
Masquerade Mimicry Attack Detection: A Randomised

Approach✩

Juan E. Tapiador∗, John A. Clark

Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH,

UK

Abstract

A masquerader is an (often external) attacker who, after succeeding in obtain-
ing a legitimate user’s credentials, attempts to use the stolen identity to carry
out malicious actions. Automatic detection of masquerading attacks is generally
undertaken by approaching the problem from an anomaly detection perspective:
a model of normal behaviour for each user is constructed and significant depar-
tures from it are identified as potential masquerading attempts. One potential
vulnerability of these schemes lies in the fact that anomaly detection algorithms
are generally susceptible to deception. In this work, we first investigate how a
resourceful masquerader can successfully evade detection while still accomplish-
ing his goals. For this, we introduce the concept of masquerade mimicry attacks,
consisting of carefully constructed attacks that are not identified as anomalous.
We then explore two different detection schemes to thwart such attacks. We
first study the introduction of a blind randomisation strategy into a baseline
anomaly detector. We then propose a more accurate algorithm, called Proba-
bilistic Padding Identification (PPI) and based on the Kullback-Leibler diver-
gence, which attempts to identify if a sufficiently anomalous attack is present
within an apparently normal behavioural pattern. Our experimental results
indicate that the PPI algorithm achieves considerably better detection quality
than both blind randomised strategies and adversarial-unaware approaches.

Keywords: anomaly detection, insider threats, masqueraders, mimicry
attacks, Kullback-Leibler divergence

✩A preliminary version of this paper appeared in the Proceedings of the 4th IEEE Confer-
ence on Network and System Security (NSS 2010) [43].
This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry
of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The views
and conclusions contained in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Gov-
ernment. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation hereon.

∗Corresponding author.
Email addresses: jet@cs.york.ac.uk (Juan E. Tapiador), jac@cs.york.ac.uk

(John A. Clark)

Preprint submitted to Computers & Security April 15, 2011

1. Introduction1

One of the worst threats in computer security is that posed by internal2

users who misuse their privileges for malicious purposes. Such actions could3

potentially result in enormous damages for an organisation, arguably far greater4

than those expected from external adversaries. Classical access control models5

can partially alleviate the risks associated with internal security issues, but the6

reality of many systems is unfortunately quite complex [22]: specifying good7

security policies is very hard; policies are frequently and purposely bypassed to8

get the job done; sharing information among different organisations is too often9

necessary and current security models are very poor at controlling the potential10

repercussions of wrong-sharing; etc. As a consequence, it has been recognised11

that access control systems are necessary measures, but clearly insufficient to12

deal with all the complexities posed by insider attacks. Research in this area has13

been in place for the last 20 years and, to some extent, has proliferated lately;14

see e.g. [35, 4, 3, 8] for a few examples of recently reported research initiatives.15

One traditional way of classifying insiders is as traitors and masqueraders16

[37]. A traitor is a user who already enjoys some privileges within the system17

and whose purposes will affect negatively the security properties of the organi-18

sation’s information and systems. A masquerader, on the contrary, is an often19

external attacker who succeeds in obtaining a legitimate user’s credentials and20

attempts to use the stolen identity to carry out malicious actions (e.g. credit21

card fraudsters).22

Virtually all existing masquerade detection approaches rely upon one key ob-23

servation: “behaviour is not something that can be easily stolen” [37]. Profiling24

users behaviours could therefore establish models of normalcy such that devi-25

ations from them would presumably indicate the presence of an impersonation26

attempt. The idea of using anomalies as proxies for attacks has been extensively27

studied in various security domains and, albeit generally useful, is not free from28

drawbacks and controversies [40]. Furthermore, there are inherent limitations29

in using an anomaly detection algorithm as the basis for masquerade detection.30

Firstly, profiles are ultimately derived from data provided by the user, who31

might well be in the business of forcing the learning process to build something32

undesirable, such as for example a model of normalcy such that future misbe-33

haviours will not be identified. Some works [24, 7] have already pointed out that34

the data used to train a security application could be actively manipulated by35

an adversary. When applied to such adversarial domains, learning algorithms36

should be conveniently adapted, but research in this area is still scarce. A second37

threat stems from the fact that knowledge of some details about the detection38

process facilitates evasion. Yet in general it is reasonable to assume that such39

information is public, as it is in general possible for an adversary to obtain it40

by careful experimentation with the system [29].41

2

1.1. Our Contributions42

In this paper we investigate some of the threats posed by sophisticated at-43

tackers in the context of masquerade detection. In particular, we introduce the44

concept of masquerade mimicry attacks:45

Definition 1. A masquerade mimicry attack is an attack where an imper-46

sonator attempts to evade being detected by a deployed masquerade sensor. Such47

attacks work by modifying the original attack pattern exhibited by the imperson-48

ator in such a way that the resulting behaviour looks normal, i.e., as belonging49

to the user being impersonated.50

We make the following specific contributions:51

1. We demonstrate masquerade mimicry attacks against One-Class Näıve52

Bayes (OCNB), a widely used masquerade detection algorithm. In par-53

ticular, we provide concrete procedures for generating such attacks and54

evaluate empirically their effectiveness using a real-world dataset. More-55

over, the algorithm given here for generating mimicry attacks is valid not56

only for OCNB, but also for a larger class of detectors.57

2. We describe and evaluate a randomised variant of OCNB based on the use58

of multiple random bags (OCNB-MRB). The use of randomised classifiers59

has proven useful in other applications. In this case, our results suggest60

that OCNB-MRB achieves a considerable improvement in detection accu-61

racy, but many attacks still go unnoticed.62

3. In order to improve upon OCNB-MRB, we propose and evaluate a novel63

detection mechanism based on the idea of separating, in a probabilistic64

sense, the attack from the padding sequence in a block of data. The pro-65

posed algorithm, called Probabilistic Padding Identification (PPI), makes66

use of the Kullback-Leibler divergence and does not rely on any assump-67

tions about the attack other than, once isolated, it is anomalous. We68

empirically demonstrate the improvement achieved through this method69

in terms of detection quality.70

1.2. Organisation71

The rest of this paper is organised as follows. In Section 2 we discuss previous72

work on masquerade detection and mimicry attacks. In Section 3 we describe73

the OCNB masquerade detection algorithm, which will be used throughout this74

paper to illustrate our contributions. Section 4 introduces mimicry attacks in75

the context of a masquerade detection scenario. We describe various methods76

for generating such attacks and empirically evaluate their success in evading77

detection. In Section 5 we explore the use of a randomised version of OCNB to78

counteract such attacks. In Section 6 we describe and evaluate an alternative79

method called the PPI algorithm. The results obtained over a dataset containing80

normal samples, as well as mimicry and non-mimicry masquerade attacks, are81

shown in Section 7. Finally, Section 8 concludes the paper by highlighting our82

main contributions and discussing some avenues for future research.83

3

2. Related Work84

In this section we review the two research areas most related to our work,85

namely masquerade detection algorithms and the concept of mimicry attacks in86

other contexts.87

2.1. Masquerade Detection88

Schonlau et al. presented in [39] the problem of differentiating between89

users conducting their normal activity and those who have been impersonated90

by an attacker. The work introduced a dataset1 for the evaluation of different91

masquerade detection methods. The dataset consists of sequences of truncated92

UNIX commands corresponding to the normal activity of 70 users and collected93

over a period of several months. Users’ activities are grouped into blocks of 10094

