Deep Learning versus Gist Descriptors for Image-Based Malware
Classification

Sravani Yajamanam', Vikash Raja Samuel Selvin',
Fabio Di Troia!, and Mark Stamp!

' Department of Computer Science, San Jose State University, San Jose, California
sravani.yajamanam@sjsu.edu, vikashrajasamuel.selvin @ sjsu.edu, fabioditroia@msn.com, mark.stamp @ sjsu.edu

Keywords:

Abstract:

Malware detection; gist descriptors; support vector machine; k-nearest neighbor; deep learning; TensorFlow.

Image features known as “gist descriptors” have recently been applied to the malware classification problem.

In this research, we implement, test, and analyze a malware score based on gist descriptors, and verify that
the resulting score yields very strong classification results. We also analyze the robustness of this gist-based
scoring technique when applied to obfuscated malware, and we perform feature reduction to determine a
minimal set of gist features. Then we compare the effectiveness of a deep learning technique to this gist-based
approach. While scoring based on gist descriptors is effective, we show that our deep learning technique
performs equally well. A potential advantage of the deep learning approach is that there is no need to extract

the gist features when training or scoring.

1 Introduction

In this research, we apply techniques from the do-
main of image processing to the malware classifica-
tion problem. The underlying idea is to treat malware
binaries as images and classify the samples based on
properties of the resulting images.

As the name suggests, a “gist” descriptor pro-
vides a high-level—and hence, low-dimensional—
representation of some important aspect of an im-
age. Gist descriptors are designed to match human
concepts with respect to various features of images.
Intuitively, when used in malware analysis, gist de-
scriptors can enable us to see the “big picture,” so
that we can ignore minor variations and obfuscations
that invariably occur within a malware family. That
is, from the high level perspective of gist descriptors,
differences within families will likely appear negligi-
ble in comparison to the differences between families.
Techniques that rely on a more detailed perspective
(e.g., statistical analysis based on opcodes) might be
more easily defeated by the “noise” that exists within
a malware family, particularly malware that is inten-
tionally obfuscated in some reasonably sophisticated
way.

The remainder of this paper is structured as fol-
lows. In Section 2 we briefly discuss relevant back-
ground topics. Then in Section 3 we give our main
experimental results. In these experiments, we ana-

lyze the strength and robustness of a malware classifi-
cation technique that relies on gist descriptors as fea-
tures. For comparison, we also consider experiments
involving deep learning techniques based on the same
dataset of malware images, but without using gist de-
scriptors. Section 4 concludes the paper and provides
suggestions for future work.

2 Background

In practice, the most popular method of mal-
ware detection is signature scanning, whereby pat-
tern matching is used to detect specific signatures that
have been previously extracted from known malware
samples. While signature scanning can be highly ef-
fective, such an approach can be defeated by making
minor modifications to malware, as such code modi-
fications will often break existing signatures.

Statistical and machine learning based malware
detection techniques are significantly more robust
than standard signatures, yet these approaches have
also been shown to be susceptible to code obfusca-
tions that alter various statistical or structural proper-
ties of malware samples. Thus, a critically important
problem in malware research is to find efficient and
practical methods that provide strong results, and yet
are robust in the face of obfuscation techniques that

can be easily employed by malware writers (Bayer
et al., 2006; Moser et al., 2007; Sharif et al., 2008;
You and Yim, 2010).

Image processing techniques have been suggested
as the basis for malware scoring. In such scor-
ing techniques, we visualize malware binaries as
grayscale images and attempt to classify malware
samples based on image properties.

The motivation (and starting point) for the work
presented here is the paper (Nataraj et al., 2011),
where high-level image features known as “gist de-
scriptors” are used to successfully classify malware.
Here, we analyze the strength and robustness of gist-
based malware classification, and we compare these
results to an image-based deep learning technique that
does not employ gist descriptors.

2.1 Gist Descriptors

In (Oliva and Torralba, 2001), Oliva and Torralba dis-
cuss a method for constructing a “spatial envelope” of
a scene or image in terms of various properties such
as “naturalness” and “openness.” These properties—
which are shown to be meaningful to humans—are
designed to capture the “gist” or essence of an image
by providing a connection between visual and seman-
tic information. The research in (Oliva and Torralba,
2001) is focused on the challenging problem of com-
puter vision.

