta:PeerInfoQueryMessagexmlns:jxta=”http://jxta.org”>

 <sourcePid> . . . </sourcePid>

 <targetPid> . . . </targetPid>

 <request> . . . </request>

 </jxta:PeerInfoQueryMessage>

As seen above the message specifies three elements,

sourcePid: This is a required element and specifies the ID of the peer requesting status of a remote peer
targetPid: This is also a required element and contains the ID of the remote peer whose status is being requested.
request: This element is optional and contains the specific status information that is being sought of the remote peer. This string does not conform to any standard specification and it is the responsibility of the remote peer to interpret it.
Peer Info Response Message: The Peer Info Response Message, specifies a format for a remote peer to respond with its status.
The XML message format is as shown below :
<?xml version=”1.0” encoding=”UTF-8”?>

 <jxta:PeerInfoResponse xmlns:jxta=”http://jxta.org”>

 <sourcePid> . . . </sourcePid>

 <targetPid> . . . </targetPid>

 <uptime> . . . </uptime>

 <timestamp> . . . </timestamp>

 <response> . . . </response>

 <traffic>

 . . .

 </traffic>

 </jxta:PeerInfoResponse>

sourcePid: This is a required element and contains the ID of the peer requesting status of the remote peer. This is the ID of the peer that originated the Peer Info Query Message.
targetPid: This is a required element as well and contains the ID for the remote peer whose status is being requested.

Uptime: This is an optional element and indicates the time in milliseconds for how long that peer has been ‘up’ or ‘active’ in the P2P network.

Timestamp: This is an optional element and if specified describes the time when the remote peer response was generated with its status.

Response: This element is optional and if specified contains the specific status information that is being returned by the remote peer. This string does not conform to any standard specification and it is the responsibility of the requester to interpret it.

Traffic: This is an optional element as well and if specified contains details of the network traffic handled by the peer. The traffic element has it’s own XML format which is as shown as follows :
<traffic>

 <lastIncomingMessageAt> . .. </lastIncomingMessageAt>

 <lastOutgoingMessageAt> . .. </lastOutgoingMessageAt>

 <in>

 <transport endptaddr=” . . . “> . . . </transport>

 </in>

 <out>

 <transport endptaddr=” . . . “> . . . </transport>

 </out>

</traffic>

lastIncomingMessageAt: This element is optional and specifies in milliseconds the last time that this peer’s endpoints handled an incoming message.
lastOutgoingMessageAt: This element is optional and specifies in milliseconds the last time that this peer’s endpoints handled an outgoing message.

in: This element is optional as well and if specified describes the incoming traffic seen at the peer’s end points
transport: This is an optional element containing the number of bytes processed by the endpoint address specified in the endptaddr.
out: This element is optional as well and if specified describes the outgoing traffic seen at the peer’s end points
The Peer Info Service
The Peer Info Service is an interface that provides implementation in order to request and receive the status of a remote peer. A peer requesting status of a remote peer sends it a Peer Info Query Message. The Peer Info Service receives this message. If the target IDof the message is equal to it’s peer ID, it responds with its status using the Peer Info Response Message. If the IDs do not match the Peer Info Service does nothing [2].
One of the limitations of the PIP is the lack of specifics when it comes to the ‘request’ element in the Query message and the ‘response’ element in the Response message. As a result the reference implementation currently does not allow developers to specify any values in these fields. Work is underway to augment the protocol and define these elements in more detail so that standard handlers for these elements may be implemented
3.7.4 Pipe Binding Protocol

A pipe is a virtual connection between two endpoints. The JXTA specification specifies pipes as unidirectional and asynchronous implying that data can flow only in a single direction and data can be sent and received independent of any coordination and synchronization.
An end point is an abstraction of the network interface provided by the peer. The network interface in turn provides access to data transportation protocols such as TCP, UDP or HTTP. The end points in the JXTA network are responsible for sending and receiving messages. Although a pipe represents a ‘data-flow’ connection between a sending endpoint and a receiving end point the data is actually transmitted across the network that the end points interface with [6].
In JXTA, pipes are specified by means of a Pipe Advertisement. It is an XML format as is as seen below :
<?xml version=”1.0” encoding=”UTF-8”?>

 <jxta:PipeAdvertisement>

 <Id> . . . </Id>

 <Type> . . . </Type>

 <Name> . . . </Name>

 </jxta:PipeAdvertisement>

Id: This is a mandatory element and specifies the pipe ID
Type: This is also a mandatory element and specifies the type of connection (JxtaUnicast, JxtaUnicastSecure, or JxtaPropagate)
Name: An optional element that specifies the name of the pipe which may then be used to discover the pipe.

