
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2013)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2197

Antivirus security: naked during updates

Byungho Min, Vijay Varadharajan*,†, Udaya Tupakula and Michael Hitchens

Information and Networked Systems Security Research, Faculty of Science, Macquarie University, Sydney, Australia

SUMMARY

The security of modern computer systems heavily depends on security tools, especially on
antivirus software solutions. In the anti-malware research community, development of techniques for
evading detection by antivirus software is an active research area. This has led to malware that can
bypass or subvert antivirus software. The common strategies deployed include the use of obfuscated
code and staged malware whose first instance (usually installer such as dropper and downloader) is
not detected by the antivirus software. Increasingly, most of the modern malware are staged ones
in order for them to be not detected by antivirus solutions at the early stage of intrusion. The
installers then determine the method for further intrusion including antivirus bypassing techniques. Some
malware target boot and/or shutdown time when antivirus software may be inactive so that they
can perform their malicious activities. However, there can be another time frame where antivirus
solutions may be inactive, namely, during the time of update. All antivirus software share a unique
characteristic that they must be updated at a very high frequency to provide up-to-date protection of their
system. In this paper, we suggest a novel attack vector that targets antivirus updates and show practical
examples of how a system and antivirus software itself can be compromised during the update of antivirus
software. Local privilege escalation using this vulnerability is also described. We have investigated this
design vulnerability with several of the major antivirus software products such as Avira, AVG, McAfee,
Microsoft, and Symantec and found that they are vulnerable to this new attack vector. The paper also
discusses possible solutions that can be used to mitigate the attack in the existing versions of the antivirus
software as well as in the future ones. Copyright © 2013 John Wiley & Sons, Ltd.

Received 1 November 2012; Revised 3 February 2013; Accepted 22 March 2013

KEY WORDS: security; antivirus; malware; vulnerability; code execution; local privilege escalation; denial
of service

1. INTRODUCTION

Nowadays, the attackers face two main hurdles when they try to compromise a computer system
as follows: (i) obtaining temporary control over a target system; and (ii) maintaining or extending
the control so that a malware can achieve its goal, such as cyber espionage. The first hurdle is usu-
ally tackled with a client-side attack using known or zero-day exploits or social engineering such
as phishing and offline deception. Traditionally, the first step of finding a zero-day vulnerability
and bypassing operating system-level security mechanisms (such as data execution prevention and
address space layout randomization) is considered to be harder than the second one. The second step,
which involves installing and operating a malware on a system without being detected by security
tools (such as antivirus, firewall, intrusion detection systems and intrusion prevention systems), is
usually believed to be relatively easier, using well-known evasion techniques such as polymorphism
and metamorphism [1–4].

*Correspondence to: Vijay Varadharajan, Information and Networked Systems Security Research, Faculty of Science,
Macquarie University, Sydney, Australia.

†E-mail: vijay.varadharajan@mq.edu.au

Copyright © 2013 John Wiley & Sons, Ltd.

B. MIN ET AL.

However, both obstacles are getting harder for attackers to overcome, partly because security tools
have improved incorporating behavioural engines to detect malicious control flow such as Dynamic
Link Library (DLL) injection. In particular, the second step has become much harder than it used
to be because antivirus software systems now use both signatures and behavioural characteristics
to detect malware. Many antivirus software systems perform static and/or dynamic analysis and
a few even incorporate simulation, emulation, or sandboxed execution environment to determine
dynamically the maliciousness of a binary. Furthermore, efforts on detecting obfuscated malware
are continuously improving [5–10]. Thus, it is becoming increasingly challenging for attackers to
bypass the detection of security tools to achieve their goals. In fact, executing and installing a mal-
ware to permanently compromise a system has become harder than most social engineering attacks.
The highest hurdle for the attackers is implementing a malware that is both functional and
still undetectable.

To overcome these hurdles, attackers have resorted to staged malware. Only a dropper or a down-
loader is executed at the first compromise; then the malware checks the target environment and
modifies its behaviour depending on the state of the environment (such as enabling malicious mod-
ules or using bypassing techniques). Hence, it has become very important for security tools to detect
not only the first exploit/malware execution but also every step of a staged malware in order to
counteract the threats. This requires security tools to be always active while the computer system
is running. If the antivirus functionality stops for any reason, even if it is for a very short period, a
staged malware can exploit this period to permanently compromise the system.

In this paper, we propose a novel attack vector that attackers can apply to their staged malware.
All antivirus software needs to be updated frequently to protect their system with up-to-date defi-
nitions and engines. If the antivirus software is partly or totally deactivated during an update, then
this is an important design vulnerability that can be exploited by the attackers. In our work, we have
discovered that such deactivation happens during update with well-known antivirus software such
as Avira Antivirus product lines, AVG product lines, McAfee Total Protection, Microsoft Security
Essential (MSSE) and Symantec Norton Internet Security. We have found and exploited this design
vulnerability in these five product lines to nullify their effectiveness on a target computer system. A
practical and detailed example of how an antivirus solution can be compromised during the update
is explained with Avira; we have chosen Avira as it was the hardest one to compromise (from the
perspective of offensive technique) amongst the five products that we have analysed. We have also
provided brief descriptions of the other four product lines as well. In short, a malware installer (the
first stage of a staged malware) monitors or triggers the update of the antivirus software, waits for
the system to be unarmed due to the design vulnerability and performs arbitrary actions that are
normally detected by the antivirus software, including the subversion of the antivirus itself. We
show that local privilege escalation from ‘a user to system’ is also possible using this vulnerabil-
ity. In other words, a staged malware can perform anything that is required for further intrusion
and permanent installation (e.g. privilege escalation and kernel-mode rootkit), as the probability of
detection decreases to 0. After the update, the malware takes permanent control of the target system
and is able to do anything that it wants to without being detected.

The rest of this paper is structured as follows. We introduce the concept of staged malware in
Section 2. General information on antivirus software systems is given in Section 3. The design vul-
nerability we have found is illustrated in Section 4 with the list of vulnerable product lines. A full
explanation of the vulnerability with the antivirus software product, Avira, is given in Section 5.
We describe several real-world attack examples exploiting this vulnerability in Sections 6 and 7.
Possible solutions to overcome this vulnerability are suggested in Section 8. Related works and
conclusions are given in Sections 9 and 10, respectively.

2. STAGED MALWARE

Most of well-known modern malware are staged ones. Figure 1 shows the basic operation of a staged
malware. They use a downloader and/or a dropper as their initial program that will be executed first
on target systems. For instance, Zeus, SpyEye and Citadel have been most notorious botnet malware
and all of them use dropper or installer or downloader [11,12]. Most widely spread malware such as

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

ANTIVIRUS SECURITY: NAKED DURING UPDATES

Figure 1. Staged malware.

Conficker (also known as Downadup), Ramnit and Sality, also use staged techniques to compromise
target systems [13–15]; Sality, Ramnit and Conficker are still the most active and blocked malware
in November 2011 [16]. Lastly, sophisticated and highly targeted malware such as Stuxnet, Duqu,
Flame and Gauss, usually use more than two stages when compromising target systems [17–20].