Gist descriptors have proven useful in a wide vari-
ety of applications including, for example, web-scale
image search (Douze et al., 2009). A recent arti-
cle (Nataraj et al., 2011) shows that gist descriptors
can be used as the basis for an effective image-based
malware score. Specifically, the paper (Nataraj et al.,
2011) (which, as mentioned above, is the motivation
for our research here) claims to classify malware vari-
ants belonging to 25 different families with an impres-
sive accuracy of almost 98%.

Figure 1 shows four variants of the malware fam-
ily Dialplatform.B viewed as images. In this case, we
clearly see common structure in the images, which
indicates there is significant potential for an image-
based malware scoring technique.

3 Experiments and Results

In this section, we discuss our experimental design
and we provide a selection of our results. Additional
related results can be found in the report (Selvin,
2017).

Figure 1: Variants of the malware family Dialplatform.B
viewed as images

3.1 Implementation Details

To conduct the various experiments discussed in this
paper, we used the software, hardware, and datasets
listed in Table 1. The Malimg and Malicia datasets
are discussed in the next section.

Table 1: Experimental Setup

0OS Ubuntu 14.04
Python version | 2.7

Python libraries | numpy, tensorflow
Datasets Malimg, Malicia

3.2 Datasets

A dataset known as Malimg formed the basis for the
experiments reported in (Nataraj et al., 2011), and we
use this same dataset here. The Malimg data consists
of more than 9000 malware samples belonging to 25
families. Table 2 lists the various families and number
of samples in each family within the Malimg dataset.
All of these malware binaries were treated as images
and all 320 gist features were extracted from each
sample. We have used the same image characteristics
(e.g., height and width) and the same gist descriptors
as was used in the paper (Nataraj et al., 2011), and
hence our results are directly comparable.

We have also tested this gist-based scoring tech-
nique on the challenging Malicia dataset (Nappa
et al., 2015). The Malicia data contains 11363 mal-
ware samples, primarily consisting of the ZBot, Win-
WebSec, and ZeroAccess families. Table 3 gives the
number of samples in each of the major malware fam-
ilies in the Malicia dataset, where ‘“other” consists
of all remaining families, including 1646 samples for
which the family has not been identified.

Table 2: Malimg dataset

Family Samples
Adialer.C 122
Agent.FYI 116
Allaple.A 2949
Allaple.LL 1591
Alueron.gen!J 198
Autorun.K 106
C2LOP.gen!g 200
C2LOP.P 146
Dialplatform.B 177
Dontovo.A 162
Fakerean 381
Instantaccess 431
Lolyda.AAl 213
Lolyda.AA2 184
Lolyda.AA3 123
Lolyda.AT 159
Malex.gen!J 136
Obfuscator.AD 142
Rbot!gen 158
Skintrim.N 80
Swizzor.gen!E 128
Swizzor.gen!l 132
VB.AT 408
Wintrim.BX 97
Yuner.A 800
Total 9339

Table 3: Major families in Malicia dataset

Family Samples
Cleaman 32
Cridex 74
Harebot 53
Smarthdd 68
WinWebSec 5820
ZBot 2186
ZeroAccess 1306
Other 1824
Total 11363

3.3 Gist-Based Classification

In this section, we use the gist descriptor as features
for the well-known k-nearest neighbor (k-NN) algo-
rithm, with k = 1. That is, we classify each sample in
the test set based on its nearest neighbor in the train-
ing set. Note that for this classification scheme, no
explicit training phase is required, as the classifica-
tion is computed based solely on the nearest neighbor
in the training set.

First, we classify samples in the Malimg dataset
using k-NN, based on the full 320 gist features. The

confusion matrix for this experiment is given in Fig-
ure 2. Note that in the confusion matrix, the diagonal
elements represent correct classifications, while the
off-diagonal elements correspond to incorrect classi-
fications.