consecutive commands, and the main task for a masquerade detection algorithm95

is to accurately identify non-self blocks as anomalous (and, therefore, implicitly96

mark them as masquerade attempts), while correctly classifying the self blocks as97

belonging to the user. The work in [39] explores the performance of six different98

machine learning algorithms for this task in the so-called SEA configuration:99

each user’s first 5000 commands are used for training and the remaining 10000100

commands for testing on a per-block basis.101

A series of papers by Maxion et al. improved on the results reported in [39]102

and provided further analysis of the masquerade detection problem. In [32] it103

is shown how the näıve Bayes classifier achieves much better performance than104

previously proposed schemes. The paper also provides an excellent articulation105

of why some users are more difficult to attack than others and introduces a new106

experimental setting called 1v49, as opposed to the original SEA experiment107

described in [39]. The 1v49 experiment is arguably a better way of evaluating the108

performance of detection algorithms. We refer the reader to [32] for additional109

information.110

Further work explored the consequences of using datasets enriched with in-111

formation other than commands alone [33], as well as the effects of applying112

privacy-preserving sanitisation strategies over the data [25]. Wang and Stolfo113

argued in [46] that detection methods based on one-class training (i.e., relying114

only on self data) are more appropriate for a real-world setting. They showed115

that näıve Bayes and Support Vector Machine (SVM) algorithms attain similar116

results both in a one-class configuration and by using two-class data.117

Work on masquerade detection, and more generally on profiling user be-118

haviour for security purposes, has proliferated over the last decade, especially119

concerning the study of different detection strategies. Some of the proposals120

include information-theoretic approaches [1, 12], hidden Markov models [36],121

or sequence- and text-mining [34, 28, 6, 18] schemes, among others. Despite122

the diversity of principles behind these methods, the reported results show that123

they all perform similarly in terms of accuracy.124

1Publicly available at http://www.schonlau.net.

4

2.2. Mimicry Attacks125

The notion of mimicry is generally taken from Biology [9] and indicates126

the process of intentionally altering the appearance or behaviour of an entity127

with the purpose of inducing an error in an observer. In computer and network128

security, the basic idea behind mimicry attacks is to evade an anomaly detector129

by altering the attack to make it look normal. Evasion is successful when the130

modified data block being analysed fit the normal profile used by the detector,131

while simultaneously preserving the intended goal of the attack. Introducing132

such transformations generally requires the attacker to know both the detection133

algorithm and the model of normalcy in use.134

Early work on mimicry attacks targeted host-based IDSs, in particular sys-135

tems based on the analysis of system call sequences as introduced by Forrest et136

al. [15, 16, 21, 49]. Wagner et al. [44, 45] and Tan et al. [41, 42] developed137

various strategies for generating mimicry attacks against such detectors. Sub-138

sequent work, such as e.g. [17, 19, 26, 23], further explored this idea, mainly139

focusing on the problem of how to generate a mimicry sequence that evades140

detection and achieves the attacker’s goals. The task is generally computation-141

ally hard, and techniques drawn from domains such as model checking, code142

analysis, or genetic programming have proven useful.143

Similar ideas have also been investigated in the area of network-based IDS,144

where detection is accomplished by analysing payload features such as byte145

distributions or, more generally, n-gram or more complex models such as in146

[47, 48, 27, 30, 31, 10, 11]. Fogla et al. introduced in [13, 14] polymorphic147

blending attacks, where the main idea is to generate each attack instance in148

such a way that its statistics match the profile of normalcy used by an anomaly149

detector. Such attacks would therefore be able to evade both signature- and150

anomaly-based IDSs. Again, it is shown that the problem of generating such151

instances is NP-complete, though some heuristic techniques are of help.152

To the best of our knowledge, no previous work has explored the existence153

of mimicry attacks in the context of masquerade detection, as well as suitable154

countermeasures. These are the main goals of this paper.155

3. One-Class Näıve Bayes (OCNB) Masquerade Detection156

In this section we describe a widely-used masquerade detection algorithm,157

the One-Class Näıve Bayes (OCNB), which will be extensively used later to158

demonstrate masquerade mimicry attacks.159

The näıve Bayes (NB) classifier [20] is a supervised learning algorithm which160

has been used in a wide range of applications. NB is often a very attractive161

solution because of its simplicity, efficiency and excellent performance. It uses162

the Bayes rule to estimate the probability that an instance x = (x1, . . . , xm)163

belongs to class y as164

P (y|x) =
P (y)

P (x)
P (x|y) =

P (y)

P (x)

m
∏

i=1

P (xi|y) (1)

5

so the class with highest P (y|x) is predicted. (Note that P (x) is independent of165

the class and therefore can be omitted.) The näıvety comes from the assumption166

that in the underlying probabilistic model all the features are independent, and167

hence P (x|y) =
∏m

i=1 P (xi|y).168

NB has been used in the context of masquerade detection [32, 46], particu-169

larly using Schonlau et al.’s dataset. In the multinomial model (or bag-of-words170

approach), every block of commands B to be classified is represented by a vector171

of attributes [n1(B), . . . , nm(B)], where ni(B) is the number of times command172

ci appears in the block. The probability P (y|B) given by (1) can be then com-173

puted as174

P (y|B) = P (y)

m
∏

i=1

P (ci|y)
ni(B) (2)

The probabilities P (ci|y) are derived from a training set consisting of labelled175

instances for all possible classes (e.g., from each user’s first 5000 commands in176

Schonlau et al.’s dataset), and the priors P (y) are often ignored. In order to177

control the sensitivity to previously unseen commands, it is convenient to ensure178

that all commands appear with non-zero probability even if some of them are179

not present at all in the training set. This can be achieved by using an additive180

smoothing over the estimated probabilities181

P (ci|y) =

∑

B∈T (y) ni(B) + α

|B| · |T (y)|+ α ·m
(3)

where T (y) is the training set for class y and α the smoothing parameter.182

For convenience, in this work we will use minus the logarithm of (2) rather183

than the raw probability as basic indicator of the nature of a block (again,184

ignoring the priors):185

score(B) = − logP (y|B) = −
m
∑

i=1

ni(B) logP (ci|y) (4)

The result can be seen as an anomaly score: the higher its value, the more186

anomalous the block is, and vice versa.187

Following [46], in a one-class (OC) setting the training set for each user188

consists exclusively of data corresponding to self activities. Since a profile of non-189

self behaviour is not required, the detection is performed by simply comparing190

the probability of a block being self (or, equivalently, the anomaly score) to191

a threshold. Such a threshold can be adjusted to control the false and true192

positive rates, and the resulting ROC (Receiver Operating Characteristic) curve193

provides a way of measuring the detection quality. Different ROC curves can be194

compared by computing the Area Under the Curve (AUC), also known as the195

ROC score: An AUC close to 1 indicates near optimal detection quality, and196

vice versa. Figure 1 shows the AUC for each one of the 50 users in the Schonlau197

et al.’s dataset using OCNB in the 1v49 experimental setting. These results (or198

similar ones obtained with different detection methods) have been previously199

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

User

A
U

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: AUCs for the 50 users in the Schonlau et al.’s dataset using OCNB and the 1v49
experiment.

reported, e.g. in [46, 38], and we reproduce them here for completeness. It can200

be observed how OCNB achieves fairly good detection results in most cases,201

although some users (e.g. 13 and 16) are more easy to impersonate than others.202