A dropper/installer/downloader is executed (not installed) through the first attack vector such as
browser zero-day payload or USB. This initial component normally checks the target environment
for any antivirus software installed, version of OS and system configurations. Then, it determines if
it can perform any malicious activities on the environment and if possible installs other components
on the target system. If it concludes that the environment is not appropriate to perform any malicious
activities, then it terminates itself. Without this stage, some or all of malware components and/or
its activities would be detected by the antivirus software. Then information about the malware can
be shared among antivirus corporations, and signatures for the malware can be created, resulting in
the death of the malware. However, if the malware first checks the target environment and detects
any antivirus software (say AV1) that detects its components or its behaviour, then it may choose
to give up the installation and terminate its execution. However, this malware can still compromise
other systems that do not have the antivirus software AV1 and will remain undetected for any length
of time while performing its malicious activities. This checking procedure is a core part of modern
malware, as all of the malware mentioned earlier use this type of strategy [11–15,19,20]. In the first
stage, they essentially check the target environment to see that there exists any antivirus system and
if it can be bypassed; then, they install some or all of the components of the malware on the target
victim system or otherwise terminate the installation. In some cases, the dropper may install only a
portion of its malware so as to make such malware components operate without being detected by
the security tool installed on the victim system. This strategy can be thought as ‘intrusion-in-depth’
in the sense that even though a malware cannot perform its full functionality due to the limitation of
the target environment, it can still perform other tasks such as install itself as a driver, communicate
with C&C server and install rootkit module. In other words, the malware can continue intruding the
target system even if some of its parts fail to function.

The staged approach at least gives two benefits to the attackers. First, it allows attackers to min-
imise the risk of being detected by security tools. Second, it minimises the exposed portion and
hides the full functionality of the malware at the early stage of intrusion. Security researchers can-
not reveal the functionalities of a malware when they can obtain only a dropper or downloader,
because it might not include any meaningful functionality of the real malware.

As the malware research evolves, it is important for security tools to detect not only the first
exploit or execution but also every level of the staged malware. One such effort of the security com-
munity is to make the security tools to be always active, as long as the system is running [21, 22].
If some or all of the functionalities (signature and behavioural-based detection, realtime protection
and rootkit detection) fail to be active for any reason, even for a very short period, the security pro-
tection provided by the tool can be totally nullified, because the staged malware may detect such
condition and exploit it. Actually, there are malwares that aim boot or shutdown time, for exam-
ple, bootkit, so that it can compromise the system before the security tool begins or after the tool
terminates [23–26].

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. MIN ET AL.

3. ANTIVIRUS SOLUTIONS

Almost all the users install at least one security tool on their system to protect it from compro-
mise. The most widely used security tools on a commodity PC are antivirus and firewall solutions.
Antivirus software is usually responsible for the detection, prevention and removal of malware on
a single computer system. Also, most users install only one antivirus product on their system due
to the degradation of system performance and the conflicts and incompatibilities between security
tools [27]. In summary, the security of commodity PC systems heavily depends on the effectiveness
of the antivirus software installed on them. This is one of the unique characteristics of antivirus soft-
ware, which other purpose software do not have. The consequence is that if the antivirus software
can be subverted, then the security of the system can collapse.

Another unique characteristic of antivirus software is the need for high frequency of updates. As
many new malware appear on a daily basis, installing an antivirus software is not sufficient to block
the attacks. The software must be updated on a regular basis; especially, signatures (also known as
definitions) should be updated at least once a day.

For example, default configurations for major antivirus solutions are as follows: Avira commer-
cial products check for an update every 2 h [28]; McAfee and Avast free products look for an update
every 4 h [29,30]; Symantec products checks for an update every hour [31], and Symantec’s certified
definitions are released three times on a weekday and one during weekend [32]; Sophos Endpoint
Security and Control is even configured to check for an update every 10 min [33]. In addition,
antivirus tools update their engines and their programmes as well. Engine updates occur much more
frequently than program updates, because an updated program is usually released annually as a new
version. A typical antivirus update process can be depicted as shown in Figure 2.

On update, every antivirus software downloads and applies the latest signatures and engines. To
do so, antivirus solutions usually create several new processes. Also, many antivirus software per-
form re-initialisation or restart some components in order to apply the latest updates. As updates
occur frequently on a regular basis, any flaw related to updates may lead to a critical problem on the
system. We will elaborate on this issue in Section 4.

Figure 2. Typical update process of antivirus software.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

ANTIVIRUS SECURITY: NAKED DURING UPDATES

4. OBSERVATIONS ON VULNERABILITY OF ANTIVIRUS SOFTWARE UPDATE

In general, it is hard to bypass the detection and protection mechanisms of an antivirus software
while it is working. Thus, most antivirus solutions start as early as possible during a system boot,
minimising the period that the system is exposed to malware threats without any protection. For
instance, Microsoft introduced Secure Boot [21] and Early Launch Anti-Malware [22] in an effort to
minimise such time gaps. Also, most antivirus solutions including Avira, Avast, Symantec, Kasper-
sky, ESET, AVG and Trend Micro install one or more system drivers, as they are loaded prior to
Windows services and user applications. Furthermore, it is even harder for malware to penetrate an
antivirus software after the tool becomes active and starts monitoring. This is why some malware
aims at boot or shutdown time so that they can compromise the system and/or the antivirus software
before the software begins or after it terminates.

However, there can be another point in time during which an antivirus software may turn off its
functionalities, namely, during the time of update. Updates of antivirus software happen frequently,
and in most cases, users can also trigger or perform an update. Therefore, if there is any short period
during the update when an antivirus solution becomes inactive, a malware can target this time frame
and compromise the system and the antivirus software. In some cases, it is even possible for the
malware to trigger or perform an update on behalf of a user and exploit this time period. This type
of vulnerability provides the attacker with another way to leverage their attacks. This opportunity
for attacks could turn out to be even better than targeting the boot or shutdown time. First, every
malware that is designed to become active prior to the antivirus solution‡ should be installed before
it can be activated on a target system. As most modern antivirus solutions prevent these rootkits
from being installed, bypassing antivirus products and installing such malware still remains as one
of the major obstacles for the attackers. As described in Section 6.2, an update-related vulnera-
bility can be used to install rootkits on the target system. Second, performing malicious activities
at shutdown time can be hard if the malware is running as a user process, because almost all the
antivirus solutions utilise kernel-mode driver to protect the system (and themselves) from compro-
mising including unauthorised alteration. These kernel-mode drivers live longer than common user
processes at shutdown time. Therefore, the malware should be installed as a kernel-mode driver or
a service so that it can wait until the antivirus solution’s drivers are unloaded on the target system
to perform the malicious activities. Again, installing a driver or a service from unknown third par-
ties is blocked by most antivirus software, causing this type of malware that is hard to implement.
However, once installed, for instance, by partially bypassing some defences of the antivirus, the
malware can perform normally prohibited activities at shutdown time after the antivirus is totally
unloaded from the system although there may not be enough time to carry out all the functions. In
contrast, much more time consuming activities can be performed if the antivirus itself is subverted
during an update on a running system (not a shutting-down system). In addition, compared with
boot and shutdown time, attackers can choose the attack time if the update of an antivirus software
can be triggered by users. Furthermore, in some cases (usually with laptops or office computers or
servers), updates may happen more frequently than reboot, which gives attackers more chances to
compromise the target system.

Let us now look at how a malware can detect whether some or all modules of an antivirus software
are inactive during an update. As described earlier, almost all the antivirus software use services and
kernel-mode drivers, which are usually the core of the protection they provide. Therefore, a malware
can monitor the status of the antivirus software modules. A single service or driver’s temporary out-
of-service can lead to a total compromise of the antivirus software and the system. We examined this
vulnerability with the top antivirus software products. Note that the top 10 antivirus vendors have a
share of something like 90% of the whole market [34], and the top 11 products account for 70% of
worldwide market share (see Table I), although there are over 50 antivirus solutions available world-
wide. As shown in Table II, five out of the 10 vendors’ product lines turned out to be susceptible

‡This type of malware includes master boot record (MBR), BIOS, and Extensible Firmware Interface (EFI) rootkits.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. MIN ET AL.