It is important to notice that the Pipe Advertisement XML does not specify the peer ID. This is because the peer ID is not known. A peer that intends to send data over a pipe, say pipeX with pipe ID, pipeIdX needs to discover another peer that has bound to a pipe with the same pipe ID, pipeIdX to an end point. Further this end point should be listening for data. In other words it should be in ‘receive’ mode. This is where the Pipe Binding Protocol comes in. It enables peers to discover whether they have bound pipes with the same pipe Id to end points in so that they can transmit data. Basically it helps in peer resolution based on a pipe ID.
The pipe binding protocol specifies two message formats:

The Pipe Binding Query Message: This message format allows a peer to send a query to other remote peers to determine if they have bound a pipe with the same pipe ID to an end point capable of receiving data.
The message format is in XML as shown below :

<?xml version=”1.0” encoding=”UTF-8”?>

 <jxta:PipeResolver>

 <MsgType>Query</MsgType>

 <PipeId> . . . </PipeId>

 <Type> . . . </Type>

 <Cached> . . . </Cached>

 <Peer> . . . </Peer>

 </jxta:PipeResolver>
MsgType: This is a mandatory element and specifies the type of pipe binding message. For the query message this value is set to ‘Query’ in the reference implementation.
PipeId: This is a mandatory element and specifies the Id of the pipe

Type: This is also a mandatory element containing the type of pipe that is attempting to being resolved.
Cached: This element is optional and indicates to the remote peer whether it can use it’s cache of pipes that it has already resolved to respond to the query.

Peer: According to the specs this is the peer Id that should respond. However the reference implementation leaves this blank.

The Pipe Binding Answer Message: This is a message format that enables a peer to respond.

The message format is in XML as shown below:

<?xml version=”1.0” encoding=”UTF-8”?>

 <jxta:PipeResolver>

 <MsgType>Answer</MsgType>

 <PipeId> . . . </PipeId>

 <Type> . . . </Type>

 <Peer> . . . </Peer>

 <Found>false</Found>

 <PeerAdv> . . . </PeerAdv>

 </jxta:PipeResolver>

MsgType: This is a mandatory element and specifies the type of pipe binding response message. For the response message this value is set to ‘Answer in the reference implementation.

Found: This element is not mandatory and if specified indicates whether a matching pipe Id was found or not.

PeerAdv: This element is also not mandatory and if specified contains the Peer Advertisement of a peer that has a pipe with the matching ID.
The Pipe Service: The PBP is implemented as a Pipe Service which provides the implementation framework for creating input and output pipe objects and binding these objects to end points for data transmission through them.

The following scenario illustrates a typical scenario where the PBPand Pipe Service are used :
1. A peer, say, PeerA creates an input pipe with a Pipe Advertisement.
2. Another peer, say, PeerB is interested in communicating (sending data) to PeerA using the same pipe advertisement. Hence it sends a Pipe Binding Query Message to all of its known and rendezvous peers.
3. Peer A receives this message over the JXTA P2P network and sends back a pipe Binding Response Message as it has a pipe with the matching pipeId.
4. PeerB receives this response message and uses it to create an output pipe.
5. PeerB now communicates with PeerA.
In this manner we have seen how pipes may be bound to end points and then send and receive data to or from a remote peer.
4. Example P2P Application

We now turn to an example application that will help us motivate the need for an RBAC capability in JXTA. Let us consider a sample ‘Document Management’ application. In this application the application programmer would like to provide the ability for individuals to create documents, allow them to be reviewed, and publish them.

This type of application has several advantages to being implemented as a P2P application rather than as a standard client server application. In a normal client server architecture the server would have to maintain all the documents as well as workflow status and state information. The scalability of the application will be limited by the scalability of the server. However in a P2P architecture, the document is only required to ‘pass through’ the peers that need to act on it as part of the workflow. Also in a client server architecture, since the server houses all the documents, it handles all of the workflow. However in a P2P architecture the workflow is distributed amongst all the peers. As a result the security impact of a breach on a server is much greater than the security impact of a breach on a peer.

Given that there are several advantages to using the P2P architecture the question shifts to implementation. JXTA being standards based, cross platform, and language independent lends itself well as an implementation technology. However, in the JXTA framework, security is based on peer groups and can be enforced by creating secure peer groups and controlling membership into these groups. If multiple peers are part of an application then they may all be given access to a specific peer group. If the application requires that functionality be divided amongst the different peers based on roles, then it puts the onus of defining roles, defining responsibilities for those roles and enforcing system access based on those roles, on the application programmer. This can become cumbersome.

Implementing a layer over the JXTA framework that defines access to the application based on roles alleviates the application programmer of the task and enables them to focus purely on developing the application. This is where integrating RBAC principles with the JXTA technology provides value to the application developer.

