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Abstract. We examine a class of binary strings arising from con-
siderations about stream cipher encryption: to what degree can one
guarantee that the number of pairs of entries distance k apart that
disagree is equal to the number that agree, for all small k? In a
certain sense, a keystream with such a property achieves a degree
of unpredictability. The problem is also restated combinatorially in
terms of seating arrangements.

We examine sequences s of length 2n in which this property holds
for all k ≤ Mn, where Mn is the largest number for which this is
possible among strings of length 2n. We give upper and lower bounds
for Mn, and give optimal sequences of all lengths up to n = 26.
We also show how to obtain classes of special orthogonal arrays and
balanced sign graphs from such sequences.

1. Background

A stream cipher cryptosystem is illustrated in Figure 1. The original
message, or plaintext, is encrypted by adding (elementwise modulo 2) a
pseudo–random sequence of bits to the message. This pseudo–random se-
quence of bits is known as a keystream. The resulting ciphertext can then
be transmitted over insecure lines. The recipient can recover the plaintext
by adding, modulo 2, the same keystream to the ciphertext.

Stream ciphers are a natural generalization of the one–time pad, or Ver-
nam cipher. With a one–time pad, a “random” string of bits, or pad, is
used to encrypt, and this pad can only be used once. While the one–time
pad is provably secure [12], the drawbacks are many. For example, the ran-
dom pad is the same length as the message, and the pad must be securely
transmitted to the recipient before the ciphertext can be decrypted.

Stream ciphers replace the random sequence of the one–time pad with
a pseudo–random string of bits that are generated from a short secret key.
The result is a more practical cipher since only the short secret key needs
to be securely transmitted before using the system. The tradeoff is that the
stream cipher does not inherit the provable security of the one–time pad.
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Figure 1. Keystream encryption

Suppose that a message is encrypted with a stream cipher. In many
situations an attacker will know (or can guess) part of the plaintext message,
from which they can then recover part of the keystream. An attacker who
can deduce more of the keystream from a short captured segment can then
recover more of the plaintext. Therefore, the pseudo–random sequence
used in a stream cipher must be “unpredictable” in the sense that it is
computationally infeasible to recover more of the sequence from a short
captured segment. The term cryptographically strong is often used as a
synonym for this type of unpredictability.

Several approaches to the topic of cryptographically strong sequences
have appeared in the literature. For example, Shamir [11] and Blum and
Micali [1] provide a theoretical framework based on one-way functions, while
Rueppel [10] and Stamp and Martin [13] present methods for measuring
some aspects of the unpredictability of sequences.

Pseudo–random sequences also arise in many non–cryptographic applica-
tions. For example, simulations often make use of such sequences. However,
in most non–cryptographic applications, the sequences need to be statis-
tically random (i.e., they must satisfy some desired statistical properties),
but they do not need to be unpredictable. A particularly dramatic exam-
ple of the difference between statistical randomness and unpredictability is
provided by the so–called m–sequences [3]. An m–sequence has many desir-
able statistical properties and consequently such sequences are often used
in simulations and other applications. However, m-sequences are extremely
predictable—from any set of 2n consecutive bits, the entire m–sequence of
length 2n − 1 can be determined using the well–known Berlekamp–Massey
algorithm [7]. In a sense, m–sequences are the most predictable sequences
of all [13].

2. Introduction

In this paper, we consider unpredictable binary sequences from a novel
perspective. Note that we shall use the terms “strings” and “sequences”,
and the corresponding terms “bits” and “entries” interchangeably. Consider
a pseudo–random binary sequence



s = (s0, s1, s2, s3, . . . )
Ideally, we would like to choose s so that no function of the preceding n
bits predicts the next bit of s with a probability different from 1/2. In [5],
where “sliding block maps” are discussed, it is shown that it suffices to
consider only polynomial functions. In an effort to make this problem
more tractable, we might restrict our attention to linear functions of the
preceding n bits. But even this condition is hard to verify, and perhaps too
restrictive, so we’ll consider a much more restricted case.