A detailed analysis can be found in [32].203

4. Masquerade Mimicry Attacks204

In this section we introduce mimicry attacks in the context of a masquerade205

detection problem. We consider an adversary who intends to launch an attack206

consisting of a sequence of actions or commands. We make three fundamental207

assumptions about this process:208

(i) Perfect knowledge: The adversary knows perfectly the detection algorithm209

being used and all the relevant parameters, as well as the model of nor-210

malcy for the user whose system account is impersonating. Alternatively,211

the adversary could be the user himself attempting to launch an attack212

without being spotted by the anomaly detector.213

(ii) Non-poisoned detector: The detector has been trained with attack-free214

data, so we do not consider the possibility of frog-boiling attacks (e.g. [5])215

7

or other forms of evasion based on training the detection algorithm with216

carefully crafted data.217

(iii) Attack padding: The attack sequence must be executed within a block,218

but not necessarily in a contiguous way. Thus, the adversary could insert219

padding commands at any point of the attack sequence. We do not put any220

restriction on the type, length, position, or number of padding sequences,221

other than both attack and padding must add up to a block size.222

4.1. Notation223

We will denote sequences or blocks of commands by capital letters, in par-224

ticular A for attacks, P for padding, and B for entire blocks. The symbol | · |225

denotes the length of a sequence. Sequences will be treated as arrays, so S(i)226

denotes the i-th command in the sequence. The probability density function227

of a sequence will be specified by a calligraphic font, e.g., A, P , B, etc. Thus,228

S(ci) will denote the frequency of command ci in sequence S.229

4.2. Evading OCNB230

Consider an attack consisting of |A| ≤ |B| commands, so the number of231

padding commands the adversary must generate is |B|−|A|. We assume that the232

attack sequence will contribute significantly to identify the block as anomalous.233

For example, in the case of a detector based on the OCNB classifier described234

above, this translates into a very low probability induced by the commands235

comprising the attack. In this case, the optimal padding strategy for the attacker236

consists of filling the block with the command cmax = arg maxciM(ci),M being237

the model of normalcy, as this will cause the maximum possible increment in238

the probability of the block being classified as normal given the attack. Despite239

being optimal against OCNB, we will not consider such a strategy here since the240

results might not be generally useful for different detection algorithms. We shall241

instead look into the more general strategy of producing a padding sequence such242

that the histogram of the resulting block (attack plus padding) is statistically243

indistinguishable from that observed during training. Such attacks would be244

presumably effective against a wider range of masquerade detection algorithms.245

4.2.1. Attack Generation246

We will assume that the distinguishability metric we attempt to minimise247

is
∑

ci
|B(ci) − M(ci)|, where B and M are the histogram of the block and248

the normalcy model, respectively, and the sum is taken over the available set of249

commands. We will also restrict ourselves to the case where the attack sequence250

is immutable, i.e. no command in it can be deleted or replaced by other. In251

this case, it is not difficult to see that the optimal strategy for generating the252

padding sequence consists of:253

(i) Compute the difference histogram: D(ci) = M(ci) − A(ci) if M(ci) ≥254

A(ci), and D(ci) = 0 otherwise.255

(ii) Add to the padding sequence |B| · D(cm) instances of the command cm =256

arg maxciD(ci).257

8

lpdsend grep date cpp lp find expr generic mp sh file post xrdb awk

rm ln getpgrp mkpts LOCK ls env sed FIFO gethost csh download kill

userenv tcpostio UNLOCK rmdir tcppost wait4wm mimencod MediaMai netstat

xhost netscape popper gettxt xsetroot xconfirm endsessi tellwm reaper

xprop xdm cat toolches 4Dwm xterm xwsh sendmail mail gs xdvi.rea xdvi

last dc imgview launchef xv .wrapper uname fmarch .maker w maker5X.

hostname .java wr dirname basename egrep java make acroread ps cal xcal

touch nslookup unpack id col ul more man ping finger emacs-20 nawk

PLATFORM Slmhelpe ftp wc mkdir getopt lpdsend tektroni dev.moti Sqpe

Figure 2: Example of masquerade mimicry attack. Framed commands correspond to an attack
sequence of length 20; the remaining 80 commands (padding) are generated to fit User 0’s
profile.

(iii) Set D(cm) = 0 and repeat step (ii) until no more padding is needed.258

Alternatively, a suboptimal (but certainly much faster) strategy consists of259

generating the padding by just sampling from the difference distribution D.260

(The procedure is straightforward once the inverse of cumulative distribution,261

F−1
D , is computed.)262

To build the final block of commands, we first select |A| different random263

positions of the block and place one attack command in each of them, respecting264

the original order in the attack sequence. The remaining empty positions are265

then filled up with the padding commands previously generated in no particular266

order. Figure 2 shows an example.267

4.2.2. Results268

In order to quantify the performance of such attacks, we have conducted the269

following experiment using the Schonlau et al.’s dataset. Given a user u, we270

first repeat the 1v49 experiment and record the raw scores issued by OCNB.271

We then plot the distribution of the scores for both self and non-self blocks.272

This serves to visually illustrate the discriminative capability of the classifier:273

the higher the overlapping between both distributions, the lower the detection274

quality. As an example, Fig. 3 shows the distribution of the scores given by275

OCNB to user 2’s self and non-self blocks (two leftmost boxplots).276

“Attacks” are generated by randomly choosing a sequence of |A| commands277

from a block belonging to the training dataset of a user other than u. Note that278

such sequences are not by any means actual attacks. However, our emphasis here279

is not on the consequences of the adversary’s actions in a real setting, but rather280

on the assumption that attacks are anomalous events which nonetheless might be281

conveniently camouflaged to avoid detection. For this purpose, the methodology282

here followed should do as far as the detection of such concealed anomalies is283

concerned. This sequence is then placed into an empty block, and the remaining284

100− |A| positions are filled with a padding sequence obtained by following the285

9

self nonself |A|=10 |A|=20 |A|=30 |A|=40 |A|=50 |A|=60 |A|=70 |A|=80 |A|=90 |A|=100

20
0

40
0

60
0

80
0

10
00

12
00

sc
or

e

Figure 3: Distribution of OCNB scores for user 1 including mimicry attacks of various lengths.

optimal strategy described above. The score for the block as given by OCNB286

is computed and the procedure is repeated 10000 times for randomly generated287

attacks. The ten rightmost boxplots in Fig. 3 show the score distribution for288

attacks of length 10, 20, . . ., 100. It is observed that the bulks of the self and289

non-self distributions are largely non-overlapping, and a threshold around 500290

might serve to detect most nonself sequences with some rate of false positives and291

negatives. Mimicry attacks (ten rightmost plots) of low length present a score292

distribution below any reasonable detection threshold, thus being essentially293

impossible to detect. An increasing attack length generates more anomalies per294

block and also leaves less space available for padding, which translates into a295

greater score and, consequently, more chances of detection. The plots for most296

users are completely analogous.297

In global terms, OCNB performs rather poorly in detecting this form of298

attacks. Table 1 gives the average detection rate of mimicry attacks of length299

up to 60 commands computed for the 50 users in the dataset. The detector for300

each user was tuned so as to limit the false positive rate to a maximum of 5%,301

and the average is computed for the 50 users. The majority of the attack blocks302

passed unnoticed by the detector, only approaching a detection rate higher than303

50% (which is still remarkably low) when the attack sequence comprises more304

than half the block length.305

10

Table 1: Average detection rate of mimicry attacks using OCNB.