Going back to our sample ‘Document Management’ application, there are four roles with specific responsibilities:

1. Author: This role is responsible for creating the document.

2. Reviewer: In this role the intention is to serve as a peer reviewer and provide feedback on content accuracy of the document. The focus is more on semantics

3. Copy Editor: This role is responsible for ensuring accurate syntax of the document and is also responsible for document presentation and formatting.

4. Publisher: This role is responsible for making the document available to the intended audience.

It then becomes the job of the developer to translate the roles into role names and responsibilities into application specific methods. The methods may further be classified into two types, namely ‘access’ and ‘publish’. For example in an interaction between the Author and the Reviewer, the Reviewer needs access to the document to review it and the Author then needs access to the feedback. Thus a method ‘getDocument()’ would be published by the Author and accessed by the Reviewer while a method ‘getFeedback()’ would be published by the Reviewer and accessed by the Author. Having discussed in theory a scenario which motivates the need for an implementation of RBAC into JXTA, let us now talk about a reference implementation that provides these capabilities.

5. Implementation of RBAC into JXTA
In this section, I discuss the reference implementation of the RBAC authorization into the JXTA framework. I describe the technologies used as well as the design of the distributed RBAC mechanism.
5.1 Authentication vs. Authorization
Authentication is a mechanism for ensuring that a peer is who it claims to be. Authorization is a mechanism for ensuring that a peer has access to the resources that it should have. In this implementation, I only consider RBAC authorization and assume that all the peers have been authenticated. Many authentication methods for JXTA already exist (primarily relying on PKI), so this paper does not focus on re-implementing them. It should be noted that authentication is a prerequisite for the authorization implementation.
5.2 RBAC Resource

For the purpose of this implementation, access to a resource is simple access to a method from a peer pipe. A method is called remotely over a JXTA socket. A remote method call object will be marshaled and demarshalled across the socket. The result will be processed on the server peer that services the role and be returned to the client peer that is requesting the processing. This technique is in alignment with current object oriented techniques [4].
6. Application Design

In this section we will go through the design of the application in detail. The section starts out with specifics on technology decisions that have been taken. It then goes into the application overview and some assumptions that have been made in the system.
6.1 Technology decisions
In an attempt to enforce Roles Based Access Control in a peer to peer network, I have chosen to use XML (Extensible Markup Language) to set up the authorization configuration. Further I have chosen to use Apache’s Commons Digester as the XML parser. In the section below I have explained why I chose XML and the Commons Digester parser.
The choice of XML :

XML bears roots in SGML (Standard Generalized Markup Language). It is an extremely flexible markup language that enables users to define and use custom tags. The user not only creates the XML file but also defines a DTD (Document Type Definition). The DTD specifies the structure of a document. One might also think of the DTD as specifying the XML format.

<?xml version="1.0"?>

<!DOCTYPE car [

 <!ELEMENT car (color,make,model)>

 <!ELEMENT color (#PCDATA)>

 <!ELEMENT make (#PCDATA)>

 <!ELEMENT model (#PCDATA)>

]>

<car>

 <color>Red</color>

 <make>Honda</make>

 <model>Civic</model>

</car>
In the above example the DTD specifies that the XML file contains an element called ‘car’ which in turn contains elements named ‘color’, ‘make’ and ‘model’. Further it specifies that color’, ‘make’ and ‘model’ are data elements. As can be seen in the above XML file, the tags <car>, <color>, <make> and <model> are all user defined ‘custom’ tags. In this way XML provides the application programmer with the ultimate flexibility.

It is important to note here that XML documents might contain DTDs in them, might reference external DTDs or may have no DTDs. If an XML document has no DTDs, the application programmer has to programmatically indicate how they want the XML to be parsed.

XML parsers : An XML document once defined needs to be parsed. There are two types of XML parsers :

1.
DOM (Document Object Model) XML Parser: A DOM parser works by creating a tree like hierarchical structure of the XML document. The DOM parses reads the entire XML document into memory and creates an object-oriented hierarchical representation of the document that the application programmer can navigate at run-time. Since the document is stored in memory, updates to the document can be easily made. Although the DOM approach can potentially use a lot of memory, depending on the size of the XML document, the advantage is the document contents are stored and available during run time.

2.
SAX (Simple API for XML) XML Parser: The SAX parser on the other hand is event based. The parser scans through the XML document. When it encounters a specific tag it calls a ‘handler’ method. It is then the responsibility of the handler method to process/store the data. If the handler does not store the data, the data is lost. Unlike the DOM parser, the SAX parser does not store the document in memory. The SAX parser is more efficient from a resource utilization standpoint put it places the onus of storing the data on the application programmer. An example of a SAX parser is the Commons Digester parser from Apache.