We consider a binary string, s = (s1, . . . , sn), of fixed length n, from
which a periodic sequence (with period n) of arbitrary length can be ob-
tained by repeated use of s. First, we want s to contain an equal number
of 0’s and 1’s. Suppose that the bit si agrees with bit si+1 (mod n) exactly
half of the time, for all i. Then, knowledge of one bit does not provide
any information about the next bit; such a string may be considered less
predictable than a string that does not satisfy this condition. Now sup-
pose also that bit si agrees with bit si+2 exactly half of the time—such a
string may be considered even more unpredictable than one satisfying only
the first condition. Considering strings of a given length satisfying simi-
lar conditions for bits at all distances 1, 2, 3, . . . , k, we may consider their
unpredictability (in this limited sense) to increase with k.

The following restatement of our condition in the setting of a more fa-
miliar combinatorial problem of arrangements may be helpful.

Combinatorial Problem: A group of n men and n women are to be
seated around a (circular) table. Can this be so arranged that, of the
2n immediate neighbors of the women (counted with repetition) exactly
half are men and half are women. Can we simultaneously satisfy the corre-
sponding condition for those seated two seats away from the women? Three
seats? For a given n, how far can we continue this process?

Let us introduce some terms and notations that will be useful. Let
S2n = {s ∈ {0, 1}2n : Hamming weight of s is n}. For k ∈ {1, 2, 3, ...}, let
ωk(s) be the Hamming weight of s⊕σk(s), where σ is the right cyclic shift
operator and ⊕ denotes termwise addition modulo 2. Let g(s) = min{k :
ωk+1(s) �= n}. Finally, let Mn = max{g(s) : s ∈ S2n}. The combinatorial
problem stated above is solved by binary strings s satisfying g(s) = Mn.

Definition. Let s = (s1, . . . , sr) be any list of r numbers. For any k ∈ Z
+,

the k × r circulant matrix generated by s is the matrix

circk×r(s) :=
[
sj−i+1 (mod r)

]
k×r

.

That is, circk×r(s) is the k × r matrix whose (i, j) entry is equal to sj−i+1,
where the index is reduced modulo r. If k = r, we simply write circ(s).



Example. circ2×3(a, b, c) =
(

a b c
c a b

)
; circ(a, b, c) =


a b c

c a b
b c a


.

We shall use, without comment, a few well-known and easily demon-
strated facts about square circulant matrices A, B: (i) all row and column
sums of matrix A are equal; (ii) AT is circulant; and (iii) AB is circulant.

For m ∈ Z
+, let us write Jm (or J , if m is understood) for the m × m

matrix of 1’s. Alternately, J = circ(1, 1, . . . , 1). Further, if A is a square
circulant of the same order, then AJ = rJ , where r is the row-sum of A.
Remark. Using this notation, a string s ∈ S2n satisfies g(s) ≥ k if and only
if AAT = n

2 (Ik+1 + Jk+1), where A = circ(k+1)×2n(s).

We denote the concatenation of strings s and t by st. Note that if s ∈ S2m

and t ∈ S2n, then st ∈ S2(m+n).

3. Bounds on Mn

Let us begin with a few technical lemmas.

Lemma 1. Let s ∈ S2n, A = circ(s). Then, g(s) ≥ k if and only if AAT =
circ(t), where the first k + 1 elements of sequence t are (n, n

2 , n
2 , . . . , n

2 ).

Proof. Observe that g(s) ≥ k if and only if rows 2, 3, . . . k + 1 match row 1
in exactly n positions. Since each row contains exactly n 1’s it is equivalent
to say that the dot products of these rows with row 1 is n

2 . The ith entry
of t is the dot product of rows 1 and i of A; the dot product of row 1 with
itself is clearly n. The result follows.

One consequence of Lemma 1 is that Mn = 0 when n is odd.

Lemma 2. Let s ∈ S2m and t ∈ S2n, such that g(s), g(t) ≥ k, and suppose
that the first k + 1 elements of s and t are equal. Then g(st) ≥ k.

Proof. This follows from Lemma 1 and the observation that, under these

conditions, circ(st) can be partitioned in the form
(

circ(s) circ(t)
∗ ∗

)
.