Table I. Worldwide antivirus vendor and product market share [34].

AV vendor Market share (%) AV product Market share (%)

Avast 17.50 avast! Free Antivirus 13.80
Microsoft 13.90 Microsoft Security Essentials 13.60
Avira 12.10 Avira Free Antivirus 10.00
ESET 10.60 ESET NOD32 Antivirus 7.10
Symantec 10.20 AVG antivirus Free Edition 6.60
AVG 9.10 McAfee VirusScan 3.70
Kaspersky 6.20 ESET Smart Security 3.70
McAfee 4.50 Norton AntiVirus 3.50
Trend Micro 3.00 Kaspersky Internet Security 3.40
Panda 2.30 Norton Internet Security 3.20
other 10.60 AVG antivirus 2.50

Other 29.00

AV, antivirus.

Table II. Tested antivirus solutions and their results.

Vendor Product Affected or not

Avast avast! Free Antivirus 7 Seems not vulnerable
Microsoft Microsoft Security Essentials 4 Vulnerable
ESET ESET Smart Security 5 Seems not vulnerable
Symantec Symantec Norton Internet Security 2013 Vulnerable
AVG AVG AntiVirus Free and Commercial 2012 and 2013 Vulnerable
Avira Avira Antivirus Free, Premium and Internet Security 2012 and 2013 Vulnerable
Kaspersky Kaspersky Internet Security 2013 Seems not vulnerable
McAfee McAfee Total Protection 2013 Vulnerable
Panda Panda Internet Security 2013 Seems not vulnerable
Trend Micro Trend Micro Maximum Security 2013 Seems not vulnerable

to this particular vulnerability as follows: Avira, AVG, McAfee, Microsoft and Symantec.§ In some
cases such as Avira, only one module became inactive; however, it was possible to unload other
modules using this tiny crack, allowing a malware to compromise completely the system and the
antivirus software. In other cases, such as AVG, McAfee, Microsoft and Symantec, no additional
task was required to subvert the antivirus products and the system. Although the details on this vul-
nerability and its exploit differ among the five antivirus product lines, in this paper, we only describe
the Avira’s case because (i) the fundamental concept of this vulnerability is identical among all the
vulnerable software; (ii) Avira was the only product among our five, which was selected as one of
the five best antivirus solutions in 2011 [35]; (iii) Avira was the most difficult one to compromise;
and (iv) a full explanation on Avira is sufficient to demonstrate this type of vulnerability. Attacks on
the other four vulnerable antivirus software are briefly given in Section 7.

5. DETAILED EXPLANATION–VULNERABILITY WITH AVIRA

In order to understand the vulnerability and attack, it is necessary to have a basic understanding of
the Avira antivirus software. Hence, in this section, first, we describe briefly the standing of Avira
in the antivirus industry, and give a simplified overview of its architecture and update procedure,
followed by a detailed explanation of Avira’s vulnerability.

§Notice that other products are marked as ‘seems not vulnerable’. This is because temporary unload of services and/or
drivers may not happen with every update. As far as we have investigated, some updates cause the restart of services and
the reload of kernel-mode drivers, and the ratio of such updates vary depending upon the antivirus solutions (from rare
product updates to relatively frequent definition and engine updates). We have observed the behaviours of the antivirus
solutions’ updates for about a month, and the products marked as ‘seems not vulnerable’ did not restart or reload
their modules.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

ANTIVIRUS SECURITY: NAKED DURING UPDATES

Table III. The number of common vulnerabilities and exposures entries for top antivirus vendors.

Number of CVEs

Vendor 1999–August 2012 2010–August 2012

Symantec 317 74
McAfee 118 48
Kaspersky 17 16
ESET 18 12
Trend Micro 14 12
AVG 18 8
Microsoft Security Essentials 6 6
Avira 17 5
Avast 13 2
Panda 24 1
Total 562 184

CVE, Common vulnerabilities and exposures.

Table IV. The number of common vulnerabilities and exposures entries for major software vendors.

Number of CVEs

Vendor 1999–August 2012 2010–August 2012

Apple 1841 752
Microsoft 2903 694
Oracle 1406 674
IBM 1403 481
SUN 1355 262
Total 8908 2863

CVE, Common vulnerabilities and exposures.

5.1. Avira antivirus

Avira is one of the largest antivirus vendors with nearly 10% worldwide market share [34] (See
Table I). Avira’s free antivirus solution was ranked in the third place in terms of worldwide mar-
ket share in September 2012 [34]. It was also selected as one of the top five antivirus products in
2011 by AV-Comparatives, along with Bitdefender, ESET, F-Secure and Kaspersky [35]; it got the
top score (ADV+) in on-demand, retrospective,¶ and performance tests. Avira’s excellent ability
to detect zero-day attacks using the heuristic engine has also been shown in [36]; only nine out
of 22 could detect a zero-day proof of concept that used a notorious Java vulnerability in 2012
(CVE-2012-4681).

Additionally, the number of CVE|| entries for security solutions support the fact that Avira is a
highly reliable software. Table III summarises the number of CVEs for market leading security
software vendors. Compared with Table IV, which lists the number of CVEs for major software
companies, security software are more secure than operating systems and application software.
Avira is ranked in the third place in terms of recent (last 3 years) CVE entries and appears in
the fourth place in terms of all time CVE entries, which supports its reliability. In general, as the
complexity of software increases, there is a greater probability for that software to have more vulner-
abilities. Therefore, if one antivirus software is significantly simpler than another, then the former is
likely to have lesser number of vulnerabilities compared with the latter. This is reflected in Table III
where we see some similarities between groups of antivirus products such as one group comprising
Kaspersky, ESET and Trend Micro and another consisting of MSSE, Avira and Avast.

¶Retrospective test shows how good the static/offline heuristic detection of an antivirus product [35].
||Common vulnerabilities and exposures is a dictionary of publicly known information security vulnerabilities and
exposures, launched in 1999 and maintained by MITRE corporation [37].

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. MIN ET AL.

Figure 3. Driver protection: Avira’s kernel-mode drivers cannot be unloaded.

5.2. Simplified architecture of Avira

Like many other major antivirus software that are currently available, Avira Antivirus Free software
consists of user-level processes, Windows services and kernel-mode drivers.

� Windows services (NT AuthoritynSYSTEM)
- Avira Realtime Protection service (avguard.exe)
- Avira Scheduler service (sched.exe)
- Avira Web Web Protection (avwebgrd.exe)

� User-mode processes
- Avira System Tray Tool (avgnt.exe)
- Avira Control Center (avcenter.exe)

� Kernel-mode drivers
- Avira mini-filter driver (avgntflt.sys)
- Avira Security Enhancement Driver (avipbb.sys)
- Avira Manager Driver (avkmgr.sys)
- Avira Snapshot Driver (ssmdrv.sys)

In addition, a few more processes such as update.exe, avnotify.exe and avwsc.exe are temporarily
created during the update process.