The application reads the authorization configurations into data structures and user defined objects that it can then use to enforce RBAC policies. In order to provide the application programmer with this ability as well as for performance reasons this system uses a SAX parser.

6.2 JXTA Sockets

Although JXTA provides bidirectional pipe access, I chose the use of JXTA Sockets instead. JXTA sockets provide a familiar sockets interface on top of JXTA and provide added performance and reliability capabilities. However, a drawback of JXTA sockets over pipes is very low one way throughput [8]. Creating a JXTA socket involves passing a pipe advertisement. JXTA sockets inherit from java sockets so sending and receiving objects across the wire is more straightforward as techniques to transfer objects over regular sockets are well known.
6.3 Application Overview
In this peer to peer system, every peer has the ability to request method execution on another peer as well as provide the implementation of methods. In other words every peer may act as both a ‘client’ that makes a request and a ‘server’ that services a request. The diagram below illustrates this concept.

[image: image3]
From the diagram above it is apparent that a peer may not only make a request on another peer’s listener but may also service another peer’s request on its listener. Also, a peer can access multiple listening peers. It is worth mentioning here that this system is based on certain assumptions:

Assumptions

1. As seen in the above diagram, each peer can only belong to one role at a time.

2. During the life of the application (the running time of all peers) a peer cannot change roles. So the role it takes on initially is the role it is assigned during the running time of the application.

3. The peers must all agree on the roles configuration and the peer/role mapping.

6.4 Detailed Design

Having gone through the application overview, this section covers the design in greater detail and takes a closer look at what comprises an RBAC peer. Each peer may be thought of as consisting of three components namely the XML Engine, RBAC Engine and Execution Engine. The diagram below illustrates this concept.

[image: image4]
6.5 XML Engine

The XML Engine reads in the XML configuration files that are used to specify details about business processes in the system that specific roles have access to. XML files are also used to map a peer to a specific role. The engine then parses these XML files and stores them in data structures for use by the peer.
Defining Roles :

The process of defining roles is three fold:

1. The application programmer should be able to define a role name

2. Further they should be able to define the methods that a specific role implements. In the case of this application, it is called ‘publish methods’
3. Lastly, they should be able to specify methods than a role can call. In the case of this application it is called ‘access methods’
In this application the roles are defined in a file called RolesConfiguration.xml. The XML parser of choice is the Apache Common’s Digester that is used to parse this file.
Below is a sample RolesConfiguration.xml file.
<?xml version="1.0"?>

<RolesConfig>

<Role>

<rolename>RoleA</rolename>

<publishmethod>add</publishmethod>

<publishmethod>multiply</publishmethod>

<accessmethod>subtract</accessmethod>

 </Role>

<Role>

<rolename>RoleB</rolename>

<publishmethod>subtract</publishmethod>

<publishmethod>divide</publishmethod>

<accessmethod>add</accessmethod>

<accessmethod>mulitply</accessmethod>

</Role>

</RolesConfig>
In this application there are two roles and four methods. The two roles are Role A and Role B. The four methods are ‘add’, ‘subtract’, ‘multiply’ and ‘divide’. As Role A, a peer provides implementations for methods add and multiply and has the permissions to execute method subtract. On the other hand as Role B, a peer provides implementations for methods subtract and divide and has the permissions to execute methods add and multiply.
The code snippet that uses the Commons Digester to parse the XML file is as follows,

1. Digester digester = new Digester()
2. digester.setValidating(false)
3. digester.addObjectCreate("RolesConfig", RolesConfig.class);
4. digester.addObjectCreate("RolesConfig/Role", Role.class);
5. digester.addBeanPropertySetter("RolesConfig/Role/rolename", "roleName");
6. digester.addBeanPropertySetter("RolesConfig/Role/accessmethod", "accessMethod");
7. digester.addBeanPropertySetter("RolesConfig/Role/publishmethod", "publishMethod");
8. digester.addSetNext("RolesConfig/Role", "addRole");
In line 1, an instance of the Digester is instantiated. Since RolesConfiguration.xml does not use a DTD the Digester needs to be made aware of the same. This is done by setting the setValidating method to false in line 2. The next step is to specify the XML patterns and the associated rules. In line 3, the ObjectCreateRule creates an instance of class RolesConfig and pushes it onto the stack. In line 4, the ObjectCreateRule creates an instance of class Role and pushes it onto the stack. In line 5 the BeanPropertySetterRule specifies that a setter method should be called when the pattern RolesConfig/Role/rolename is encountered. Specifically, that setter method setRoleName(String paramName) will be called. It is important to note here that the Digester follows the rules of introspection when using the BeanPropertySetterRule. Thus a getter needs to be specified as well. If a getter ‘public String getRoleName() {return paramName}’ is not specified in Role.java, this rule will not trigger. The code in lines 6 and 7 perform similar actions to what is done in line 5. In line 8, the rule SetNextRule is utilized. This rule pops the object on top of the parse stack and passes it to the named method, ‘addRole’ on the object below it which in this case is ‘RolesConfig’. The method ‘addRole’ that is defined in the RolesConfig object, adds the recently created Role object (along with the role name, access methods and publish methods) to a vector of Role objects that is stored in the RolesConfig object. Kindly refer to the Appendix on the code for more details on the implementation of the Role and RoleConfig classes.
Define mapping between a Peer and a Role :