The overall accuracy for a multiclass experiment
such as that summarized in Figure 2 is easily com-
puted from the confusion matrix. Let ¢;; be the ele-
ment in row i and column j of the confusion matrix,
and let n be the number of rows (and columns) in the
matrix. Then the multiclass accuracy is given by

accuracy = ZC” Z Z Cij-

i=1 i=1j=

That is, the accuracy is computed as the sum of all
elements on the main diagonal, divided by the sum of
all elements in the matrix. For the confusion matrix
in Figure 2, the elements on the main diagonal range
from 0.98 to 1.00, with just four exceptions. In this
case, we find that the accuracy is 97%. This is virtu-
ally identical to the results obtained in (Nataraj et al.,
2011) and serves to verify our implementation.

Similar experiments were conducted on the ZBot,
WinWebSec, and ZeroAccess families of the Malicia
dataset, with a set of 280 benign Windows executa-
bles also included. In these experiments, we tested
various splits of training and test data ranging from
30-70 (i.e., 30% of the data used for training and the
remaining 70% used for testing) up to a 90-10 split.
As above, we use k-NN with k£ = 1 for classification.
Figure 4 summarizes our results for different splits of
training and test data over the Malicia data. The best
results yield a classification accuracy of nearly 93%.
This provides additional confirmation of the inherent
strength of a gist-based approach to malware scoring
and classification.

3.4 Feature Reduction Results

Next, we briefly consider the problem of feature se-
lection. Since there is work involved in collecting fea-
tures, it is desirable to balance the number of features
(and their complexity) with the accuracy of the classi-
fication process. In fact, it is not uncommon to obtain
equivalent (or even better) results with a reduced fea-
ture set. In such cases, the eliminated features act as
noise.

All feature reduction experiments in this paper are
based on linear support vector classification (SVC).
Note that SVC is the multiclass version of the well-
known support vector machine (SVM) machine learn-
ing technique.

First, we consider recursive feature elimination
(RFE) on the Malicia dataset. For RFE, we compute a

Confusion matrix

Adialer.C
Agent.FY|
Allaple.A
Allaple.L
Alueron.gen!)
Autorun.K
C2LOP.genlg
C2LoP.P
Dialplatform.B
Dontovo.A
Fakerean
Instantaccess
Lolyda.AAL
Lolyda.AA2
Lolyda.AA3
Lolyda.AT
Malex.gen!)
Obfuscator.AD
Rbot!gen
Skintrim.N
Swizzor.gen!E
Swizzor.gen!|
VB.AT
Wintrim.BX

Yuner.A

Allaple.A
Allaple.L
Autorun.K
C2LOP.P
Dontovo.A
Fakerean

[l
KO
ol

£
2 9
2

Alueron.gen!)

C2LOP.gen'g
Dialplatform.B
Instantaccess

Lolyda.AAL

Lolyda.AA2

10.7

10.6

40.5

0.4

Lolyda.AA3
Lolyda.AT
Malex.gen!]
Jdbfuscator.AD
Rbot!gen
Skintrim.N
Swizzor.gen!E
Swizzor.gen!|
VB.AT
Wintrim.BX
Yuner.A

Figure 2: Confusion matrix for k-NN based on all features

linear SVC, then eliminate the feature with the small-
est weight and recompute the linear SVC on this re-
duced feature set—this process is repeated until only
a single (strongest) feature remains. By retraining at
each step, we are able to account for the interactions
within the reduced feature set.

We found that when applying RFE to the Malicia
dataset, the full 320 gist features yielded the best re-
sults, but with about 60 features we are able to obtain
nearly optimal results. For this dataset, a graph of the
accuracy versus the number of features selected ap-
pears in Figure 5.

We also experimented with univariate feature se-
lection (UFS). In UFS, an SVC is constructed for
each individual feature and the resulting accuracies
are used to rank the features.

Applying UFS on the Malicia dataset, we find that
with only the 60 highest ranked features, we can attain
an accuracy of almost 92%, which is within 1% of
that obtained with all 320 features. We conclude that
we can obtain near-optimal results using just 60 of
the 320 gist descriptors as features.