Among these modules, Realtime Protection service is crucial in Avira’s protection mechanism,
as it provides realtime protection not only to the system (e.g. on-access detection of malware) but
also to itself (self-protection such as prevention of unauthorised alteration on Avira-related files). In
particular, unloading the kernel-mode drivers and the filter driver is blocked by Realtime Protection
service as shown in Figure 3. Furthermore, a user cannot stop, pause or restart the service, as the
service ignores such requests. Also, it is not possible to terminate or kill the processes associated
with the service (blocked by the driver).**

Kernel-mode drivers further strengthen Avira’s self-protection. One of them locks Avira-related
registry keys so that they cannot be modified by users or malware (see Figure 4). Avira’s program
folder is protected by the filter driver so that even a user with administrator privilege cannot add any
file and delete or modify its files (see Figure 5). Furthermore, the processes of Avira are protected
by the kernel-driver in such a way that even the administrative user cannot kill them. Last but not
least, Avira uses files in FAILSAFE folder if some of its files in its installation folder are corrupted.
To sum up, the protection architecture of Avira is hard to defeat.

5.3. Update procedure of Avira

As mentioned earlier, every antivirus software must stay up-to-date with the latest signatures and
engines. Avira is no exception. Normally, there are three ways for carrying out the updates. First, the
update of the definitions occurs automatically on a daily basis. Next, a user can trigger an automatic
update via a menu or a command line. And last, a user can download the latest definitions from the
Internet and manually update Avira antivirus with the downloaded definitions.

**In contrast, some antivirus software such as Sophos End Point Security does not protect its services, thereby enabling a
user or a malware to start/stop/restart the services. In this case, it is possible for a malware to stop the service, perform
any malicious activity and then start the service. Although a notification pops up on the lower-right side of the screen,
it can be easily ignored by the user because the period for which the service stops can be very short, such as 1 s.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

ANTIVIRUS SECURITY: NAKED DURING UPDATES

Figure 4. Registry protection: Avira’s registry keys cannot be added/modified/deleted.

Figure 5. File protection: adding to a new file or deleting/modifying existing files in Avira’s installation
folder drivers is blocked.

Once an automatic update is started, Avira first checks the current definition and engine versions
to determine whether an update is indeed required or not. If so, it downloads the latest definition and
engine files from a dedicated server and checks them and then installs them. While updating, Avira
keeps logging all relevant events so that a user or an administrator can infer possible reasons if the
update fails. These log files are located in C:nProgramDatanAviranAntiVir DesktopnLOGFILES
by default. Also, the following registry keys represent update-related information including the last
update time (in UNIX time) and the currently installed definition version

� HKLMnSOFTWAREnAviranAntiVir DesktopnUpdateStarted
� HKLMnSOFTWAREnAviranAntiVir DesktopnLastUpdate
� HKLMnSOFTWAREnAviranAntiVir DesktopnvdfDate
� HKLMnSOFTWAREnAviranAntiVir DesktopnVdfVersion

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. MIN ET AL.

� HKLMnSOFTWAREnAviranAntiVir DesktopnUpdateInProgress

Once an update has started, the value of UpdateInProgress key becomes 1, and a few registry keys
are temporarily created and then deleted during the update.

5.4. Vulnerability

During an update, Avira’s Realtime Protection service has to be re-initialised. This is not an issue as
the service remains active during the re-initialisation process. However, when some of its engines
(of the type aeŒDESCRIPTION�.dll) are updated, the service must be restarted, not re-initialised.
Figures 6 and 7 show the change of Realtime Protection service’s PID during an update. The fact
that the service has been terminated and restarted during an update can also be verified in the
Windows system log or Avira’s update log file. This restarting usually takes a few seconds on a
commodity personal computer (about 7 s in Figure 8) and during this period, the system becomes
almost ‘naked’ without any protection. Any known exploit can be executed without being detected.
Zero-day exploits that are usually detected by the Avira’s heuristic engine can be run. Furthermore,
unloading Avira’s filter driver becomes possible during this period, which is normally blocked by
the Realtime Protection service. This in turn enables the attacker to replace any binary located in
the installation folder with that of the attacker’s. That is, Avira’s Realtime Protection service binary
or DLL files that the service will load can be replaced with malicious ones so that attacker’s binary
can be loaded and executed when the service restarts.

Figure 6. PID of Realtime Protection service (avguard.exe) is 1520 before an update.

Figure 7. PID of Realtime Protection service (avguard.exe) is 3704 after the update.

Figure 8. Avira’s update log file shows the fact that the service has been restarted.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

ANTIVIRUS SECURITY: NAKED DURING UPDATES

6. ATTACKS ON AVIRA

In this section, we describe three attack cases against Avira antivirus software exploiting the
vulnerability described earlier in Section 5. Additional attack scenarios can also be envisaged.

We have implemented all these three attack cases. Our experimental environment consisted of a
virtual machine with Windows 7 Ultimate. VMWare Fusion 5 was used as virtual machine monitor
(VMM), and the Avira antivirus used was Avira Free Antivirus 2012.

6.1. Attack 1: file replacement to compromise Avira and the operating system

In this case, a typical real-world attack example can be summarised as follows: suppose that a user
inserts an infected USB drive to his/her machine. A dropper is executed through the autorun fea-
ture of Windows. It is not detected by Avira software because the dropper is not performing any
suspicious activity at this moment. From this point on, the dropper waits until an update happens,
or the dropper itself can actively trigger an update on behalf of a user, as triggering an update is
not detected by Avira antivirus. We have experimented with both these options. When an update
occurs, the system became unarmed at least for a few seconds in the case of Avira due to the vulner-
ability. It is during this time that Avira’s DLL file was automatically replaced by the dropper. Then,
the replaced DLL (malware) was then automatically loaded by Avira, and the malware obtained
SYSTEM privilege on the target system in the context of Avira.

Following is a detailed explanation on the exploitation of Avira’s design vulnerability. Recall that
a staged malware is used in this scenario.

1. An attacker attacks a victim system and succeeds to run a malware installer (first stage); any
technique, such as social engineering and a client side attack, can be used. The attacker can
even use any computer including computers in public kiosks as victims, for example, col-
lecting information that other users have entered into public computers, building a botnet for
DDoS or constructing an attack proxy system, which makes tracing the source of an attack
hard to detect.

2. The malware installer performs only the actions that are permitted under any antivirus
software’s realtime protection. In this particular example, it checks the following:
� OS version.
� Privilege of current user.
� Antivirus solution installed on the system.
� Version of currently active signatures and engines.

3. With Avira installed on the target system, the installer triggers an update; alternatively, it may
just wait for an update to be started by the Avira’s scheduler service.

4. When the update begins, the installer monitors the status of Aviras Realtime Protection service.
5. Once the service is deactivated during the update, the installer performs the required actions

that are normally blocked or prevented by Aviras Realtime Protection service. In this imple-
mentation example, the installer’s ultimate goal was to replace Avira’s sqlite3.dll with a
malicious one (second stage) so as to subvert both Avira and the system. It performed the
following tasks:

(a) For privilege escalation, it dropped and executed any known or zero-day exploit that
is normally detected by Avira. Notice that this local privilege escalation (from guest
to SYSTEM) is required only once. After this file replacement process, the malware
obtained SYSTEM privilege on the target machine.

(b) Unloaded Avira’s filter driver that is normally protected by the service.
(c) Dropped the real payload (fabricated sqlite3.dll) and replaced the original file in Avira’s

installation folder with the malicious one. This file operation is shown in Figure 9.
6. The installer then deleted itself as a clean-up process to erase its existence; alternatively, the

payload may delete the installer.
7. As the filter driver has been unloaded, it was then restored, even though Realtime Protec-

tion service automatically loads and attaches the filter driver when it restarts. The reason for
the restoration is that the service’s restart triggered by Avira after an update proceeded to

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. MIN ET AL.

Figure 9. Successful file operation on the installation folder.

some extent and then failed if the driver remains unloaded; of course, the installer can man-
ually restart the service after the first restart by Avira fails. But still, the better solution is to
restore the driver, because the service restart by Avira then succeeds. Interestingly enough, we
observed that even if the start of the service was triggered and failed, it is logged as successfully
started in the Avira’s update log file, which is good from the attacker’s point of view.