Apart from defining the roles, there needs to be a mapping specified between a Peer name and it’s Role name. This will also be done using XML. The file is called PeerRoleMapping.xml and also uses the Commons Digester to parse this file and store the mapping as a hash.
Below is a sample PeerRoleMapping.xml file:
<?xml version="1.0"?>

<PeerRoleMapping>

<Peer>

<peername>peer1</peername>

<rolename>RoleA</rolename>

</Peer>

<Peer>

<peername>peer2</peername>

<rolename>RoleB</rolename>

</Peer>

</PeerRoleMapping>
6.6 RBAC engine
The RBAC engine enforces the security policy for roles based access. Following is the algorithm that is used to ensure proper access to methods based on roles.
1. When a peer is started in JXTA, it is given a peer name.
2. During initialization every peer reads the two above mentioned XML files, PeerRoleMapping.xml and RolesConfiguration.xml. The purpose of defining both these XML files in all the peers is to ensure that all the peers are implementing the same security policy by containing similar content.
3. Both the XML files are parsed by the Digester into specific data structures. These data structures are then wrapped in to objects. When a Peer A sends a method execution request to a Peer B, it also sends it’s version of the XML configuration files. (As mentioned above, this is done by sending the objects that contain the data structures resulting from the XML parser). Peer B checks to ensure that the contents of the XML files that it has corresponds with those defined in Peer A. If the contents vary, Peer B throws a Security Exception. In this manner a ‘malicious’ peer that perhaps tries to ‘alter’ the role assigned to a particular peer is ‘caught’ and is not allowed to execute methods on other peers in the peer to peer network. This is Phase I of the Security Engine.
4. If however the contents of the two XML configuration files on both peers are the same then the security engine proceeds to the second phase. It processes the request for a method execution. The first part of this request contains the peer name of the requester, which in this case is Peer A. Peer B obtains the role for Peer A from its data structure (potentially a hashmap). Let us say that the role for Peer A is Role A. The security engine checks against the definition in RolesConfiguration.xml to see if Role A indeed has the permissions to ‘access’ the method it seeks to execute. If the security engine finds that as Role A, Peer A indeed cannot access the method it seeks to execute, it throws a Security Exception.

5. If however Peer A does have the permissions to ‘access’ the method it wishes to execute the security engine proceeds to Phase III of it’s security policy. In this phase Peer B obtains its role from the PeerRole hash and then verifies that it indeed ‘publishes’ the method that Peer A is seeking to ‘access’/execute. If Peer B does not ‘publish’ or provide an implementation of that specific method, it throws a Security Exception.
6. If on the other hand Peer B does have the permissions to provide an implementation of that method, then it executes that method and returns the results to Peer A.

6.7 Execution Engine
The execution engine is a set of classes that provide the implementation of the business logic. These classes also use JXTA protocols and sockets to communicate between peers transmitting method execution requests between each other and sending results back. The execution engine utilizes the XML engine and the Security engine. It consists of the following primary classes:

Peer.java : This class is a core class of the application. A Peer could request method execution as well as service a request for a method execution (‘equivalent’ functionalities). Peer.java does exactly this. It acts as a ‘client’ in the sense it requests method execution. It does this by :

· Starts a JXTA Peer Group

· Creates a Pipe Advertisement

· Initiates a client socket connection.

It is important to note here that if a Peer with a particular role name requests access to a method that it publishes, then the method is executed locally other wise it is executed remotely. Let us look at this in the form of an algorithm.

1. Start up a new JXTA instance by creating a JXTA net peer group. Obtain the peer name from the net peer group. Look in the hashmap that contains a mapping of peer names and role names (created from PeerRolesMapping.xml) and obtain the role name for this peer name.