Lemma 3. Suppose s = (s1, . . . , s2n) ∈ S2n, g(s) = k. Then:
1. For each i = 1, . . . , 2n, g(σi(s)) = k;
2. g(s2n, s2n−1, . . . , s1) = k;
3. g(1 − s1, 1 − s2, . . . , 1 − s2n) = k.

Proof. This follows immediately from the combinatorial interpretation of
the binary string problem.

We now establish upper and lower bounds for Mn, where n is even.

Theorem 1. For even n ≥ 4, Mn ≤ n − 2.



Proof. Let s ∈ S2n, g(s) ≥ n − 1, and A = circ(s). By Lemma 1 and the
fact that AAT is symmetric,

AAT = circ(n,
n

2
, . . . ,

n

2
, a,

n

2
, . . . ,

n

2
),

where a occurs in the (n + 1)-th position. Now, AJ = AT J = nJ , so
AAT J = n2J =

(
n + (2n − 2)n

2 + a
)
J . Accordingly, a = 0.

Let s = pq, where p, q ∈ {0, 1}n. Then the (n + 1)-th row of A is qp,

so A =
(

B C
C B

)
, where B and C are n × n matrices. Since a = 0, the

dot product of p and q is 0; it follows that p + q = (1, 1, . . . , 1), and so
B + C = J .

By matrix algebra, we see that every two rows of circn×2n(pq) = (B|C)
differ in exactly n positions. Since C = J−B, two rows of B differ in exactly
the same positions as the corresponding rows of C. Therefore, every two
rows of B must differ in exactly n

2 positions.
Since q = (1, . . . , 1) − p, each row of B is obtained by circulating the

previous row and then interchanging 0 and 1 in the first position. Thus,
the difference of the row sums of consecutive rows is odd. Consequently,
the difference of row sums of rows two positions apart is even.

Let a, b, c, d be the number of positions in which two rows of B, made

into a 2 × n array, have columns of the forms
(

1
1

)
,

(
1
0

)
,

(
0
1

)
and

(
0
0

)
,

respectively. From the above discussion, we have that a + d = b + c = n
2 .

Further, if the rows are consecutive, then (a + b)− (a + c) = b− c = n
2 − 2b

is odd; thus n
2 is odd. On the other hand, if the rows differ in position by

2, this number must be even—a contradiction (for even n ≥ 4).

Theorem 2. For even n ≥ 6, Mn ≥ 4.

Proof. Observe that g(s) = 4 and g(t) = 6, where s = (101100001011) ∈
S12 and t = (1011011110001000) ∈ S16. Also, the first five entries of s and
t match. By repeated application of Lemma 2, if u is any string obtained
by concatenating multiple copies of s and t, then g(u) ≥ 4. Since 12, 16
and any multiple of 4 greater than 20 are nonnegative integer combinations
of 12 and 16, u can be taken to have any such length. A string u′ of length
20 with g(u′) = 6 is given in Table 1. The result follows.

The lower bound of Theorem 2 can be improved for binary strings of length
a power of two.

Theorem 3. M2k ≥ k, for all k ≥ 1.

Proof. Let s be a de Bruijn sequence [14] of length 2 · 2k = 2k+1. Clearly,
s ∈ S2n+1

. Let A = circ(n+1)×2n+1(s).



Since s is a de Bruijn sequence, every binary (n + 1)–tuple appears exactly
once as a column of A, and the Hamming distance between any two rows
of A is 2n. Therefore g(s) ≥ n; the result follows.

Figure 2 illustrates Theorem 3, with n = 2.

A =


0 0 0 1 0 1 1 1

1 0 0 0 1 0 1 1
1 1 0 0 0 1 0 1


 .

Figure 2. Matrix formed from the de Bruijn sequence
s = 00010111.

4. Generation of sequences s with g(s) = Mn, for small n

An obvious way to compute Mn is to generate all
(
2n
n

)
balanced binary

strings of length 2n and for each such sequence s, shift and add to find g(s).
In this approach,

(
2n
n

)
strings must be tested and, asymptotically, little

economy is achieved over trying all 22n binary strings. In particular, the
work grows by a factor of 16 for each subsequent even value of n.