3.5 Robustness Experiments

Next, we consider attacks aimed at degrading the ef-
fectiveness of the gist-based score. First, we consider
experiments where we salt the malware samples with
spurious images. For this experiment, we test each of
the following three methods of salting images.

e Salt the samples of only one family with extrane-
ous images.

e Salt two closely related families with similar ex-
traneous images.

e Salt all families with the benign samples.

Intuitively, when only one family is salted with
an extraneous image we might expect that the over-
all classification results will actually improve slightly.
This follows, because the samples in the salted fam-
ily should now be more distinct from other families—
and hence there will likely be fewer misclassifica-
tions involving this particular family—while all other
families remain unchanged. To test this hypothesis,
we salted only the Allaple.L family of the Malimg

In Precision
In Recall
1.00
0.80
0.60
0.40
0.20
O'OOQx & & W) QLSS 4
4?7\)\\%@?”9%%\(\/% \.QQ.\.\ g
S O S e S S
Q N X\ N A RO W
?}o 9 Q@Q <9 AR @60@ %%49 54,\\ &

Figure 3: Precision and recall

100

95 |- N

90 |- R

80 - N

75| 1

Accuracy (percentage)

70 | R

65 |- R

I
50 60 70 80 90
Training data percentage

I
60 30

!
40

Figure 4:
dataset)

Accuracy vs training/testing split (Malicia

dataset. This resulted in the classification accuracy for
the Allaple.L family improving from 98% to 100%.

For our next experiment, we salted two related
families with similar extraneous images. In this case,
we might intuitively expect that the accuracy will de-
crease for both of these families, as they are now more
similar to each other than they were before salting,
and this increased similarity will likely result in more
misclassifications. For this experiment, we chose the
Allaple.L and Allaple.A families and salted all sam-

100

90

80

70

60

50

40

Accuracy (percentage)

30

20 1

10 - 1

I | ! ! I
00 50 150 200 250 300

Number of features

!
100

Figure 5: Accuracy vs number of features (RFE for Malicia
dataset)

ples in both families with images selected from an
external image dataset. We found that the classifica-
tion accuracy for the Allaple.L. and Allaple.A fami-
lies both declined significantly, as summarized in Ta-
ble 4. These results indicate that gist-based scoring is
not immune to this entirely straightforward obfusca-
tion attack. However, the decline in accuracy is rela-
tively modest, which shows that the gist-based score
is somewhat resilient, at least with respect to this sim-
ple obfuscation strategy.

Table 4: Accuracy before and after salting

Family Accuracy

Before Salting After Salting
Allaple.A 100% 93%
Allaple.L 98% 85%

Next, we conducted an experiment where all mal-
ware samples were salted with benign executable
files. Similar techniques have previously been used
to defeat many statistical-based—and machine learn-
ing based—scores (Desai and Stamp, 2010; Lin and
Stamp, 2011; Singh et al., 2016). For this experiment,
we obtain an overall classification accuracy of 92%,
which represents a significant decline from the origi-
nal (unsalted) accuracy of 97%.

Finally, we test a slightly different salting strategy,
where the salting data is interleaved within the mal-
ware samples. Specifically, we interleaved selected
benign samples within the Allaple.A, Allaple.L, and
Fakerean families of the Malimg dataset. As in
our first salting experiments, the results are slightly
stronger, with an accuracy of 93%.

Overall, these experimental results indicate that
gist-based scoring is reasonably robust against these
specific salting attacks. However, more research is
needed, and we remain confident that the there exists
a straightforward attack strategy that can be highly ef-
fective against gist-based scoring.

Next, we apply softmax regression and deep learn-
ing to the image-based malware classification prob-
lem. In these experiments, we do not rely on gist de-
scriptors, but instead use only the raw bytes in the
image files as our feature. Our goal is to determine
whether techniques that require no preprocessing of
the data can be as successful as the gist-based score
considered above.

3.6 Softmax Regression

Logistic regression is a well-known algorithm that is
applicable to the binary classification problem. Soft-
max regression is a generalization of logistic regres-
sion that can deal with multiple classes—the sigmoid
function from logistic regression is replaced by the
softmax function. A set of weights and biases must
be determined and these, along with the input data,
are used by the softmax function. The output consists
of probabilities for each class.