8. On restarting, Realtime Protection service loaded the malicious sqlite3.dll, which provides
full SQLite functionalities, and became active without any problem. However, once loaded
by the service, the malicious sqlite3.dll obtains SYSTEM privilege on the target machine. In
other words, this attack allows the malware to escalate its privilege from a user to SYSTEM,
which means user access control on Windows becomes ineffective. Also, almost any malicious
activity was then possible, as it is loaded and executed in the context of Avira’s Realtime Pro-
tection service. Furthermore, the DLL can perform file operations on the installation folder,
even while the filter driver is loaded; this allowed the attacker to update the malicious DLL.
The result of this file replacement and loading operations is shown in Figure 10. The original
sqlite3.dll (sqlite3_ori.dll, 389KB) has been replaced with the malicious version (sqlite3.dll,
612 KB), and the fabricated DLL has been loaded by the service (window on the left side).
Here, the original DLL was not removed to show its replacement. After becoming a part of
Avira, the malware is able to modify Avira’s memory area. Then, it is possible to make Avira
look completely normal (with the tray icon’s umbrella open) but totally ineffective.

Figure 10. sqlite3.dll: replaced with malicious one and loaded by Avira’s service.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

ANTIVIRUS SECURITY: NAKED DURING UPDATES

Instead of DLL replacement, EXE infection, modification and replacement are also possible. In
this case, the installer adds its malicious payload to the service binary so that the payload can run
whenever the service starts. In addition, an attacker may temporarily unload Avira’s kernel-mode
driver and substitute one of driver-related files so that he/she can gain kernel privilege, which will
be the worst case.

6.2. Attack 2: arbitrary binary execution to compromise the operating system

In step 5, in the previous attack scenario, although Realtime Protection service is inactive, an attacker
has several other options. Among them, dropping and executing a binary is one of the simplest mali-
cious actions. Using this, we were able to install different types of malware including rootkits, trojan
horses, backdoor and spyware.

This attack might seem trivial and featureless. But the importance of this attack lies in the dif-
ference between signature and behaviour detection techniques. Many evasion techniques using
obfuscated code [1–4, 38–41] aim to bypass antivirus software’s detection engine. The engine
may employ traditional file signatures and/or heuristic (program-logic) signatures [42]. No mat-
ter what the engine is, once a malware bypassed it, the security of a system depends largely on the
behavioural detection engine of the antivirus software. Behavioural detection engine monitors all
the processes running on the system †† and makes the decision as to whether a process is malicious
or not based on its behaviour. At the same time, false positive rate should be very low so as not
to annoy users with false alarms. However, in contrast to signature-based engines that use obvious
footprints of malware, there can be many behaviours that can be either suspicious or legitimate
depending on the context. This makes it really hard to implement a reliable behavioural detection
engine (heuristic signature engines share similar difficulty). For this reason, obfuscated malware is
still prevalent. In this context, a malware installer can execute any binary that is detected by Avira’s
file and heuristic signature engine but whose behaviours are not detected by Avira’s behavioural
engine, called Avira AntiVir ProActiv. Even the simplest form of malware that is not obfuscated at
all can be dropped and executed without being detected.

We can take this attack one step further. In contrast to obfuscated malware whose actions can be
detected by antivirus software, any malware that is detected by both signature (file and heuristic) and
behavioural engines can be executed in this attack because Avira’s Realtime Protection service is
simply paused. In other words, malware do not have to bypass Avira, as it is deactivated. Let us con-
sider an MBR rootkit installer executable. This installer is detected by Avira’s signature engine, and
its installation process is detected by Avira’s behavioural engine. But a malware installer that is not
detected by antivirus software can embed this rootkit installer module. Then, it drops and executes
the module while Avira’s Realtime Protection service is inactive. As a result, an MBR rootkit is suc-
cessfully installed on the target system. Since then, the malware’s processes and network activities
become invisible to the operating system, thus undetectable by the antivirus software. Even though
an actual experiment on this type of attack is not given here, we believe that it would not be hard to
find a malware sample that is detected by both detection engines, but the behaviours of its installed
(real) malware is not.

6.3. Attack 3: denial of service (DoS) on Avira

The final practical attack example that we present in this paper is a DoS attack on Avira. At the fifth
step in the first attack scenario, the attacker replaces sqlite3.dll (or any other DLL the service loads)
with a non-functional file. As shown in Figure 11, the service can no longer restart even if the user
manually tries to start it. As a consequence, not only Realtime Protection service but also the other
two services (Scheduler and Web Protection) fail to start after rebooting, thus making Avira nearly
useless; even an update fails to start when the user clicks the ‘Start update’ button (see Figure 12).

††Trusted or predefined processes may be excluded from monitoring depending on the antivirus solutions.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. MIN ET AL.

Figure 11. sqlite3.dll is replaced with a non-functional file and Avira’s service cannot start.

Figure 12. Update fails to start after denial of service attack.

Denial of Service attack can also be performed with a simple file copy. For instance, we placed a
non-functional version of system DLL, for example, mpr.dll and version.dll, in the installation direc-
tory. Not only the Realtime Protection service but also user interface processes such as avgnt.exe
(Avira System Tray Tool) and avcenter.exe (Avira Control Center) failed to start, making Avira
entirely ineffective. After trying a few times, in the end, the user might think that there is a problem
with Avira and decide to remove it; if this is carried out, it opens up an even bigger opportunity for
the malware. Even when the user re-installs Avira or any other security tools, the system is exposed
to threats during the time of removal and re-installation.

7. ATTACKS ON OTHER ANTIVIRUS SOFTWARE: AVG, MCAFEE, MICROSOFT
AND SYMANTEC

As mentioned in Section 4, products from AVG, McAfee, Microsoft and Symantec are also vul-
nerable to the type of attacks mentioned earlier. We have also experimented with these antivirus
software products. In this section, we present the screenshots corresponding to Avira’s first attack
case: loading malicious DLL in the context of antivirus software, thus subverting antivirus software
itself and the operating system. Note that normally, service restart cannot be triggered by a user, and
the frequency of update that leads to service restart and/or kernel-mode driver reloading is different
in different antivirus products.

Our experimentation shows that AVG, McAfee and Microsoft are relatively easy targets. In these
three cases, at least one service (AVGIDSAgent in the case of AVG Antivirus 2012, seven services
in the case of McAfee Total Protection 2013 and Microsoft Anti-malware Service in the case of
MSSE 4) restarts during some updates, and file replacement can be performed during this restart

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

ANTIVIRUS SECURITY: NAKED DURING UPDATES

Figure 13. avgcertx.dll: replaced with malicious one and loaded by AVG’s service.

without any further action, such as additional service stop or kernel-mode driver unloading. We
have implemented loading of a malicious DLL in the context of these products, which are shown in
Figures 13–15.

Symantec’s Norton Internet Security 2013‡‡ is a little bit harder to exploit, because it verifies the
certificates of the files that it loads. Therefore, even if an attacker successfully replaced its DLL,
the malicious file would not be loaded by the service of Norton Internet Security 2013. However,
it turned out that it does not check other vendors’ files. In particular, we found that the NIS service
loaded Microsoft C Runtime Library (msvcp100.dll and msvcr100.dll), and these files were loaded
by the service even if they are not properly signed as shown in Figure 16.