Attack length |A| = 10 |A| = 20 |A| = 30 |A| = 40 |A| = 50 |A| = 60
Avg. DR 0.081 0.206 0.314 0.407 0.474 0.521

4.3. Discussion306

The results discussed above show the effectiveness of mimicry attacks to307

evade OCNB and, presumably, many others masquerade detectors. In a way,308

this does not come as a surprise, as none of these algorithms were designed to309

operate in the adverse conditions imposed by sophisticated attackers. This fact310

alone motivates the need for adversarial-aware classifiers, that is, algorithms311

factoring in the possibility of an intelligent adversary manipulating the input.312

In the remaining of this paper we introduce and study two alternative methods313

to tackle this question.314

5. OCNB with Multiple Random Bags315

One simple way of reducing the attacker’s chances of successfully evading a316

classifier is through randomisation [2, 7]. By introducing a probabilistic com-317

ponent into the detection process, the attacker will inevitably lose some degree318

of control over the effect of his actions on the classification outcome. Unfor-319

tunately, this will also influence negatively the overall detection performance,320

particularly in terms of a potentially higher rate of false positives, and therefore321

should be done carefully.322

OCNB admits an easy and elegant randomisation strategy by using the323

so-called Multiple Random Bags (MRB) approach. Recall that OCNB works324

by computing an anomaly score (essentially a probability) given a block B =325

{c1, . . . , cn}. The idea here consists of splitting B into k randomly selected326

smaller blocks, called bags, Bi, each one of size ℓ < |B|. The overall anomaly327

score of the block is then computed as328

score(B) = max{score(Bi)}
k
i=1 (5)

The intuition behind this scheme is simple. If a block is entirely normal, so it329

will be any randomly selected subset given appropriate parameters. Conversely,330

if a block contains an attack camouflaged among normal commands, perhaps331

one of the randomly chosen samples may contain a significant amount of attack332

commands. As the overall anomaly score is that of the most anomalous bag,333

the chances of correctly identifying a mimicry attack increase with the number334

of bags k. As for the optimal bag length ℓ, it is obviously related to the attack335

length we attempt to spot, with low values generally leading to better detection336

rates. There is however a trade-off here, since too small bags may break down337

users’ behavioural patterns and increase the false positive rate. The interested338

reader can find in [50] a similar idea applied to the spam detection setting.339

11

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Attack length

D
et

ec
tio

n
ra

te

l=10
l=20
l=30
l=40
l=50
l=60
l=70
l=80
l=90

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Attack length

D
et

ec
tio

n
ra

te

l=10
l=20
l=30
l=40
l=50
l=60
l=70
l=80
l=90

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Attack length

D
et

ec
tio

n
ra

te

l=10
l=20
l=30
l=40
l=50
l=60
l=70
l=80
l=90

Figure 4: Detection rate of masquerade mimicry attack using OCNB-MRB with k = 5 (left),
k = 10 (centre) and k = 25 (right).

5.1. Experimental results340

We have repeated the experiments described in Section 4.2 but using OCNB341

with MRB. On a first set of experiments, we investigate the effect of parameters342

k and ℓ on the detection performance against masquerade mimicry attacks.343

Figure 4 shows the detection rate achieved for k = 5, 10 and 25. For each value,344

we study values of ℓ = 10, 20, . . . , 90 and different attach lengths. As it can be345

observed, the use of MRB improves upon the detection rates obtained by OCNB346

(compare with the values reported in Table 1), although not spectacularly. On347

average, the MRB approach achieves around 8-10% more in terms of successful348

detection, with generally better values for attacks of short length.349

In terms of parameterisation, the trend observed in our experiments is quite350

clear: The more the number of bags (k), the better the detection rate. There is351

a simple explanation for this: Each random bag can be seen as an independent352

experiment where a number of samples are taken from the block, and its anomaly353

score is then computed. The more the number of experiments, the higher the354

chances of getting a bag with a number of attack commands sufficient to spot the355

block as anomalous. A bigger number of bags will, of course, increase the time356

required to carry out the detection. We will address this issue later. As for the357

bag length ℓ, the behaviour seems to be different depending on the attack length.358

Smaller bags perform better for short attacks. This, again, is reasonable and359

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

0.2

0.4

0.6

0.8

1

User

A
U

C

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0

0.2

0.4

0.6

0.8

1

User

A
U

C

OCNB MRB, k=5, l=10 MRB, k=5, l=90 MRB, k=10, l=10 MRB, k=10, l=90 MRB, k=25, l=10 MRB, k=25, l=90

Figure 5: AUCs for the 50 users in the Schonlau et al.’s dataset using OCNB-MRB and the
1v49 experiment. For comparison, the AUCs obtained with OCNB are also provided.

conform with our intuition: if the attack sequence is very low compared with360

the bag size, each random bag will contain far more normal commands than361

attack ones, and therefore the anomaly score will tend to be low. In the case of362

long attacks (say, |A| = 60 and higher), this relation is not obvious and bags of363

almost any length suffice to detect most attacks.364

It remains to be seen whether or not using MRB has a negative effect in365

terms of false negatives, and also how it performs against usual, non-mimicry366

masquerade attacks. In order to evaluate this we have repeated the 1v49 exper-367

iment but using OCNB-MRB. Figure 5 shows the original AUCs obtained with368

OCNB and the ones corresponding to MRB with different values of parameters369

k and ℓ. In most cases, the use of MRB has no adverse impact whatsoever in the370

ROC curves, and the AUCs are almost identical to those obtained with OCNB.371

In fact, for a few users employing MRB helps to reduce slightly the number of372

false positives: see e.g. users 11, 16, and 47.373

The use of MRB does not impose any noticeable burden to the overall detec-374

tion process. Table 2 shows the average time required to process a 100 command375

block and compute its anomaly score. These experiments were carried out in a376

laptop with an Intel Core i7 at 2.66 GHz (2 cores) and 8 GB of memory. It can377

be seen how both OCNB and the MRB variant are reasonably fast. In the case378

of MRB, the processing times increases approximately linearly both with k and379

ℓ. In any case, within the range of parameters values here explored, the total380

time never exceeds a fraction of a millisecond.381

13

Table 2: OCNB and OCNB-MRB processing times per 100 command block.

Algorithm Time in ms (Avg. ± Std. Dev.)
OCNB 0.0024 ± 0.0005
OCNB-MRB (k = 5, ℓ = 10) 0.0056 ± 0.0013
OCNB-MRB (k = 5, ℓ = 90) 0.0495 ± 0.0033
OCNB-MRB (k = 10, ℓ = 10) 0.0108 ± 0.0017
OCNB-MRB (k = 10, ℓ = 90) 0.0996 ± 0.0071
OCNB-MRB (k = 25, ℓ = 10) 0.0263 ± 0.0022
OCNB-MRB (k = 25, ℓ = 90) 0.2438 ± 0.0073

6. Probabilistic Padding Identification (PPI)382

In this section we try to improve on the results obtained with OCNB-MRB by383

using a more elaborate strategy. We next develop an algorithm which attempts384

to separate the attack from the padding sequence in a given block of commands.385

The process will be carried out with the help of the normalcy model presum-386

ably used to generate the padding, but without any further knowledge about387

the attack length (which, incidentally, could be zero). We first review some388

properties of the Kullback-Leibler divergence, a concept which will be central389

in our algorithm.390

6.1. Kullback-Leibler Divergence391

The Kullback-Leibler (KL) divergence is a non-symmetric measure of the392

difference between two probability distributions. If P and Q are two discrete393

distributions, then the KL divergence of Q from P is defined by394

DKL(P ‖ Q) =
∑

i

P (i) log
P (i)