For our softmax experiments, we again use the
Malimg dataset. These experiments were performed
with n families, where n ranged from one to five. In
Table 5 we list families—for n = 1, we used only the
Adialer.C family, for n = 2 we used both Adialer.C
and Agent.FYI, and so on.

Table 5: Number of samples per family

Number of samples

Family Training Testing Total
Adialer.C 100 22 122
AgentFYI 98 18 116
Allaple.A 2655 294 2949
Allaple.L 1432 159 1591
Allueron.gen 179 19 198
Total 4464 512 4976

For these softmax experiments, as the number
of families increases, the classification accuracy de-
creases drastically—see Figure 6. These results are
somewhat surprising, with only 57% accuracy at-
tained when five families were tested. We conclude
that for any significant number of families, this soft-
max classification approach performs much worse
than the gist-based score considered above.

100 |-

80

60 -

40

Accuracy (percentage)

20 -

I | I I I
1 2 3 4 5
Number of families

Figure 6: Softmax classification accuracy

3.7 Deep Learning Experiments

Deep learning using many layers of neural networks
is an increasingly popular technique in a wide vari-
ety of challenging problem domains, including im-
age recognition and segmentation (Krizhevsky et al.,
2012). For example, Google’s Inceptionv3 and Face-
book Artificial Intelligence Research (FAIR) have had
good success rates by applying deep learning to prob-
lems in the fields of image classification and object
segmentation, respectively (Szegedy et al., 2016; Pin-
heiro et al., 2015). In this section, we apply deep
learning to the malware classification problem, treat-
ing malware binaries as images. We then compare our
deep learning results to the gist-based malware clas-
sification approach considered above.

3.8 TensorFlow for Deep Learning

Training a neural networks can be computationally in-
tensive. One of the reasons that neural networks have
gained popularity in recent years is due to advances
made in hardware and software that have rendered the
computational aspects of neural networks less daunt-
ing (Oh and Jung, 2004). In particular, with recent
advances in GPU technology and software, it is now
practical to train neural networks on GPUs (Oh and
Jung, 2004; TensorFlow, 2017).

TensorFlow™ is an open source software library
by Google that is designed for numerical computa-
tion on data flow graphs. TensorFlow is the succes-
sor of the earlier closed source DistBelief (also from
Google) which was used for training and deploying
neural networks for pattern recognition (TensorFlow,
2017).

The unit of data in TensorFlow is a set of primi-
tive values in the form of an n-dimensional array. A
TensorFlow program builds a “computational graph,”
which is defined as a series of TensorFlow operations
arranged into a graph form. A node may or may not
have a tensor as its input but it usually produces a ten-
sor as output. Once the computational graph is cre-
ated, it can be evaluated by executing it, which con-
sists of creating a session to encapsulate the control
and state of the TensorFlow runtime, and executing
the graph within it (TensorFlow, 2017).

TensorFlow was used to conduct the deep learning
experiments in this section. The model used here re-
lies on transfer learning, which involves starting with
a model pre-trained on another problem. Then, we
retrain this existing model on a similar problem. The
motivation for this approach comes from the fact that
training deep learning model from scratch is gener-
ally extremely computationally intensive, while sim-
ply modifying an existing model can be orders of
magnitude faster, depending on the dataset.

For the experiments reported here, the model was
pre-trained on the ImageNet Large Visual Recogni-
tion Challenge dataset, and is capable of differenti-
ating between 1000 different image classes, such as
Dalmatian, helmet, motorcycle, person, etc. (Google
Codelabs, 2017). We then retrained this model on the
raw malware images in the Malimg dataset.

In addition to the software listed in Table 1, for the
deep learning experiments discussed here, we employ
the TensorFlow architecture on an NVIDIA DIGITS
DevBox provided by Ford Motor Company. All ex-
periments described in this section use 4 GPUs on the
NVIDIA DIGITS DevBox As previously mentioned,
the training and test data for these experiments is form
the Malimg dataset, which contains more than 9000

grayscale images representing malware from 25 mal-
ware families, as summarized in Table 2, above.