We also observed that other attacks are possible; for instance, DoS on these products can be car-
ried out by replacing a file with a non-functional one. Interestingly, in the case of Symantec’s Norton
Internet Security 2013, DoS is even easier, as it verifies the file’s certificate. Even if the replaced
file is functionally identical to the original one, it is not loaded by the service as long as it does not
have a valid certificate. As an example, if the verification on a core file, ccSvc.dll, has failed, update
never finishes. If the annoyed user reboots the system, not only the service but also other service
and processes including the one responsible for user interface cannot run, making the product totally
ineffective on the system.

8. POSSIBLE SOLUTIONS

There can be a trivial solution, which involves fixing the design vulnerability and preventing the ser-
vice from restarting during any update. However, such a product-level patch is usually more feasible

‡‡Notice that this product asks the user whether to apply the patch now or later. The restart of the Norton Internet
Security’s service occurs only when the user clicks ‘apply now’ button; otherwise, patch is applied on next reboot.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. MIN ET AL.

Figure 14. mefapfa.dll: replaced with malicious one and loaded by McAfee’s service.

with the release of a new version. In this section, we suggest solutions that can be applied to the
current version for closing the security vulnerability described in Section 4; therefore, we assume
that service restart is a necessary evil during an update.

The root cause of the vulnerability lies in the update procedure. All the attacks including kernel-
mode driver unload, file replacement, and arbitrary binary execution are possible as one or more
services are temporarily deactivated during the update. Therefore, we can solve this problem by
making these services remain activated at all time (even during an update) by creating temporary
instances of these services. For example, Avira’s update process may create and start a temporary
service with a random name, for example, Realtime Protection[XXXXXXXX], which is func-
tionally equivalent to Realtime Protection service. This temporary service uses not-yet-updated
configuration data, engine and definitions. Then, the original service is stopped, and the newly down-
loaded engines and signatures are applied. As the final step, Realtime Protection service is started
with the updated data, and the temporary service is stopped and deleted. If such a procedure is fol-
lowed, then the period where the Realtime Protection service becomes inactive is eliminated, thus
removing the vulnerability. As a result, the attacks described in 6 are not possible. This procedure
is shown in Figure 17.

Another measure that can be used is similar to the one being used in MSSE. On every update,
MSSE deletes its existing kernel-mode driver named in the form of MpKsl[XXXXXXXX], for
example, MpKsl8cbe80ce, and installs a new one later. In the case of MSSE, it seems that the cre-
ation of a new driver may be delayed until the next system scan, and hence, there can be a relatively
long time frame where an update-related driver does not exist. Because the driver appears to be

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

ANTIVIRUS SECURITY: NAKED DURING UPDATES

Figure 15. MpSvc.dll: replaced with malicious one and loaded by MSSE 4’s service. Although the system
language is Korean, one can verify that MpSVC.dll with an invalid signature has been loaded by the service.

related only to the update procedure and not to the impact on the functionality of MSSE, such a
time frame might not be a big problem for MSSE.§§

Another additional defensive measure that can be taken is as follows. The update process can
validate the certificates of all the executables and modules (not only the newly downloaded ones but
also existing ones) before a service or a driver temporarily stops. If any validation fails, the update
should be cancelled, and the file that fails to be validated must be restored with a valid one; and the
restoration should be performed in a reliable way. If not, DoS attack might be possible by blocking
the restoration process after the file replacement. This measure can further prevent EXE or DLL
file replacement and placement attacks. Even though an attacker somehow succeeds in replacing
or placing a binary that is supposed to be loaded by the service, the malicious binary cannot pass
the validation unless it has a valid certificate. It would be better if the validation process requires
the binaries to have valid certificates from the vendor itself and Microsoft, because a stolen but still
valid certificate can be used by malware to pass such validation checks and bypass security tools.
We have witnessed such cases in Stuxnet [17] and Duqu [18]. Recently, there was even a case that
criminals used fake company data to obtain a certificate from a Certificate Authority (CA) [43]. If
the validation process only accepts valid certificates from the vendor and Microsoft, even a mali-
cious binary signed with an abused certificate cannot pass the validation and thus fail to subvert the
antivirus solution and/or the system. To break this measure, an attacker has to gain a valid certificate
from the vendor and Microsoft, which can be difficult. Also, such a validation mechanism can be
easily implemented in the current version, because almost all the binaries of all antivirus software
products that we have investigated are already signed with their vendor’s certificates. However, we

§§As we did not perform any detailed investigation on MSSE, we cannot exclude the possibility that the driver has
something with the functionality of MSSE in any way.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. MIN ET AL.

Figure 16. msvcp100.dll: replaced with malicious one and loaded by NIS 2013’s service.

Figure 17. Secure update procedure for Avira.

should point out that this mitigation method may not be able to completely block DoS attacks. If the
attacker can replace or place a file in the installation folder, the attacker can use a file that has valid
certificate but does not provide any relevant functionality. For example, the attacker can copy a valid
Microsoft-signed system DLL that resides in the Windows system folder to the antivirus software’s
installation folder and renames it to the DLL the antivirus tries to use, for example, sqlite3.dll. By
default, the current folder is searched prior to the Windows system folder in Windows applications
[44], and the copied DLL is loaded by the antivirus software. Although the file is signed with a valid
Microsoft certificate, thus passing the validation process, services or other processes of the antivirus
solution that use this DLL will fail to start because it does not provide desired functionalities.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

ANTIVIRUS SECURITY: NAKED DURING UPDATES

Therefore, this measure should not be thought of as a complete mitigation. It should be used with
the aforementioned update solution¶¶

We strongly recommend that both security measures be implemented, as it is always good to
realise the concept of security-in-depth or defence-in-depth, even within a single computer system
or a single software product.

If the system under consideration is a virtual machine (VM)-based system, then the VMM can
provide an additional security layer to the system and can act as a security tool during updates. This
can help to resolve one of the root causes of the problem, namely, the security of a modern computer
system heavily depends on the effectiveness of the antivirus solution(s) installed on it. The VMM
can easily detect the start of an update by monitoring the VM’s network activity. Once an update
is detected, the VMM may enforce certain security policies so that the state of the VM cannot be
altered except for the processes involved in the update. For instance, VMM may pause all other
processes including the malware installer, or block any process, file and registry operations of other
processes. As a result, the malware installer cannot perform any malicious activity during an update
and therefore fails to compromise the system and the antivirus software.

In addition, the VMM can be used to provide additional security features. For example, users
can use a specific VM for a specific purpose. That is, there can be one VM for carrying out sensi-
tive transactions such as Internet banking, another VM for say playing computer games and even
another one for general web browsing. However in this case, it may be that a VM has not been used
for a relatively long time, thus resulting in an out-dated system. This issue can be addressed by the
VMM checking the update status of a VM before it is started or resumed. Prior to allowing the use
of a VM, VMM updates the VM. Such an update will need to include operating system updates,
antivirus update and other mainstream software updates such as flash, JRE and Adobe reader.