Q(i)
(6)

Note that DKL(P ‖ Q) can be rewritten as395

DKL(P ‖ Q) = −
∑

i

P (i) logQ(i) +
∑

i

P (i) logP (i)

= H(P,Q)−H(P)
(7)

where H denotes the entropy. Consequently, DKL admits a simple interpreta-396

tion as the expected number of extra bits necessary to encode samples taken397

from P when using a code based on Q rather than one based on P .398

From a different perspective, the KL divergence can also be seen as the399

expected discrimination information between two hypothesis. Given a sample400

x and two possible hypothesis H0 and H1, DKL(P (x|H1) ‖ P (x|H0)) provides401

the mean information per sample for discriminating in favour of H1 against H0,402

given that H1 is true. Or, in other words, it measures as the amount of evidence403

for H1 over H0 to be expected per sample.404

14

6.2. The PPI Algorithm405

Based on the properties of the KL divergence, we next describe an algo-406

rithm to probabilistically identify the padding portion of a block of commands.407

Assume that A and P are the attack and padding portions of a block B, and408

assume that M is the normalcy model for a given user. The algorithm relies409

upon two main observations:410

(i) A is sufficiently different fromM (otherwise it would not be necessary to411

add padding); and412

(ii) P is highly similar toM, as it has to compensate for the effects of A.413

Note that the problem of extracting P from B is further complicated by the414

fact that we generally do not know the length of the attack.415

Our approach consists of identifying subsets P̂ , Â ⊆ B, with P̂ ∪ Â = B416

and P̂ ∩ Â = ∅, such that DKL(P̂ ‖ M) is very low and, simultaneously,417

DKL(Â ‖ M) is very high. An exhaustive search would require to check 2|B|
418

possible subsets and compute two KL divergences for each one of them, which419

is clearly impractical. Instead, we propose a greedy strategy where suitable420

candidates for P̂ and Â are identified in one single pass over the block.421

The algorithm, shown in Fig. 6, attempts to identify the portion P̂ of B422

that best fits the model. A vector C is used to indicate whether command B(i)423

is padding or not, so at each step such a vector partitions the block into two424

sequences, P̂ and Â. The procedure DiffKL computes the KL divergences be-425

tween each of these sequences and the modelM, and returns the absolute value426

of the difference. At each step, the PPI algorithm is governed by a simple rule:427

add the i-th command to the tentative padding if, by doing so, the increment428

of the differential KL divergence is greater than that obtained by not adding429

the command. The rationale behind such a rule can be better understood by430

observing that431

|Dp −Da| =

∣

∣

∣

∣

∑

i

P̂ log
P̂

M
−
∑

i

Â log
Â

M

∣

∣

∣

∣

=

∣

∣

∣

∣

H(Â)−H(P̂) +H(P̂ − Â,M)

∣

∣

∣

∣

(8)

i.e., a command is accepted as belonging to padding if that translates into432

a higher difference of the entropies of P̂ and Â, plus a higher difference in the433

cross entropy between (Â−P̂) and the modelM. Implicit in this utility function434

is the idea that padding and attack have different information content, hence435

its use to identify both of them.436

A simpler and more natural approach would appear to be to accept the i-th437

command as padding if that decreases the KL divergence between the candidate438

P̂ and M. This alternative, to which we will refer as PPI KL as opposed to439

the previously discussed PPI DiffKL, turns out to be less effective in practice.440

We next discuss some experimental results.441

15

Algorithm 1 PPI

Input: Block B, modelM
Output: Boolean vector: C(i) = true if B(i) is padding

1. Initially C(i)← false for all i
2. for i = 1 to |B| do
3. d̄ =DiffKL(C,B,M)
4. C(i)← true
5. d =DiffKL(C,B,M)
6. if d ≤ d̄ then
7. C(i)← false
8. end if
9. end for
10. return P = commands B(i) such that C(i) is true

Algorithm 2 DiffKL

Input: Boolean vector C, block B, modelM
Output: Difference of K-L divergences

1. Â ← PDF of those B(i) such that C(i) is false

2. P̂ ← PDF of those B(i) such that C(i) is true

3. Da ← DKL(Â ‖ M)

4. Dp ← DKL(P̂ ‖ M)
5. return |Dp −Da|

Figure 6: Probabilistic Padding Identification (PPI) algorithm.

6.3. Experimental Results442

We now report results of the evaluation of the PPI algorithm over masquer-443

ade mimicry attacks only. Next section provides details on the overall behaviour444

over a dataset composed of both attacks and self samples.445

For each possible attack length from 1 to 100, we have generated 10000446

mimicry attacks following the procedure described in Section 4.2. Each attack447

is analysed by the PPI algorithm, which returns the estimated positions of the448

padding. We then compute how many true positives (i.e., true padding posi-449

tions correctly identified) and false positives (i.e., attack positions incorrectly450

identified as padding) are produced. Fig. 7 shows the figures for both PPI451

DiffKL and PPI KL. PPI DiffKL performs better in terms of FP, with a452

rate below 5% except for extremely short attacks. As far as TP are concerned,453

PPI DiffKL outperforms PPI KL for attacks of length approximately 25 or454

greater. We suspect that the reason for such a behaviour is related to the fact455

that PPI DiffKL makes used of both padding and attack information. While456

this certainly helps the algorithm to keep down the FP rate, it turns out to457

be a drawback when dealing with blocks when the attack portion is very short.458

16

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Attack length

F
ra

ct
io

n
of

 p
ad

di
ng

 id
en

tif
ie

d

PPI DiffKL − True positives
PPI DiffKL − False positives
PPI KL − True positives
PPI KL − False positives

Figure 7: (In colour in the electronic version.) Accuracy of the PPI algorithm in identifying
the padding portion of attacks of various lengths.

Regarding TP, the identification rate increases with the attack length almost459

linearly, up to a limit of around 80%. As we will see later, even these imperfect460

figures will be of help to assess the likelihood of an apparently normal block461

containing a mimicry attack.462

The algorithm is reasonably fast. In our experiments the inclusion of the463

PPI increases the time required to process a block up to 11.717 ± 0.28 ms.464

Even though this is an increase of an order of magnitude compared with the465

time required by OCNB and OCNB-MRB, in a real-world system these figures466

do not constitute a problem, especially when considering that the analysis is467

performed every 100 user actions.468

7. Masquerade Mimicry Attack Detection469

In this section we describe how the PPI algorithm can be integrated within470

an anomaly detector to improve the identification of mimicry attacks. Even471

though we will limit our discussion to the case of OCNB, the same principle472

could be extended to a wider family of detectors.473

In a first experiment, we generated 10000 blocks B containing mimicry at-474

tacks and applied the PPI algorithm to each one of them. We then have com-475

17

A P

0
20

0
40

0
60

0
80

0
10

00
12

00

sc
or

e
|A|=10

A P

0
20

0
40

0
60

0
80

0
10

00
12

00

sc
or

e

|A|=20

A P

0
20

0
40

0
60

0
80

0
10

00
12

00

sc
or

e

|A|=30

A P

0
20

0
40

0
60

0
80

0
10

00
12

00

sc
or

e

|A|=40

A P

0
20

0
40

0
60

0
80

0
10

00
12

00

sc
or

e

|A|=50

A P

0
20

0
40

0
60

0
80

0
10

00
12

00

sc
or

e

|A|=60

A P

0
20

0
40

0
60

0
80

0
10

00
12

00

sc
or

e

|A|=70

A P

0
20

0
40

0
60

0
80

0
10

00
12

00

sc
or

e

|A|=80

Figure 8: (In colour in the electronic version.) Score distribution for attack (red) and padding
(blue) sections in blocks containing attacks of various lengths.