2. Initiate a method execution call.

3. Determine whether this method is being published by ‘my role’. That is, if a role requesting access to the method is indeed the one that publishes it. If so execute the method locally and skip to Step 7.
4. If not, then determine then determine the role name that publishes this method. This is obtained from the data structure created from RolesConfiguration.xml. Create a Pipe Advertisement based on an advertisement file called <rolename>.adv file that is specific to the role that publishes the method.
5. Initiate a client socket connection using the net peer group and the pipe advertisement.
6. Issue a method call to the remote peer. The actual method call and arguments along with the XML configurations are wrapped in an object which are then marshaled or serialized and sent over the socket. The remote peer executes the function, serializes the request and sends it back to the requesting peer which then deserializes it.
7. Display the results of execution.
In addition to containing the code to request a method call, Peer.java also starts up the listener thread which services the request.
Also, Peer.java provides the business logic implementation for this application, namely, the implementation of functions ‘add’, ‘subtract’, ‘multiply’ and ‘divide’
Object Marshalling and Demarshalling :
We discussed object serialization. Let us examine this in a little more detail. Serialization is the mechanism whereby an object is transformed into a byte stream. This stream of bytes may then be sent across a socket. It is important to note that object serialization is not always done to send objects across sockets. Objects that have been serialized may also be persisted (stored in a file or database).

Any time that an application requires a long-lasting and reliable connection between two remote peers there is an inherent point of failure built in. The longer the connection needs to last, or the higher the communication bandwidth the connection requires, the more likely the application is to occasionally break down. The benefit of serializing objects is that since a copy is sent over to the remote peer, there is now bandwidth or network utilization during the execution of business logic. Typically business logic processing involves complex code and is intensive on resources. This can all happen ‘locally’ and contained within the peer that is servicing the request. Once the results are obtained they are serialized and sent back through the socket for the client to deserialize and interpret. In Java, object serialization is achieved by implementing the ‘Serializable’ interface. In our application Peer.java implements the Serializable interface.
ListenerThread.java : This class services a request for method execution. It is instantiated by Peer.java and in the process of doing so is passed the name of the Net Peer Group used by the client peer. As a separate thread of execution this class starts up a JXTA Pipe Advertisement by using the advertisement file that corresponds with its role. Let us illustrate this by means of an example:

Let us say we have two peers, PeerA with role, RoleA and PeerB with role RoleB. As seen in the above XML file RoleA can request access to method subtract. However subtract is published by RoleB . Thus PeerA determines that its role, RoleA does not publish subtract. Subtract is published by PeerB. Hence it proceeds to create a Pipe Advertisement using advertisement file RoleB.adv. It is important to note here that the advertisement file used by the requesting peer is the <rolename>.adv file of the peer that publishes the method. When the method request then propagates to Peer B, it establishes that it does publish subtract. It therefore creates an advertisement with the advertisement file that corresponds to its role name which will is be RoleB.adv. In this manner the two peers communicate over the same socket.
It then uses this pipe advertisement and the name of the net peer group used by the client to create a JXTA server socket. The server socket, receives the data processes it and sends the results back using object serialization and deserialization.
6.8 Class Diagram

Having explained the interaction amongst the three engines let us examine the static interaction of all the classes in the system.
[image: image5.png]TXTACTent

constructor

DigesterDriver]

parseConfig

Peer

ryRoleName
myPeerhiame
rolesCanfiy
peerRoleObj
netPeerGroun
pipeAdy

socket

Constructar

execute
executeRemote
starListenerThread
sendandReceiveData
add

sublract

mutiply

aivide

PeerRoleDigester

parseConfig

RolesConfig

roles
ol
getRoleshethodshap
getPublishRoleF orbethod
canaccessiiethod
tostring

equals

MethodCall

metodName
peerhiame
argt

arg2

result

getieTiodName
getPeeriiame
etargt

etarg2
etResult
setResult
tostring

RemateMethod

folesCanfiy
peerRole
methodCall

geiRolesConfi
getPesiRole
getitethodCall

Role

FoleNae
accesshiethodsvect
publishisthodsvect
SelRaleName
etRoleName
setaccesshiethod
gethccesshethod
gethccesshiethods
setPublishitethod
etPublishbethod
getPublishiethods