A slight improvement can be obtained by only testing those strings s for
which g(s) ≥ 1. Any such string s must contain n/2 blocks of 0’s interlaced
with n/2 blocks of 1’s. The sum of the lengths of the n/2 blocks of 0’s
is n and similarly for the blocks of 1’s. Consequently, we can generate all
partitions of the integer n into n/2 parts [6], with each part greater than
zero, and interlace these to generate the candidate strings s that must be
tested. Each such string will satisfy g(s) ≥ 1. The number of strings that
must be tested in this case also grows exponentially and, apparently, by the
same factor as in the naive case. For the small cases under consideration,
the initial savings are sufficient to allow additional cases to be computed
using this approach.

For the sake of completeness, we give, in Table 1, all currently known
values of Mn and, for each, a sequence attaining this value. These values of
Mn were obtained and confirmed by exhaustive computer programs based
on two different algorithms by the authors and also by Ritter (for n ≤ 16,
[9]) and Newton (for n ≤ 22, [8])—but, so far, only one of our algorithms
has established M26.

Table 1 uses the following, more compact, representation for these se-
quences.

Notation. Let s ∈ S2n begin with 0 and end with 1. A 0-block in such a
string is a maximal nonempty substring of 0’s; 1-blocks are defined simi-
larly. By Lemma 3, each sequence s ∈ S2n can be transformed, by a cyclic



permutation, into an equivalent sequence ŝ, where the largest 0-block is the
first block. The block-representation of s (denoted by s′) is

s′ = (s1, s2, . . . , sl) = (|A1|, |B1|, |A2|, |B2|, ..., |Al|, |Bl|),
where A1, . . . , Al are the 0-blocks of ŝ in order, B1, . . . , Bl are the 1-blocks,
|Ai| and |Bi| denote the lengths of the blocks, and |A1| ≥ |Ai| for all i.

Example. If s = 01110001, then ŝ = 00010111 and s′ = (3,1,1,3).

The following result gives some basic properties of block representations.

Lemma 4. Let s ∈ S2n begin with 0 and end with 1, g(s) > 0, and let s′

be its block-representation. Then:
1. The sum of the entries of s′ in even positions, and the sum of the

entries of s′ in odd positions, are both equal to n.
2. s′ has length n.
3. n is even.

Proof. Part 1 is an immediate consequence of the definition of S2n.
The length of s′ is the number of blocks in s. This is equal to the number

of cyclically adjacent pairs of entries in s that differ. If g(s) > 0, then rows
1 and 2 of circ(s) differ in n positions. Part 2 follows.

Finally, if n is odd, s has an odd number of blocks. Because they alter-
nate between 0-blocks and 1-blocks, it follows that the last block of s is a
0-block, contradicting the condition that s2n = 1.

n Mn Block-representation s′ = (s1, . . . , sn)
2 1 (2,2)
4 2 (3,3,1,1)
6 4 (4,2,1,3,1,1)
8 6 (4,3,1,3,1,1,2,1)

10 6 (4,3,1,3,1,2,1,1,3,1)
12 8 (6,2,1,1,2,3,1,3,1,1,1,2)
14 8 (5,2,4,2,1,3,1,3,1,2,1,1,1,1)
16 11 (5,1,1,2,1,2,3,4,1,3,1,2,3,1,1,1)
18 13 (6,3,1,3,2,2,1,1,1,1,1,3,2,2,3,2,1,1)
20 16 (5,3,4,1,2,3,1,2,1,1,1,1,1,3,1,4,2,1,2,1)
22 15 (5,3,2,1,2,1,5,1,1,1,1,4,2,3,1,2,1,1,1,3,1,2)
24 16 (7,4,1,2,1,1,1,1,2,2,1,3,1,1,1,2,1,3,1,1,3,2,4,2)
26 19 (7,1,1,2,2,1,1,4,2,5,2,2,2,4,2,1,3,1,1,1,1,2,1,1,1,1)

Table 1. Known Mn values and sequences that attain them.



In general, for a given n, many s ∈ S2n (i.e., not a single sequence and
those obtained from it by Lemma 3) may attain Mn. For some n, there are
surprisingly few such strings; but there is no obvious pattern among these
occurrences.

5. Associated combinatorial structures

In studying the unpredictable binary string problem, we note a couple of
other combinatorial objects which arise naturally, namely orthogonal arrays
and balanced signed graphs.