3.9 TensorFlow Results

As a first experiment of our TensorFlow model, we
classified two very different families, Allaple.A and
Yuner.A, using a 90-10 split (i.e., 90% of images were
used for training and 10% for testing). When training,
we use 4000 iterations to retrain the model. These re-
sults are given in Table 6, and we note that all samples
were classified correctly.

Table 6: Accuracy results on Allaple.A and Yuner. A

Images Accuracy
Training | 3374 100%
Testing 375 100%

Next, as a more challenging test for our Tensor-
Flow model, we classified two closely related fam-
ilies, Allaple.A and Allaple.L, again using a 90-10
split and 4000 iterations to retrain the model. These
results are given in Table 7, and we again see that we
have achieved perfect classification. These are cer-
tainly impressive initial results for this deep learning
approach.

Table 7: Accuracy results on Allaple.A and Allaple.L

Images Accuracy
Training | 4086 100%
Testing 454 100%

Finally, we attempt to classify samples from all 25
Malimg malware families. For these experiments, we
test various splits of the training and test data, ranging
from 30-70 to 90-10 split. The resulting accuracies
are given in Figure 7.

From the results in Figure 7, we see that by ap-
plying deep learning directly to raw image files, we
can attain a testing accuracy in excess of 98%, which
is as good as the accuracy obtained based on gist de-
scriptors as reported in (Nataraj et al., 2011), and as
confirmed by our results in Section 3.3, above.

As an aside, we note that according to Table 2,
the number of samples of the various malware types
in the Malimg dataset ranges from a high of 2949
for the Allapple.A family to a low of just 80 for the
Skintrim.N family. To determine a “balanced” accu-
racy, we repeated our deep learning experiments, us-
ing 80 samples from each family. The results of these
experiments are summarized here in Figure 8, where
we see the the testing accuracy is significantly lower

100

96 |- R

94| 1

92 - B

Accuracy (percentage)

88 - R

—de— Testing
86 | | == Training b
L

I
30 40 50 60 70 80 90
Training data percentage

Figure 7: Accuracy vs training/testing split for TensorFlow
experiments with all 25 Malimg families

100

98 |- R

96 |- R

94 | R

92 R

Accuracy (percentage)

90 |- R

83 - N

== Testing
86 |- | == Training 1

50 60 70 80 90
Training data percentage

Figure 8: Accuracy vs training/testing split for TensorFlow
experiments with all 25 Malimg families (balanced)

than in the original unbalanced case. The large dif-
ference between the unbalanced and balanced cases
is most likely due to the larger families being rela-
tively easy cases, as compared to the smaller fami-
lies in the dataset. This is worth noting since the un-
balanced Malimg dataset has been used in previous
work (Nataraj et al., 2011).

3.10 Discussion

One advantage of our deep learning strategy is that
it is likely to be much more efficient than relying on
gist descriptors. While training a neural network from
scratch can be extremely costly, our re-training ap-
proach only required about 60ms per sample. We be-
lieve this is competitive with virtually any machine
learning technique. Furthermore, when training and
scoring via deep learning, there is no need to extract
gist descriptors for use as features—even with feature
selection, we still required at least 60 gist descriptors

to obtain near-optimal results. This savings in feature
extraction time is likely to give the deep learning ap-
proach a signification advantage over the gist-based
score in actual practice.

4 Conclusion and Future Work

Our classification experiments based on gist de-
scriptors confirmed the results in (Nataraj et al., 2011)
and also showed that we could obtain equally strong
results using only 60 gist features. In addition, we
showed that the gist-based score is moderately robust
in the face of elementary obfuscations.

We conducted deep learning experiments that
yielded equally strong classification results as the
gist-based experiments. Since there is no need to
extract gist features, this deep learning technique is
likely to offer superior performance when scoring
large numbers of samples, as would be necessary
when using such techniques in practice. For future
work, we plan to accurately quantify the efficiency ad-
vantage of our deep learning approach, as compared
to techniques that rely on gist descriptors.