9. RELATED WORK

In anti-malware research community, research on evading detection of antivirus software is an
important and active research area. The ultimate goal is cheating and bypassing the detection engine
of antivirus software by using obfuscation techniques including polymorphism, metamorphism and
packing. General description of these three techniques can be found in [1, 2, 4]. Metamorphic mal-
ware can reprogram itself. In general, self-reprogramming is performed within the malware prior to
its propagation so as to make its child malware look different from itself. Specific example of meta-
morphism can be found in [1, 4], and detection techniques are discussed in [6–8, 10]. Polymorphic
malware is generated by polymorphic engines that usually use mutation to change the appearance
of input program (malware) while preserving its semantics. Various defensive techniques against
polymorphism are suggested in [5, 9]. Packers are used to make variations of a malware using tech-
niques such as compression and encryption. Many packers are available including UPX, Themida,
ASPack, PECompact and UPACK. Oberheide et al. proposed an online automated packing service,
called PolyPack, that uses an array of packers and antivirus engines to achieve optimal evasion of
antivirus solutions [3]. Besides these three evasion techniques that are typically used with executa-
bles, file obfuscation techniques for other file formats have also been proposed. Alvarez and Zoller
used archive files to attack file processing mechanism of antivirus solutions and showed practical
attacks such as antivirus bypass, DoS and code execution [40, 41]. Porst suggested an evasion tech-
nique that generates script-embedded PDF files that are not recognised by antivirus software but
parsed by Adobe reader without a problem [39]. Jana and Shmatikov [38] suggested two antivirus
evasion techniques that use various file formats. They showed even a simple and unobfuscated mal-
ware can bypass almost all antivirus software’s detection engine. These evasion techniques normally
deal with the case on how a malware or a malicious file (a dropper/downloader in the case of staged
malware) can be executed without being detected by antivirus software. One exception to this is
[40], which covers general software vulnerabilities as well as detection engine evasion. In contrast,

¶¶Also, it is important to use strong hashing and signing algorithms when creating certificates to avoid motivated attack-
ers from forging certificates. The notorious Flame malware exploited MD5 hashing algorithm (weak collision resistant)
and succeeded in making seemingly valid certificates [45].

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. MIN ET AL.

our work discusses how an antivirus software can be totally bypassed (including signature-based
and behavioural-based detection engines) and subverted, as well as how the operating system can
be completely compromised, after a malware or malicious file is delivered to a target system.

A few types of rootkits have their aim in common with our work in the sense that they also target
the period when antivirus solutions are inactive. Rootkit is a kind of malware that hides the exis-
tence of malicious processes so that they can maintain control over the target system without being
detected. In-depth survey and detection techniques of rootkits can be found in [46–48]. MBR (the
first sector of a disk) rootkit is designed to replace the MBR with one of their own. As a result, it
runs before the operating system starts up [49]. Kleissner showed how an MBR rootkit can patch
Windows operating system before it starts so that unsigned drivers can be loaded [26]. Other exam-
ples include BIOS [25] and EFI rootkits [23,24]. They infect BIOS and EFI rom code, respectively,
so as to get control over the target system at the very early stage of system boot. Although antivirus
software tries to detect rootkits, any malware including rootkits can be installed by a dropper or a
downloader once the malware compromises the antivirus software and the system as described
in Section 6.2.

There have also been other works analysing the effectiveness of antivirus solutions. Some sug-
gest that antivirus solutions are useless as they cannot detect unknown threats and whereas others
suggest that users must install one to protect themselves from known and unknown threats [50].
Sukwong et al. [42] analysed six commercial antivirus products and showed that even behavioural
engines cannot detect all forms of malware. Josse [51] suggested an approach that can help users to
choose an antivirus software with a certain degree of confidence. Oberheide et al. proposed the idea
of antivirus as an in-cloud service and implemented CloudAV that uses 10 antivirus engines and
two behavioural detection ones [52]. Gashi et al. also supported the benefits of antivirus diversity
[53,54]. The strategy of leveraging multiple antivirus software via network service can be useful for
certain circumstances such as file scans. However, as we mentioned earlier, many staged malware
are using an initial installer that is not detected by almost all antivirus software; then, it may directly
inject malicious code into some process or use fileless-style malware [55].

Antivirus solutions are indeed a kind of software, and like any other software, they can have typ-
ical implementation vulnerabilities such as buffer overflow. Aforementioned antivirus attack using
archive files [40, 41] is an example. This attack exploits antivirus software’s memory corruption
vulnerability and executes arbitrary code. Other instances of antivirus software’s traditional imple-
mentation vulnerabilities can be found in [56,57]. Finally, Al-Saleh and Crandall [58] suggested an
interesting method for remotely probing how latest the signature database of antivirus software is
and showed the result on ClamAV antivirus.

Finally, there is a framework called Evilgrade that allows attackers to inject fake updates into
vulnerable software [59]. Then, the injected malicious update files can be executed. This framework
requires the attacker to be able to make traffic redirection, which can be performed in various ways
such as DNS tampering, DNS Cache Poisoning, ARP spoofing, Wi-Fi Access Point impersonation
and Dynamic host configuration protocol (DHCP) hijacking. Evilgrade exploits the lack of verifica-
tion and/or validation on the downloaded update files; this is different from our work that exploits a
design vulnerability.

10. CONCLUDING REMARKS

In this paper, we propose a novel attack vector that exploits the unique characteristics of antivirus
software, namely, the role of antivirus software in the provision of system security and the high
frequency of updates that are needed. There is no limitation on the range of vulnerability related to
updates. It can be a traditional implementation flaw, a fundamental design mistake or a logic fault. If
such a vulnerability were found in an antivirus software, the system as well as the antivirus software
could be totally compromised. We showed that this type of vulnerability indeed exists in real-world
antivirus products from Avira, AVG, McAfee, Microsoft and Symantec. We have also demonstrated
how such a vulnerability can be exploited for arbitrary operations and local privilege escalation.
Defensive measures that can mitigate such vulnerability have also been discussed.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

ANTIVIRUS SECURITY: NAKED DURING UPDATES

The gate to a new attack vector has just been opened, and we believe that this design vulnerability
related to update procedure may be present in other antivirus software. There could also be other
types of vulnerability related to update procedure; for example, investigation of the re-initialisation
of Realtime Protection service might reveal another vulnerability that can be triggered on
every update.

However, it is important to stress that it is absolutely essential that at least one antivirus software
must be present on every computer system, even if the antivirus software is somewhat imperfect.
The larger the software, the greater the probability that any software will have a bug, and antivirus
software is no exception. However, it is also true that antivirus and other security tools raise the
bar for the attackers to breach the security of a system. Furthermore, it is important to note that
there is considerable research happening in the anti-malware research community, which are aimed
at improving detection techniques, especially behavioural-based ones, which will help to better
counteract the attacks in the future [42].

REFERENCES

1. Murad K, Shirazi S, Zikria Y, Ikram N. Evading virus detection using code obfuscation. Future Generation
Information Technology 2010; 6485:394–401.

2. O’Kane P, Sezer S, McLaughlin K. Obfuscation: the hidden malware. IEEE Security & Privacy 2011; 9(5):41–47.
3. Oberheide J, Bailey M, Jahanian F. PolyPack: an automated online packing service for optimal antivirus evasion.