puted the anomaly score, given by (4), to each one of 2 sequences (attack and476

padding) returned by the algorithm separately. The purpose of this is to mea-477

sure the contribution towards the overall anomaly score of the identified padding478

and attack portions. (Recall that the overall score is merely the sum of these479

two scores.) Fig. 8 shows the distribution of anomaly scores for the attack and480

padding sections for attacks of various lengths. As expected, padding sequences481

map to very low scores (around 50) which, besides, are almost independent of482

the attack length. On the contrary, the attack portion generally receives a much483

higher score, which obviously increases with the attack length.484

When applied to self blocks, the result is completely similar. Nevertheless, in485

this case the identified “attack” portions correspond to false negatives of the PPI486

algorithm. These, however, are comparatively very few, a fact that will facilitate487

the construction of a combined anomaly score capable of detecting mimicry488

attacks. The measure we propose below is not the only way of exploiting this489

behaviour, but in our experiments it turned out to be the best performing. The490

idea consists of reusing the OCNB-based anomaly score and applying it to each491

portion, attack and padding, separately. The overall score is then computed as492

a weighted combination of both scores, with a major reward put on the attack493

18

portion:494

score(B) = −
∑

ci∈P

ni(P) logP (ci|self)

−β

(

∑

ci∈A

ni(A) logP (ci|self)

) (9)

with β ≥ 1. The effect of parameter β is clear and its value should be investi-495

gated empirically. In our experimentation (reported below), we found reasonable496

results for most users with values of β ranging between 2 and 8.497

7.1. Experimental Results498

Table 3 summarises the behaviour of the OCNB detector based on the use499

of expression (9). As before, each threshold has been tuned so as to limit the500

false positive rate to 5%. The first column (1v49) shows the detection rate501

computed as per the 1v49 experiment (i.e., blocks belonging to other users are502

considered as masquerading attempts, but no mimicry attack is included). Note503

that using the PPI algorithm generally has some impact on the detection rate504

of non-mimicry attacks. The reasons for this behaviour are related to the false505

positives generated by the identification algorithm, particularly in the case of506

users with similar profiles, as expression (9) tends to reduce the anomaly score507

of blocks coming from users with similar profiles. The overall effect, however,508

is very limited, and the global detection rate only degrades by less than 4%509

on average. The remaining columns in Table 3 show the fraction of detected510

mimicry attacks of lengths between 10 and 40. In all cases, the inclusion of511

the PPI algorithm increases the rate by more than 20%. For some users the512

improvement is enormous; see, for example, users 8, 16, 33, 34, or 49. In513

other cases (e.g., users 20, 26, 35) the algorithm is of little help. We have not514

investigated yet the reasons for this behaviour.515

In general terms, the PPI-based detector achieves much better detection516

rates of mimicry attacks than OCNB with multiple random bags. As mentioned517

before, the process is indeed slower, but the sort of times here involved do not518

mean any problem for a real-world application. On the downside, the detection519

rate of non-mimicry attacks is slightly affected for some users. We expect to520

address this issue in future work.521

8. Conclusions and Future Work522

The majority of current approaches to identifying masquerade attempts ul-523

timately rely on an anomaly detection algorithm and, consequently, are suscep-524

tible to evasion by a resourceful adversary. In this paper we have introduced the525

concept of mimicry attacks in the context of masquerade detection and given526

practical schemes to generate such attacks in the case of a widely used algo-527

rithm – the OCNB. From an adversarial point of view, the cost of generating528

a masquerade mimicry attack is negligible, and our experimental results show529

that most of these attacks can effectively evade detection.530

19

Table 3: Detection rates (FP rate 5%) using the original OCNB (normal face) and the PPI-
based OCNB (bold face).

User 1v49 |A| = 10 |A| = 20 |A| = 30 |A| = 40 β

0 0.805 / 0.653 0.000 / 0.110 0.070 / 0.368 0.237 / 0.554 0.359 / 0.643 4.0
1 0.964 / 0.945 0.392 / 0.970 0.821 / 0.968 0.937 / 0.974 0.970 / 0.984 4.0
2 0.968 / 0.958 0.000 / 0.180 0.080 / 0.676 0.311 / 0.914 0.573 / 0.946 3.0
3 0.926 / 0.851 0.039 / 0.401 0.348 / 0.677 0.576 / 0.790 0.653 / 0.849 4.0
4 0.806 / 0.805 0.089 / 0.149 0.426 / 0.467 0.599 / 0.619 0.687 / 0.674 2.0

5 0.984 / 0.961 0.018 / 0.150 0.599 / 0.650 0.872 / 0.897 0.945 / 0.984 4.0
6 0.819 / 0.706 0.028 / 0.267 0.292 / 0.526 0.434 / 0.648 0.550 / 0.692 3.0
7 0.908 / 0.908 0.000 / 0.002 0.000 / 0.129 0.005 / 0.438 0.159 / 0.605 5.0
8 0.767 / 0.668 0.000 / 0.357 0.191 / 0.574 0.374 / 0.703 0.460 / 0.709 4.0
9 0.143 / 0.162 0.000 / 0.000 0.000 / 0.000 0.000 / 0.010 0.000 / 0.011 4.0

10 0.780 / 0.647 0.004 / 0.180 0.214 / 0.457 0.394 / 0.553 0.508 / 0.613 3.0
11 0.524 / 0.505 0.000 / 0.085 0.015 / 0.275 0.080 / 0.387 0.205 / 0.460 4.0
12 0.059 / 0.053 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 5.0
13 0.888 / 0.780 0.002 / 0.374 0.221 / 0.639 0.461 / 0.775 0.584 / 0.844 4.0
14 0.716 / 0.625 0.005 / 0.172 0.186 / 0.392 0.365 / 0.547 0.465 / 0.600 3.0

15 0.236 / 0.253 0.000 / 0.089 0.000 / 0.257 0.000 / 0.429 0.000 / 0.548 6.0
16 0.924 / 0.875 0.071 / 0.791 0.319 / 0.896 0.508 / 0.935 0.668 / 0.933 3.0
17 0.935 / 0.913 0.000 / 0.000 0.000 / 0.024 0.000 / 0.231 0.064 / 0.427 6.0
18 0.851 / 0.795 0.309 / 0.522 0.560 / 0.687 0.638 / 0.754 0.712 / 0.781 3.0
19 0.031 / 0.041 0.000 / 0.085 0.000 / 0.219 0.000 / 0.282 0.000 / 0.391 8.0

20 0.904 / 0.886 0.000 / 0.000 0.000 / 0.000 0.000 / 0.001 0.096 / 0.132 2.0
21 0.788 / 0.739 0.128 / 0.670 0.410 / 0.774 0.557 / 0.781 0.556 / 0.807 3.0
22 0.942 / 0.901 0.026 / 0.087 0.253 / 0.464 0.441 / 0.609 0.627 / 0.742 2.0
23 0.875 / 0.832 0.008 / 0.375 0.270 / 0.682 0.501 / 0.774 0.619 / 0.812 3.0
24 0.861 / 0.816 0.000 / 0.092 0.078 / 0.431 0.297 / 0.606 0.503 / 0.657 3.0