Recall the following definition [4].

Definition. Let S be a set of s symbols, denoted by 0, 1, 2, ..., s − 1. An
N ×k array A with entries from S is said to be an orthogonal array with N
runs, k factors, s levels, strength t (for some t in the range 0 ≤ t ≤ k) and
index λ if every N × t subarray of A contains each t–tuple of symbols from
S exactly λ times as a row. An orthogonal array with these parameters is
denoted by OA(N, k, s, t).

We now construct a particular class of OA(4n, k, 2, 2), for n ≥ 1. These
orthogonal arrays have some nice properties. For n ≥ 1, let s ∈ S4n where
g(s) = M2n, and take A = circ(s)T .

Remarks.
1. A is a 4n × (M2n + 1) matrix whose transpose is circulant.
2. The Hamming weight of each column of A is 2n.
3. The Hamming distance between any two columns of A is 2n.

Theorem 4. For n ≥ 1, A is an OA(4n, M2n + 1, 2, 2).

Proof. We need only show that each 2-tuple, (0 0), (0 1), (1 0), (1 1),
appears exactly n times as a row in every 4n× 2 submatrix of A. Let a, b, c
and d be the number of times each appears in the submatrix defined by any
pair of columns of A. By Remark 1 above, a + b + c + d = 4n; by Remark
2, b + d = c + d = 2n; by Remark 3, a + d = 2n. Solving this system gives
a = b = c = d = n, as required.

One can also view the binary string problem in a graph–theoretic context
by using our relatively unpredictable strings to construct balanced signed
graphs with nice additional properties. Recall the following definitions and
theorem from [2].

Definition. A signed graph G is a graph, where each edge has been as-
signed the symbol + or −.

A signed graph G is balanced if its vertex set can be partitioned into two
subsets (one of which may be empty) so that each edge joining two vertices
in the same subset is positive, while each edge joining vertices in different
subsets is negative.



Theorem 5. A signed graph G is balanced if and only if every cycle of G
has an even number of edges labeled −.

Let s ∈ S2n, with n even. We associate to s a signed graph Gs by
labeling the vertices of the 2n-cycle (counter-clockwise) with the digits of
s. The function l : E(Gs) → {+,−}, defined by

l(uv) =

{
+ if u + v ≡ 0 mod 2
− otherwise,

induces a labeling of the edges uv in this cycle.

Remarks.
1. The signed graph Gs is a balanced.
2. ω1(s) is equal to the number of edges of Gs labeled −.
3. If s ∈ S2n, g(s) > 0, then Gs has n edges labeled + and n labeled −.
4. Balanced graphs satisfying Remark 3 above can also be obtained by this
procedure from sequences s �∈ S2n. (See Figure 3.)

Figure 3. s = 00000101 �∈ S2n.

But we can do more than this.

Notation. Let Gs(i) be the signed graph (possibly disconnected) having
the same vertices as Gs, but whose edges correspond to pairs of entries of
s distance i apart, and edge labels are induced by function l above.

Remark.
5. Let s ∈ S2n, g(s) = Mn. Then, Gs, Gs(2), . . . , Gs(Mn) are all balanced
signed graphs, and each has n +′s and n −′s. Further, since they are they
are edge-disjoint and G = Gs ∪ Gs(2) ∪ · · · ∪ Gs(Mn) is a balanced signed
graph with an equal number (nMn) of edges labeled + and −. (See Figure
4.)



Figure 4. s = 00010111, attaining M4 = 2, and the cor-
responding balanced sign graph.

6. Conjectures and open problems

Conjecture 1. For even n ≥ 2, Mn ≥ n
2 .

Conjecture 2. For all n > 8, Mn < n − 2.

Open Problem 1. Find a generating function or recurrence relation for
the sequence {M2n} = {1, 2, 4, 6, 6, 8, 8, 11, 13, 16, 15, 16, 19, ...}

Open Problem 2. What is the limiting behavior of f(n) = Mn

n ?

Open Problem 3. Aside from M22, Mn appears to be monotonically in-
creasing as a function of n. Prove this or find another counterexample.
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