ListenerThread

folesCanfiy
peerRole
peerRoleName
netPeerGroun
pipsAdy
serverSocket

run
stanSocketListener
recenveandgendData

PeerRale

peerRoleHashMap

SetPeerRale
etRole
tostring
equals

6.9 Sequence diagrams
The dynamic interaction of the system is depicted in the form of sequence diagrams.

6.9.1 Local peer execution

The first sequence diagram depicts the execution sequence of a Peer that requests a method that is executed locally. In the figure below the requesting peer’s role name is the same as the role name that publishes the method, hence the execution happens locally.
[image: image6.png]F—displayresutts

adclent | | peer DigesterDrtver | | PeetRoleDinester | | PeeroroupFartory | | Peeroioup || PeerRole | | Rolescontn
constructor | ! ! ! ! ! !
parseConfig, | H H H H H
: parseconfy i : : : :
: | newNetPeerGroup : : : :
! : getPeciame : : ! !
. : getRole(pecrame) ! : : !
: | jerecute(methodame, arguments) : : : :
' : getPublishRoleF orethocimethodName) ! : :
: P : : : :
1 N
: 4 if(myRoleName = getPublishRoleForethaci(methodNarme) then executs method Iocally

6.9.2 Remote Execution: Client Sequence

This second sequence diagram depicts the client scenario wherein the method execution call goes over a socket to a remote peer. The requesting peer writes the remote method call to the socket and then reads the results of the execution from the socket. The execution sequence that happens at the server end is not depicted here and is depicted in the next sequence diagram .

[image: image7.png]Peer AdvertisernentFactory

JXTASocket

MethogCall

RemoteMethod

Obiectoutputstream

ObiectinputStream

-
newAdvert:

| executeRemate(publishRoleName, methodNarme, arguments) !

if (myRoleName (= getPublishRoleF oiethod(methodName) then execute method remotsly

isement (netPeerGroup, <publishRoleName> advile)

constructor(netPeerGroup, pipeAdvertisement

constructor (methodName, myPeerhiame, arguments)

b sentnamecenebataxTasosket etndical

getOutputstream

constructor(rolesConfg, peerRoleObj, methodCallOb))

writeObj(remoteMethodOb)

getinputStream

readObject

| |read results of remote execution

6.9.3 Remote Execution: Server Sequence

This next sequence diagram depicts the server side execution sequence when a method is executed by a remote peer. The RBAC security policies are enforced at this remote peer. However this is not depicted in this sequence diagram. The next sequence diagram depicts the RBAC policy enforcement.
[image: image8.png]Obiectoutputstream

MethogCall

RemoteMethod

ObiectinputStream

JXTAServerSocket

AdvertiserentFacto

ListenerThread

eer

constructor

wiiteResultsOfExecution

§
H
5 2
g E
a7 H H

B 3 £ - 3|
g g g g
& s g s
3 B 3 K
2 5 g £ £ £
g H E g
8 & g E @ 3
g H e g| g] g
: 2 H 3| s 2
£ H K =
H £ 3 £
& g H g
] £ 2E
e H 5| £
g | < H HB
£ H g8

6.9.4 RBAC security policy enforcement
Note how in the previous sequence diagram a note states ‘execute method if security checks pass’. The below sequence diagram depicts these security checks and policy enforcements in detail:
[image: image9.png]ListenerThread RolesConfiy PeerRale

SecurivException

getRolesConfig i

getpeerRole

b yiRemcisRoloscontaE auafoLocalRoescara

throw SecurityException if oles coniig are unequal

F—jisRemotepeerroleEqualToLocalPeerRole

throw SecuriyException f peer roles are unequal

getRole(methodName)

cante

tessMethod(methodName, peerRole)

throw security exception ifthis role cannot access method

getP!

=

UblishRoleForMethod(methodNarne)

throw security exception if peer role name is not equal to publish role name

| ysresaenameEquaTapisisRoBtame :
3

6.10 Tests and Results
Tests on the system have been conducted based on the following versions of the configuration files:

The PeerRoleMapping.xml used was :

<?xml version="1.0"?>

<PeerRoleMapping>

<Peer>

<peername>peer1</peername>

<rolename>RoleA</rolename>

</Peer>

<Peer>

<peername>peer2</peername>

<rolename>RoleB</rolename>

</Peer>

</PeerRoleMapping>
The RolesConfiguration.xml file used was
<?xml version="1.0"?>

<RolesConfig>

<Role>

<rolename>RoleA</rolename>

<publishmethod>add</publishmethod>
 <publishmethod>multiply</publishmethod>

<accessmethod>subtract</accessmethod>

 </Role>

<Role>

<rolename>RoleB</rolename>

<publishmethod>subtract</publishmethod>

<publishmethod>divide</publishmethod>

<accessmethod>add</accessmethod>

<accessmethod>mulitply</accessmethod>

</Role>

</RolesConfig>
	Requesting Peer
	Requesting Role Name
	Access Method
	Expected result
	Actual result
	 Test Status

	Peer1
	RoleA
	add
	RoleA does not have permissions to access method add. Method add is not executed
	Same as expected
	Pass