25 0.860 / 0.812 0.000 / 0.015 0.003 / 0.200 0.085 / 0.488 0.418 / 0.637 3.0
26 0.016 / 0.004 0.000 / 0.002 0.000 / 0.012 0.000 / 0.046 0.000 / 0.116 8.0
27 0.812 / 0.716 0.000 / 0.262 0.155 / 0.529 0.377 / 0.646 0.507 / 0.676 4.0
28 0.251 / 0.209 0.000 / 0.000 0.000 / 0.001 0.000 / 0.001 0.000 / 0.014 3.0
29 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000 1.000 / 1.000 1.0

30 0.837 / 0.787 0.055 / 0.097 0.390 / 0.394 0.538 / 0.612 0.679 / 0.712 2.0
31 0.993 / 0.985 0.844 / 0.996 0.976 / 0.997 0.988 / 0.999 0.987 / 1.000 4.0
32 0.764 / 0.725 0.000 / 0.002 0.000 / 0.036 0.000 / 0.266 0.014 / 0.544 4.0
33 0.821 / 0.764 0.101 / 0.642 0.400 / 0.786 0.585 / 0.817 0.652 / 0.835 4.0
34 0.971 / 0.931 0.007 / 0.543 0.643 / 0.892 0.864 / 0.954 0.903 / 0.960 4.0

35 0.772 / 0.761 0.000 / 0.000 0.000 / 0.001 0.000 / 0.001 0.000 / 0.035 2.0
36 0.773 / 0.785 0.000 / 0.053 0.127 / 0.380 0.372 / 0.539 0.460 / 0.638 2.0
37 0.070 / 0.086 0.000 / 0.097 0.000 / 0.229 0.000 / 0.370 0.000 / 0.422 9.0
38 0.033 / 0.043 0.000 / 0.155 0.000 / 0.269 0.000 / 0.339 0.000 / 0.378 9.0
39 0.471 / 0.493 0.000 / 0.089 0.000 / 0.316 0.000 / 0.489 0.040 / 0.577 5.0

40 0.510 / 0.566 0.000 / 0.474 0.000 / 0.669 0.002 / 0.786 0.051 / 0.809 5.0
41 0.815 / 0.796 0.000 / 0.000 0.000 / 0.070 0.054 / 0.243 0.220 / 0.391 2.0
42 0.460 / 0.426 0.000 / 0.191 0.000 / 0.438 0.009 / 0.633 0.066 / 0.725 5.0
43 0.791 / 0.718 0.000 / 0.095 0.059 / 0.370 0.218 / 0.593 0.371 / 0.676 3.0
44 0.649 / 0.602 0.000 / 0.001 0.003 / 0.042 0.102 / 0.210 0.289 / 0.352 2.0

45 0.994 / 0.992 0.908 / 0.926 0.981 / 0.981 0.989 / 0.988 0.995 / 0.995 2.0
46 0.991 / 0.986 0.000 / 0.031 0.000 / 0.535 0.290 / 0.928 0.786 / 0.982 4.0
47 0.733 / 0.704 0.005 / 0.073 0.143 / 0.320 0.311 / 0.477 0.437 / 0.549 3.0
48 0.598 / 0.576 0.000 / 0.102 0.000 / 0.329 0.045 / 0.476 0.157 / 0.572 4.0
49 0.651 / 0.599 0.000 / 0.661 0.072 / 0.780 0.284 / 0.802 0.353 / 0.813 4.0

Avg 0.701/ 0.667 0.081 / 0.253 0.206 / 0.423 0.314 / 0.558 0.407 / 0.625 –

We have first studied the impact of randomising the detection procedure531

by using the MRB variant of OCNB. Our empirical analysis indicates that532

20

this scheme constitutes a detection strategy considerably more accurate than533

OCNB alone. Moreover, introducing a probabilistic component in the detection534

procedure does not seem to have an adverse impact on the detection quality of535

standard, non-mimicry masquerade attacks.536

In order to improve upon the results exhibited by OCNB-MRB, we have537

proposed the PPI algorithm, a very efficient procedure that attempts to separate538

the attack sequence from the padding in a behavioural pattern. The rationale539

behind the PPI algorithm is sound and relies on the intuitive idea that the540

attack and padding segments have different information content, a fact that can541

be measured, for example, through the KL divergence. When tested under the542

same conditions as the previous two approaches, our experimental results show543

that the PPI performs significantly better with almost no degradation in terms544

of false positives. Moreover, the principle behind the PPI algorithm is general545

and can be adapted to detectors other than OCNB.546

In future work we will explore the extent to which other detectors are vul-547

nerable to masquerade mimicry attacks. For instance, previous research has548

shown that detectors based on SVM perform quite well in the masquerade set-549

ting [46]. It remains to be seen if efficient procedures for generating mimicry550

attacks against SVM do exist and, if so, how algorithms similar to the PPI can551

be developed. More generally, we anticipate that future research in this area552

should consider the presence of a sophisticated adversary with full knowledge of553

the internal functioning of the deployed sensors. This will lead to more robust554

designs, capable of enduring attacks carefully crafted to evade detection.555

References556

[1] M. Bertacchini and P.I. Fierens. “Preliminary Results on Masquerader De-557

tection using Compression-based Similarity Metrics”. Electronic Journal of558

SADIO 7(1), 2007.559

[2] B. Biggio, G. Fumera, and F. Roli. “Adversarial Pattern Classification560

Using Multiple Classifiers and Randomisation”. Structutal, Syntactic, and561

Statistical Pattern Recognition, LNCS 5342:500–509, 2008.562

[3] B.M. Bowen, M. Ben Salem, S. Hershkop, A.D. Keromytis, and S.J. Stolfo.563

“Designing Host and Network Sensors to Mitigate the Insider Threat”.564

IEEE Security & Privacy, pp. 22–29, Nov/Dec 2009.565

[4] D.D. Caputo, G.D. Stephens, and M.A. Maloof. “Detecting Insider Theft566

of Trade Secrets”. IEEE Security & Privacy, pp. 14–21, Nov/Dec 2009.567

[5] E. Chan-Tin, D. Feldman, N. Hopper, and Y. Kim. “The Frog-Boiling568

Attack: Limitations of Anomaly Detection for Secure Network Coordinate569

Systems”. In SecureComm 2009.570

[6] L. Chen and G. Dong. “Masquerader Detection using OCLEP: One-class571

Classification using Legth Statistics of Emerging Patterns”. In WAIMW572

2006, pp. 5.573

21

[7] N. Delvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. “Adversarial574