Additional future work will include more substan-
tial robustness testing. The gist-based score appears
to be somewhat robust, but to date, our experiments
along these lines have been limited and inconclusive.
A careful and detailed analysis of the robustness of
the gist-based score—as compared to our deep learn-
ing score—would be useful. At the least such an anal-
ysis will help to focus future research in directions
that are most likely to yield improvements over the
existing state of the art.

ACKNOWLEDGEMENTS

We would like to thank Ford Motor Company for
generously allowing us to use their hardware and pre-
trained models for the deep learning experiments re-
ported here.

REFERENCES

Bayer, U., Moser, A., Kruegel, C., and Kirda, E. (2006).
Dynamic analysis of malicious code. Journal in Com-
puter Virology, 2(1):67-717.

Desai, P. and Stamp, M. (2010). A highly metamorphic
virus generator. International Journal of Multimedia
Intelligence and Security, 1(4):402-427.

Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., and
Schmid, C. (2009). Evaluation of gist descriptors

for web-scale image search. In Proceedings of the
ACM International Conference on Image and Video
Retrieval, CIVR 09, pages 19:1-19:8, New York, NY,
USA. ACM.

Google Codelabs (2017). Tensorflow for poets.
https://codelabs.developers.google.com/
codelabs/tensorflow-for-poets/.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems, pages 1097-1105.

Lin, D. and Stamp, M. (2011). Hunting for undetectable
metamorphic viruses. Journal in Computer Virology,
7(3):201-214.

Moser, A., Kruegel, C., and Kirda, E. (2007). Limits of
static analysis for malware detection. In Twenty-Third
Annual Computer Security Applications Conference,
ACSAC 2007.

Nappa, A., Rafique, M. Z., and Caballero, J. (2015). The
malicia dataset: Identification and analysis of drive-by
download operations. International Journal of Infor-
mation Security, 14(1):15-33.

Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath,
B. S. (2011). Malware images: Visualization and au-
tomatic classification. In Proceedings of the 8th Inter-
national Symposium on Visualization for Cyber Secu-
rity, VizSec 11, pages 4:1-4:7, New York, NY, USA.
ACM.

Oh, K.-S. and Jung, K. (2004). GPU implementation of
neural networks. Pattern Recognition, 37(6):1311—
1314.

Oliva, A. and Torralba, A. (2001). Modeling the shape
of the scene: A holistic representation of the spatial
envelope. International Journal of Computer Vision,
42(3):145-175.

Pinheiro, P. O., Collobert, R., and Dollar, P. (2015). Learn-
ing to segment object candidates. In Advances in
Neural Information Processing Systems, pages 1990—
1998.

Selvin, V. R. S. (2017). Malware scores based on image pro-
cessing. Master’s Project, Department of Computer
Science, San Jose State University.

Sharif, M. 1., Lanzi, A., Giffin, J. T., and Lee, W. (2008).
Impeding malware analysis using conditional code
obfuscation. In Proceedings of the Network and Dis-
tributed System Security Symposium, NDSS 2008.

Singh, T., Troia, F. D., Visaggio, C. A., Austin, T. H., and
Stamp, M. (2016). Support vector machines and mal-
ware detection. Journal of Computer Virology and
Hacking Techniques, 12(4):203-212.

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., and Wo-
jna, Z. (2016). Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2016, pages 2818-2826.

TensorFlow (2017). Getting started with tensorflow.
https://www.tensorflow.org/get_started/
get_started. Accessed 2017-04-22.

You, I. and Yim, K. (2010). Malware obfuscation tech-
niques: A brief survey. In 2010 International Con-

ference on Broadband, Wireless Computing, Commu-
nication and Applications, BWCCA 10, pages 297—
300.

https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/
https://www.tensorflow.org/get_started/get_started
https://www.tensorflow.org/get_started/get_started

	Introduction
	Background
	Gist Descriptors

	Experiments and Results
	Implementation Details
	Datasets
	Gist-Based Classification
	Feature Reduction Results
	Robustness Experiments
	Softmax Regression
	Deep Learning Experiments
	TensorFlow for Deep Learning
	TensorFlow Results
	Discussion

	Conclusion and Future Work