Proceedings of the 3rd USENIX Conference on Offensive Technologies, Montreal, Canada, 2009; 99.
4. Rad BB, Masrom M, Ibrahim S. Camouflage in malware: from encryption to metamorphism. IJCSNS International

Journal of Computer Science and Network Security 2012; 12(8):74–83.
5. Newsome J, Karp B, Song D. Polygraph: automatically generating signatures for polymorphic worms. IEEE

Symposium on Security and Privacy 2005, CA, USA, 2005; 226–241.
6. Lee J, Jeong K, Lee H. Detecting metamorphic malwares using code graphs. Presented at the SAC ’10: Proceedings

of the 2010 ACM Symposium on Applied Computing, Sierre, Switzerland, 2010; 1970–1977.
7. Lin D, Stamp M. Hunting for undetectable metamorphic viruses. Journal in Computer Virology 2011; 7(3):201–214.
8. Wong W, Stamp M. Hunting for metamorphic engines. Journal in Computer Virology 2006; 2(3):211–229.
9. Xu J, Sung AH, Mukkamala S, Liu Q. Obfuscated malicious executable scanner. Journal of Research and Practice

in Information Technology 2007; 39(3):181–198.
10. Szor P, Ferrie P. Hunting for metamorphic. Virus Bulletin Conference, Prague, Czech, 2001.
11. AhnLab Analysis Team. Malware analysis: citadel, AhnLab ASEC, (AhnLab Security Emergency response Center),

December 2012.
12. IOActive. Reversal and analysis of Zeus and SpyEye Banking Trojans, 2012. White paper, IOActive.
13. Symantec Security Response Team. The Downadup Codex: A Comprehensive Guide to the Threats Mechanics

Edition 2.0, 2009. White paper, Symantec Security Response.
14. Microsoft malware protection center, “Win32/Ramnit”, 2011. Available from: http://www.microsoft.com/security/

portal/threat/encyclopedia/entry.aspx?Name=Win32%2fRamnit [last accessed 2 February 2013].
15. Falliere N. Sality: story of a peer- to-peer viral network, 2011. White paper, Symantec Security Response.
16. Symantec Intelligence. Symantec intelligence report: December 2012 Symantec, 2012.
17. Falliere N, Murchu LO, Chien E. W32.Stuxnet dossier, 2011.
18. Chien E, Murchu LO, Falliere N. W32.Duqu The precursor to the next Stuxnet, White paper, Symantec Corp.,

Security Response, November 2011.
19. Anity labs, analysis report on flame worm samples, July 2012. Anity Labs.
20. Kaspersky lab, Gauss: abnormal distribution, August 2012. Kaspersky Lab.
21. Design, develop, and certify hardware for Windows 8. Available from: http://msdn.microsoft.com/en-us/library/

windows/hardware/br259114.aspx [last accessed 2 February 2013].
22. Early launch anti-malware. Available from: http://msdn.microsoft.com/en-us/library/windows/hardware/br259096

[last accessed 2 February 2013].
23. Heasman J. Hacking the extensible firmware interface, Black Hat USA, 2007.
24. Loukas, K. (Snare), De Mysteriis Dom Jobsivs: Mac EFI Rootkits, Black Hat USA, 2012.
25. Sirag H, Bondugula N, Gupta R. Advanced persistent attacks: BIOS rootkit-Mebromi, 2011.
26. Kleissner P. Stoned bootkit, Black Hat USA, 2009.
27. Steve, is it good to have multiple antivirus programs on my PC? zolexpc.com, 10-Jun.-2010. [Online]. Available

from: http://zolexpc.com/blog/?p=147 [last accessed 2 February 2013].
28. Avira support. Available from: http://www.avira.com/en/support-for-home-knowledgebase-detail/kbid/1081 [last

accessed 2 February 2013].
29. McAfee communities. Available from: https://community.mcafee.com/ [last accessed 2 February 2013].
30. Avast forum. Available from: http://forum.avast.com/index.php?topic=106560.msg848307#msg848307 [last

accessed 2 February 2013].

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

B. MIN ET AL.

31. Symantec support. Available from: http://us.norton.com/support/ [last accessed 2 February 2013].
32. Symantec connect community. Available from: http://www.symantec.com/connect/forums/how-often-does-new-

definition-file-come-out [last accessed 2 February 2013].
33. Sophos endpoint security and control upgrade guide. Available from: http://www.sophos.com/en-us/medialibrary/

PDFs/documentation/sesc_102_ugeng.pdf [last accessed 2 February 2013].
34. OPSWAT. Market share report, September 2012. opswat.com, Sep-2012. [Online]. Available from: http://www.

opswat.com/about/media/reports/antivirus-september-2012 [last accessed 2 February 2013].
35. AV-comparatives, summary report 2011, December 2011. AV-Comparatives.
36. djwm, Only 9 of 22 virus scanners block Java exploit. h-online.com, 31-Aug.-2012. [Online]. Available

from: http://www.h-online.com/security/news/item/Only-9-of-22-virus-scanners-block-Java-exploit-1696462.html
[last accessed 2 February 2013].

37. CVE. Available from: http://cve.mitre.org [last accessed 2 February 2013].
38. Jana S, Shmatikov V. Abusing file processing in malware detectors for fun and profit. IEEE Symposium on Security

and Privacy 2012, CA, USA, 2012; 80–94.
39. Porst S. How to Really Obfuscate your PDF Malware, 2010. ReCon.
40. Alvarez S, Zoller T. The death of AV defense in depth ?- revisiting antivirus software, 2008. CanSecWest.
41. Alvarez S. Antivirus (In)security, CCC (Chaos Communication Camp), 2007.
42. Sukwong O, Kim H, Hoe J. Commercial antivirus software effectiveness: an empirical study. Computer 2011;

44(3):63–70.
43. Assolini F. Brazilian Trojan bankers now digitally signed. securelist.com, 03-Sep.-2012. [Online]. Available from:

http://www.securelist.com/en/blog/208193825/Brazilian_Trojan_bankers_now_digitally_signed [last accessed 2
February 2013].

44. MSDN. Search path used by Windows to locate a DLL. Available from: http://msdn.microsoft.com/en-us/library/
7d83bc18(v=vs.80).aspx [last accessed 2 February 2013].

45. Sotirov A. Analyzing the MD5 collision in flame, June 2012. SummerC0n.
46. Bravo P, Garca DF. Rootkits Survey, 2011.
47. Bravo P, Garca DF. Proactive detection of kernel-mode rootkits. Sixth International Conference on Availability,

Reliability and Security (ARES), Vienna, Austria, 2011; 515–520.
48. Kapoor A, Mathur R. Predicting the future of stealth attacks. Virus Bulletin Conference, Barcelona, Spain, 2011.
49. Corrons L, Hoskins D. MBR Trojans: Exploring MBR rootkits, Network Security, 2008.
50. Potter B, Day G. The effectiveness of anti-malware tools. Computer Fraud & Security 2009; 2009(3):12–13.
51. Josse S. How to assess the effectiveness of your antivirus? Journal in Computer Virology 2006; 2(1):51–65.
52. Oberheide J, Cooke E, Jahanian F. CloudAV: N-version antivirus in the network cloud. Proceedings of the 17th

Conference on Security Symposium, CA, USA, 2008; 91–106.
53. Gashi I, Stankovic V, Leita C, Thonnard O. An experimental study of diversity with off-the-shelf antivirus engines.

Eighth IEEE International Symposium on Network Computing and Applications (NCA 2009), MA, USA, 2009; 4–11.
54. Bishop P, Bloomfield R, Gashi I, Stankovic V. Diversity for security: a study with off-the-shelf antivirus engines.

IEEE 22nd International Symposium on Software Reliability Engineering (ISSRE) 2011, London, UK, 2011; 11–19.
55. Golovanov S. A unique fileless bot attacks news site visitors. securelist.com, 16-Mar.-2012. [Online]. Available from:

http://www.securelist.com/en/blog/687/A_unique_fileless_bot_attacks_news_site_visitors [last accessed 2 February
2013].

56. Wheeler A, Mehta N. Owning antivirus. Black Hat Europe Conference, Amsterdam, Netherlands, 2005.
57. Xue F. Attacking antivirus. Black Hat Europe Conference, Amsterdam, Netherlands, 2008.
58. Al-Saleh MI, Crandall JR. Application-level reconnaissance: timing channel attacks against antivirus software. 4th

USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET), MA, USA, 2011.
59. Evilgrade. Available from: http://code.google.com/p/isr-evilgrade/ [last accessed 2 February 2013].

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