	Peer 1
	RoleA
	subtract
	RoleA has permissions to access method subtract. Peer2 with RoleB services the request as RoleB publishes subtract.
	Same as expected
	Pass

	Peer1
	RoleA
	multiply
	RoleA does not have permissions to access method multiply. Method multiply is not executed
	Same as expected
	Pass

	Peer 1
	RoleA
	divide
	RoleA does not have permissions to access method divide. Method divide is not executed
	Same as expected
	Pass

	Peer2
	RoleB
	add
	RoleB has permissions to access method add. Peer1 with RoleA services the request as RoleA publishes add.
	Same as expected
	Pass

	Peer2
	RoleB
	subtract
	RoleB does not have permissions to access method subtract. Method subtract is not executed
	Same as expected
	Pass

	Peer2
	RoleB
	multiply
	RoleB has permissions to access method multiply. Peer1 with RoleA services the request as RoleA publishes multiply.
	Same as expected
	Pass

	Peer2
	RoleB
	divide
	RoleB does not have permissions to access method divide. Method divide is not executed
	Same as expected
	Pass

7. Conclusion
I have discussed a technique which establishes a P2P RBAC mechanism. I then described a reference implementation in the JXTA framework. Finally, I demonstrated a mathematical application which utilizes the reference implementation and provides a testing mechanism. Now, an application developer will have the ability to write distributed P2P applications without having to worry about ensuring that the proper authorization is occurring. The developer simply needs to specify two XML configuration files and then write the appropriate code for each role and the RBAC implementation will enforce the security policy. If utilized effectively, this technique should lead to more robust and secure P2P applications in the future.
8. Future Work

Enhancements to the infrastructure that would significantly increase its capabilities are:

Multiple peers implementing the same role: The ability to have a multiple peers implementing the same role would be desirable as it could both add to the increased performance and availability of the system. The peer that is used could be load balanced across all the peers that implement the role that is needed. This could be accomplished by having the peer that is attempting to connect to a remote peer simply randomly choose the peer from the list of remote peers that are servicing the role. Also, if a peer were to go down, another peer that is servicing the same role could be used.
A peer changing roles: The ability to have a single peer change roles at run time. This would allow the application to be written such that a peer need only be in a role for the amount of time that is needs to. This would better support the concept of least privilege. However, in this scenario, all peers would need to agree of the change and update their roles, otherwise there could possibly be security issues.
Role Hierarchies: The ability to have a hierarchical organization for roles would provide a flexible way for roles to be structured. For example, RoleA could ‘inherit’ from RoleB. In this case, all the access and publish methods from RoleB would be inherited from RoleA.
Java Reference Implementation: As the current RBAC reference implementation uses the Java JXTA reference implementation, it currently will only work for those application developers that are programming in Java. To be used in other programming languages, this reference implantation would need to be ported to another language that provides an implantation for JXTA.

Performance Improvements: The performance of the system for large numbers and size of objects as well as large numbers of peers has not been completed. If this study were to be done, improvements could be made to overcome any performance bottlenecks that were identified. Depending on workload, it may make sense to utilize bidirectional pipes over JXTA sockets [8].
9. References
[1] Gong, L., Oaks S., Traversat B., JXTA in a Nutshell.

[2] JXTA website. http://www.jxta.org
[3] R. S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman, "Role-Based Access Control Models", IEEE Computer 29(2): 38-47, IEEE Press, 1996

[4] J. Barkley, "Implementing Role Based Access Control Using Object Technology", First ACM Workshop on Role-Based Access Control (1995).
[5] Joon S. Park and Junseok Hwang. Role-Based Access Control for Collaborative Enterprise in Peer-to-Peer Computing Environment. 8th ACM Symposium on Access Control Models and Technologies, Como, Italy, June 2-3, 2003.
[6] Wilson, B. JXTA http://www.brendonwilson.com/projects/jxta/
[7] Wikopedia website. http://en.wikipedia.org/wiki/Peer-to-peer
[8] Emir Halepovic, Ralph Deters. JXTA Messaging: Analysis of Feature-Performance Tradeoffs,
Department of Computer Science University of Saskatchewan, Saskatoon SK Canada
��

Listener

Peer D/Role D

Listener

Peer B (Role B)

Listener

Peer C/Role C

Peer A (Role A)

 RBAC Engine

(enforces security policy)

 Peer

Listener

XML engine

(Define roles, parse the XML file and store it)

Execution Engine

(Executes methods and returns results)

JXTA Pipe

JXTA Pipe

JXTA Pipe

��

PAGE

[image: image10.emf]

JXTA Pipe

[image: image11.emf]

JXTA Pipe

[image: image12.emf]

JXTA Pipe

[image: image13.emf]

JXTA Pipe