Classification”. In ACM KDD 2004, pp 98–108.575

[8] F.A. Durán, S.H. Conrad, G.N. Conrad, D.P. Duggan, and E.B. Held.576

“Building a System for Insider Security”. IEEE Security & Privacy, pp.577

30–38, Nov/Dec 2009.578

[9] J.A. Endler. “An overview of the relationships between mimicry and cryp-579

sis”, Biological Journal of the Linnean Society, 16(1):25–31, 1981.580

[10] J.M. Estevez-Tapiador, P. Garcia-Teodoro, and J.E. Diaz-Verdejo.581

“Stochastic Protocol Modeling for Anomaly-Based Network Intrusion De-582

tection”. In IWIA 2003, pp. 3-12.583

[11] J.M. Estevez-Tapiador, P. Garcia-Teodoro, and J.E. Diaz-Verdejo. “Detec-584

tion of Web-based Attacks through Markovian Protocol Parsing”. In ISCC585

2005, pp. 457–462.586

[12] S. Evans, E. Eiland, S. Markham, J. Impson, and A. Laczo. “MDLcompress587

for Intrusion Detection: Signature Inference and Masquerade Attack”. In588

MILCOM 2007, pp. 1–7.589

[13] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. “Polymorphic590

Blending Attacks”. In 15th USENIX Security Symposium, 2006.591

[14] P. Fogla and W. Lee. “Evading network anomaly detection systems: formal592

reasoning and practical techniques”. In CCS 2006, pp. 59–68.593

[15] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff. “A Sense of594

Self for Unix Processes”. In IEEE Symp. Security and Privacy, 1996.595

[16] S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri. “Self-Nonself Dis-596

crimination in a Computer”. In IEEE Symp. Security and Privacy, 1994.597

[17] D. Gao, M.K. Reiter, and D. Song. “On Gray-Box Program Tracking for598

Anomaly Detection”. In USENIX Security Symposium, 2004.599

[18] M. Gebski and R.K. Wong. “Intrusion Detection via Analysis and Mod-600

elling of User Commands”. In DAWAK, LNCS Vol. 3589, pp. 388–397.601

Springer-Verlag, 2005.602

[19] J.T. Giffin, S. Jha, and B.P. Miller. “Automated Discovery of Mimicry603

Attacks”. In RAID 2006.604

[20] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical605

Learning: Data Mining, Inference, and Prediction, 2nd Edition. Springer-606

Verlag, 2009.607

[21] S. Hofmeyr, S. Forrest, and A. Somayaji. “Intrusion Detection Using Se-608

quences of System Calls”. J. Computer Security 6:151–180, 1998.609

22

[22] M.C. Jason Program Office. “Horizontal Integration: Broader Access Mod-610

els for Realizing Information Dominance”. Technical Report JSR-04-132,611

The MITRE Corporation, JASON Program Office, Mclean, Virginia, Dec612

2004. http://www.fas.org/irp/agency/dod/jason/classpol.pdf.613

[23] H.G. Kayacik, A.N. Zincir-Heywood, and M.I. Heywood. “Automatically614

Evading IDS Using GP Authored Attacks”. In IEEE Conf. on Computa-615

tional Intelligence for Security and Defense Applications, 2007.616

[24] M. Kearns and M. Li. “Learning in the Presence of Malicious Errors”. In617

Proc. ACM Symposium on Theory of Computing, pp 267–280, 1988.618

[25] K.S. Killourhy and R.A. Maxion. “Toward Realistic and Artifact-Free619

Insider-Threat Data”. In ACSAC 2007, pp. 87–96.620

[26] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. “Automat-621

ing Mimicry Attacks using Static Binary Analysis”. In USENIX Security622

Symposium, 2005.623

[27] C. Kruegel, T. Toth, and E. Kirda. “Service Specific Anomaly Detection624

for Network Intrusion Detection”. In SAC 2002, pp. 201–208.625

[28] M. Latendresse. “Masquerade Detection via Customized Grammars”. In626

DIMVA 2005, LNCS Vol. 3548, pp. 141–159. Springer-Verlag, 2005.627

[29] D. Lowd and C. Meek. “Adversarial Learning”. In ACM KDD 2005.628

[30] M. Mahoney. “Network Traffic Anomaly Detection Based on Packet Bytes”.629

In Proc. ACM SAC, 2003.630

[31] M. Mahoney and P.K. Chan. “Learning Nonstationary Models of Normal631

Network Traffic for Detecting Novel Attacks”. In Proc. SIGKDD, 2002.632

[32] R.A. Maxion and T.N. Townsend. “Masquerade Detection using Truncated633

Command Lines”. In DSN 2002), pp. 219–228.634

[33] R.A. Maxion. “Masquerade Detection using Enriched Command Lines”. In635

DSN 2003), pp. 5–14.636

[34] M. Oka, Y. Oyama, H. Abe and K. Kato. “Anomaly Detection Using Lay-637

ered Networks Based on Eigen Co-occurrence Matrix ”. In RAID 2004,638

LNCS Vol. 3224, pp. 223–237. Springer-Verlag, 2004.639

[35] S.L. Pfleeger and S.J. Stolfo. “Addressing the Insider Threat”. IEEE Secu-640

rity & Privacy, pp. 10–13, Nov/Dec 2009.641

[36] R. Posadas, J.C. Mex-Perera, R. Monroy, J.A. Nolazco-Flores. “Hybrid642

Method for Detecting Masqueraders using Session Folding and Hidden643

Markov Models”. In Proc. 5th Mexican Intl. Conf. on Artificial Intelligence,644

pp. 622–631, 2006.645

23

[37] M. Ben Salem, S. Hershkop, S. Stolfo. “A Survey of Insider Attack Detec-646

tion Research”. In Insider Attack and Cyber Security: Beyond the Hacker,647

Springer, 2008.648

[38] M. Ben Salem and S. Stolfo. “Masquerade Attack Detection Using a Search-649

Behavior Modeling Approach”. Columbia University, Computer Science650

Department, Technical Report CUCS-027-09, 2009.651

[39] M. Schonlau, W. DuMouchel, W.-H. Ju, A.F. Karr, M. Theus, and Y.652

Vardi. “Computer Intrusion: Detecting Masquerades”. Statistical Science653

16(1):58–74, Feb 2001.654

[40] R. Sommer and V. Paxson. “Outside the Closed World: On Using Ma-655

chine Learning for Network Intrusion Detection”. In IEEE Symposium on656

Security and Privacy, 2010.657

[41] K.M.C. Tan, K.S. Killourhy and R.A. Maxion. “Undermining an Anomaly-658

Based Intrusion Detection Systems Using Common Exploits”. In RAID659

2002.660

[42] K Tan, J. McHugh, and K.S. Killourhy. “Hiding Intrusions: From the661

Abnormal to the Normal and Beyond”. In Proc. 5th Information Hiding662

Workshop, 2002.663

[43] J.E. Tapiador and J.A. Clark. “Information-Theoretic Detection of Mimicry664

Masquerade Attacks”. In NSS 2010, pp. 5–13.665

[44] D. Wagner and R. Dean. “Intrusion detection via static analysis”. In Proc.666

of the 2001 IEEE Symposium on Security and Privacy, pp.156-168, 2001.667

[45] D. Wagner and P. Soto. “Mimicry Attacks on Host-Based Intrusion Detec-668

tion Systems”. In ACM CCS 2002.669

[46] K. Wang and S. Stolfo. “One-class Training for Masquerade Detection”. In670

ICDM Workshop on Data Mining for Computer Security, 2003.671

[47] K. Wang and S. Stolfo. “Anomalous Payload-based Network Intrusion De-672

tection”. In RAID 2004.673

[48] K. Wang and S. Stolfo. “Anomalous Payload-based Worm Detection and674

Signature Generation”. In RAID 2005.675

[49] C. Warrender, S. Forrest, and B. Pearlmutter. “Detecting Intrusions Using676

System Calls: Alternative Data Models”. In IEEE Symposium on Security677

and Privacy, 1999.678

[50] Y. Zhou, Z. Jorgensen, and M. Inge. “Combating Good Word Attacks on679

Statistical Spam Filters with Multiple Instance Learning.” IEEE ICTAI680

2007, pp. 298–305.681

24

